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ABSTRACT

Well and seismic data in the National Petroleum Reserve in Alaska (NPRA) demonstrate
that the Jurassic—Lower Cretaceous Kingak Shale is present throughout NPRA. Several
southward progradational depositional sequences within the Kingak culminate in an ultimate
shelf margin in southern NPRA, across which the formation thins dramatically. However the
exact limit of the formation is obscured by frontal structures associated with Brooks Range
tectonism.

These changes in Kingak facies and stratigraphic architecture are interpreted to have
influenced the frontal structures of the Brooks Range foothills during Brookian thrusting and
folding. The ultimate Kingak shelf margin is arcuate, reaching its most southern point in
southwest NPRA. Here, this shelf margin controls an abrupt change in detachment level,
stepping up from the top of Shublik Formation (Upper Triassic) to the top the Torok Formation
(Aptian — Albian). The ramp in this area appears to be associated with the shelf margin because
the Kingak is thicker in the footwall of the thrust system than in the hanging wall. This imbricate
of repeated Kingak through Nanushuk Formation (Albian) underlies the Carbon Creek anticline.
This prominent northwest-southeast trending fold marks a change in structural grain in the
foothills region of southwestern NPRA from east-west trending anticlines to the south.

We propose that the abrupt change in structural grain is the result of northward verging
thrust sheets impinging obliquely on the ultimate shelf margin of the Kingak in southwest
NPRA. In southeast NPRA there is a more gradual thinning of the Kingak with the shelf margin
lying farther to the north. Here the detachment at the top of the Shublik Formation gently rises

to the top of the Kingak, and into the Torok Formation. Low-relief folds form over this



detachment, and involve Brookian strata, where the Carbon Creek anticline plunges to the

southeast.



INTRODUCTION
National Petroleum Reserve — Alaska

The 23.5 million acres of land on the western North Slope of Alaska makes up The
National Petroleum Reserve — Alaska (NPRA) (Figure 1). Gryc (1985) discussed how it was
formerly known as the Naval Petroleum Reserve No. 4, the Naval Petroleum Reserves
Production Act of 1976 transferred responsibility to the Department of the Interior renaming it
NPRA. On June 1, 1977 the exploration program and other related activities of NPRA were
assigned to the United States Geological Survey (USGS). USGS conducted studies ranging from
detailed stratigraphy and geochemistry to synthesis and interpretation of the geological
framework of NPRA. Bird (2001) explained that NPRA is a geologically complex region including
prospective strata within passive margin, synrift, and synorogenic sequences. Multiple source
rocks are present, as well as ample structural and stratigraphic traps. In most recent USGS
assessment in 2010 (Houseknecht et al. (2010) estimated the amount of conventional,
undiscovered, recoverable oil at 895 billion barrels, but recent emphasis on unconventional
resources will possibly raise this number considerably.
Motivation

The 112" Congress 1° session on June 13, 2011 brought up the bill H.R.2150. It will
require the Department of the Interior to complete a comprehensive assessment of NPRA. The
resource assessment will be carried out by USGS in cooperation with the State of Alaska and
the American Association of Petroleum Geologists (AAPG). If the bill goes through, this will need
to be done within 24 months of the bill’'s enactment (United States Congress, 2011). No one

has looked at a large area in southern NPRA since the USGS exploration program that began in



1977. The Carbon Creek Fault Zone, a large structural break in this area, forms the boundary
between the Northern and Southern Foothills of the Brooks Range. This zone is critical in
understanding the structure of the area. Moore and Potter (2003) have done some seismic
correlations in this area, but no one has published any structural interpretation since 1988.

GEOLOGY OF THE STUDY AREA
Overview

Moore et al. (1994) divided Northern Alaska into three provinces, The Brooks Range, the
Arctic Foothills, and the Arctic Coastal Plain (Figure 1). The Brooks Range is an arctic east — west
trending mountain belt. North of the Brooks Range are the Arctic Foothills which are divided
into the Northern and Southern Foothills, and decrease in elevation to the north. The Coleville
Basin lies within the arctic coastal plain that slopes into the Arctic Ocean. The Ellesmerian
(Mississippian — Triassic), Beaufortian (late Triassic — early Cretaceous), and Brookian
(Cretaceous — Tertiary) tectonostratigraphic sequences were deposited in Northern Alaska over
Franklinian basement (Pre-Mississippian) (Figure 2). Several unique formations compose each
of these megasequences, each with its own characteristic depositional environment.
Houseknecht and Bird (2004) discussed the Kingak Shale which makes up the entirety of
Beaufortian sequence. The Lower Cretaceous Unconformity defines the top of the Kingak Shale,
and Shublik formation defines its base. The Kingak Shale is a series of sequences that
prograded southward on the passive flank of the Arctic Ocean rift shoulder This prism of strata

thins north and south from its zone of maximum thickness.



Paleogeography

Colpron and Nelson (year) stated that the North American Cordillera follows the west
coast of North America, and ranges from the Northern Yukon to Arctic Alaska Terrane. They
concluded the North American Cordillera is the result of progressive addition of terranes to the
Laurentian Craton whose crustal elements distinguish them from their neighbors. Moore et al.
(1994) discussed the Late Proterozoic breakup of Rhodinia, which lead to a passive margin of
western Laurentia. This passive margin, thick carbonate-platform and fine-grained quartzose
rock comprise the Franklinian basement rock of the Arctic Alaska Terrane.

This Laurentian margin transformed into a subduction zone in mid-Paleozoic times, as
evidenced by Devonian magmati c rocks formed in a back-arc setting. Colpron and Nelson
(2009) recognized that this convergent margin has prevailed along the western margin of North
America up until present times. Pre-Mississippian episodes of contraction and extension, along
with the Brookian orogeny, complicated the Franklinian basement rock. There is evidence that
a pre-Mississippian angular unconformity presents itself throughout the subsurface of the
North Slope. This unconformity involves the widespread absence of lower Devonian strata
which suggests there was an orogenic episode affecting Northern Alaska in the Early Devonian
or Silurian (Moore et al., 1994). This idea is consistent with Colpron and Nelson’s (2009) idea of
consistent convergence in the area since the mid-Paleozoic. They add that the Endicott Group
at the base of the Ellesmerian megasequence, more closely resembles synorogenic sediment
than the postorogenic passive margin sediment that comprises the rest of the Ellesmerian

megasequence.



Hubbard et al. (1987) concluded the Beaufort Sea rifting episode deposited
Beaufortian strata, which will be discussed in detail in later. The Beaufortian megasequence
records the full extent of the rifting which opened the oceanic Canadian Basin. The rifting
episode lasted for about 100 million years, from the Early Jurassic to the Early Cretaceous. The
lower part of the Beaufortian megasequence records the episodes of Jurassic failed rifting,
while the upper part of the megasequence records successful Cretaceous rifting.

Hubbard et al. (1987) also determined the Brookian Orogeny occurred as the result of
collisions between exotic terranes and the Arctic Alaska terrane beginning in the Middle
Jurassic. Convergence obducted island arcs and oceanic crust onto the Arctic Alaska terrane up
to the Late Jurassic, and tectonic processes heightened in the Early Cretaceous. The majority of
crustal shortening in the Brooks Range occurred by the Albian. Moore et al. (1994) stated that
the rapid uplift of the Arctic Alaska terrane in the late Early Cretaceous resulted in deposition of
huge volumes of clastic sediment dispersal to the northeast. Renewed north-vergent thrusting
in the Tertiary resulted in further northward migration of synorogenic sediment.

During the Early Cretaceous, arc-continent collisions explained by Moore et al. (2004)
deformed the Ellesmerian and Beaufortian strata. They recognized that competent stratigraphic
units became imbricated and less competent units served as detachments. Thrusting in the late
Early Cretaceous occurred above a deep detachment that ramped up onto the Kingak Shale.
This period of thick-skinned thrusting was what caused formation of crustal scale duplexes in
the Brooks Range and deposition of sediment in the north. In the foothills, thin-skinned very
late Cretaceous to early Tertiary thrusting resulted in thrust faults that truncate older deposits.

Golanka (2011) and Lawver et al. (2011) addressed the Chukotka Terrane which may have been



approach Arctic Alaska from the west in the lower Cretaceous. The Chukotka tectonic belt
developed along the western plate boundaries of Arctic Alaska. Seismic clinoform dip direction
show that sediment dispersal associated with the lower Cretaceous in the Colville foreland
basin was eastward.
History of the Kingak Shale

Beaufortian strata (Jurassic — Early Cretaceous) comprise the Kingak Shale, deposited in
a succession of sequences (Fig. 3) during the rift opening of the Arctic Ocean (Houseknecht and
Bird, 2004). It became the primary focus of exploration in NPRA with the 1994 discovery of the
Alpine field, a stratigraphic trap in which the reservoir consists of Upper Jurassic marine
sandstone filling incised channels. The Kingak thins to the north and south from a zone of
maximum thickness in northeast NPRA. Irregularities in thickness of the Kingak Shale at it
southern limit may be a result of local tectonic thickening in southern NPRA. Hubbarrd et al.
(1987) divided Beaufortian strata into four unique sequence sets that are linked to stages of
rifting, prerift lower to middle Jurassic strata, Upper Jurassic failed rift strata, Lower Cretaceous
prerift strata, and Lower to middle Cretaceous successful strata. Houseknecht and Bird (2004)
elaborated on these four sequence sets, and refer to them as K1 thought K4. The Kingak Shale
is rarely present in outcrop, and what is exposed lacks significant data on the nature of
depositional sequences present in NPRA. Houseknecht and Bird (2004) did most of their
interpretation and mapping on the Kingak Shale using a regional grid of 1974-1981 vintage,
public-domain, 2-D seismic data, supplemented by core description.

Houseknecht and Bird (2004) defined the base of Kingak Shale, the K1 unit (Lower to

middle Jurassic), as the contact with the Triassic Shublik formation at the top of Ellesmerian



strata. Houseknecht and Bird interpreted the contact between the Kingak shale and Ellesmerian
strata as a flooding surface, because a maximum regressive surface is apparent at the top of the
Sag River or Shublik formations. A high gamma response in these strata lead them to interpret
it as a thin shale present above the flooding surface and they interpreted the shale as a
transgressive systems tract. Transgressive and regressive successions are apparent throughout
the K1 sequence. To the south the K1 sequence consist mostly of shales and mudstones. These
represent the ultimate shelf margin at the time of deposition. Hannon et al. (2000) interpreted
the lower Kingak as the probable source of oil in the Alpine field. Houseknecht and Bird
recognized that the K1 organic carbon rich facies draped across the ultimate shelf margin may
be that source rock.

Houseknecht and Bird (2004) defined the K2 sequence (Upper Jurassic) by the
truncation of the K1 sequence and stratal geometry defined by seismic data. The K2 sequence
thins over the K1 shelf and then thickens at the K1 ultimate shelf margin. K2 developed as the
result of forced regression cause by tectonic uplift related to failed rifting. These forced
regressions caused widespread erosion, then deposition at the shelf margin followed by
flooding which deposited transgressive systems tracts. Due to this transgressive-regressive
trend most of the beds in K2 grade from thin shales up to sandstones. A thick glauconitic
sandstone, present in the K2 sequence, is the main reservoir at the Alpine field. This makes the
sandstone a very important anomaly in the K2 sequence (Houseknecht and Bird, 2004).

The K3 sequence (Lower Cretaceous) is defined by Houseknecht and Bird (2004) by high-
amplitude reflections that indicate a downlap surface at the top of the K2 sequence. Erosional

truncation by the Lower Cretaceous unconformity (LCU) defines its top in the north, but



erosional truncation by the overlying K4 sequence defines its top in the south. At least two
transgressive-regressive sequences make up the K3 sequence with overall thin transgressive
systems tracts overlain by thick regressive systems tracts. At the time of K3 sequence
deposition, normal regressive conditions prevailed, relative sea level was high, and most of
NPRA was underwater (Houseknecht and Bird, 2004).

Successful rifting of the Arctic Ocean Basin in the Lower to middle Cretaceous deposited
what is defined as the K4 sequence by Houseknecht and Bird (2004). They define top of the K4
sequence by the LCU, and an erosional contact with either K2 or K3 define its base. Rift
shoulder uplift caused forced regression and deposition at the ultimate shelf margin. This
produced a shelf-margin wedge with thin transgressive system tracts overlain by thick
regressive systems tracts. The K4 sequence has facies that indicate a high energy depositional
system with higher rates of sedimentation than the K1-K3 sequences had (Houseknecht and
Bird, 2004).

The Pebble Shale Unit and Torok Formation

The Pebble shale unit is part of the basal condensed section of Brookian strata that lies
unconformable above the Kingak formation. Black, organic rich, fairly fissile marine shale
characterize this thin widespreaed unit (Moore et al., 1994). Bird (1987) concluded that
Isopachs of the pebble shale unit are irregular and range from 60 to 160m, the thickest area
being near Barrow.

The Torok Formation is a middle Cretaceous clinoform depositional sequence composed
mostly of silty mudstone which represent the toe of a marine slope to the outer shelf, and

sandstone beds which represent submarine fans (Houseknecht and Bird, 2009).Moore et al.



(1994) determined that the thickness of the Torok ranges from about 100m to 6000m near the
Colville River. Torok deposition resulted from sediment shed from the tectonic highlands during
the Brookian and Chukotka orogenies (Houseknecht and Bird, 2011).
Carbon Creek Anticline

Kirschiner and Rycerski (1984) defined the Carbon Creek Fault (?) Zone as the
fundamental boundary between the northern and southern foothills (Figure 4). They stated
that the Carbon Creek Fault(?) Zone includes anticlines, but they suggest that northeast
extension and dextral strike-slip displacement also are possible. They stated a rifted fragment
of the Arctic platform was displaced relatively westward by oblique right-lateral extension
across the Carbon Creek Fault (?) Zone. The United States Geological Survey drilled the Awuna
well into an anticline along this mapped zone in 1980. Awuna’s total depth is 11,200 feet, and it
penetrates only the Torok formation (Bird, 1985).

METHODS
Seismic Interpretation in Fold and Thrust Belts

Faults and Folds are prevalent throughout fold and thrust belts such as the Brooks
Range. Shaw et al. (2005) addressed the challenges in seismic imaging of fold and thrust belts.
First, reflections can overlap if the data are not migrated or under-migrated in sections. Second,
steeply dipping fold limbs are difficult to image. It is important to notice these kinds of
problems in data when interpreting a poorly imaged zone, because it is easy to mistake a high-
angle fold limb as a fault. If a fault is present, there will be actual displacement in reflections,

over a short distance, whereas reflections may simply be truncated across a fold limb of finite



width. Furthermore, most thrusts will have dips that are low-angle, and thus the offset across
the thrust should be of low angle. A kink band of low dip will more likely be imaged.

The anticlines seen in the Carbon Creek area are a result of fault-related folding. Fault-
related folds are very common in fold and thrust belts, and are formed due to displacement
along fault surfaces (Suppe, 1985). It is important to distinguish between thrust ramps,
detachments, and fold limbs. Shaw et al. (2005) define detachments as faults that generally
parallel bedding and run along stratigraphic horizons. Seismic does not image detachments
directly, but they are interpreted at the base or top of thrust ramps. A thrust ramp can cause a
fault-bend fold (Figure 5), or a fault-propagation fold (Figure 6). A fault-bend fold forms as the
hanging-wall rocks move over bends in an underlying fault. Anticlinal fault-bend folds form
where the fault concaves down. Usually the axial surface of the fault will stay pinned to the
bend in the fault. Fault-propagation folds form at the tips of faults and consume slip. These
generally asymmetrical folds have highly dipping forelimbs (Shaw et al., 2005). In both of these
cases relating fold shape to fault shape leads to more accurate interpretations.

Background on Sequence Stratigraphy

Embry (2002) defineed sequence stratigraphy as follows. “Sequence stratigraphy
consists of the recognition and correlation of changes in depositional trends in the rock record.
Such changes, which were generated by the interplay of sedimentation and shifting base level,
are now recognized by sedimentological criteria and geometrical relationships.”

To understand this definition of sequence stratigraphy, it is necessary to define base
level and a sequence. Mitchum et al. (1977) defined a sequence as a stratigraphic unit

composed of genetically related strata bounded at top and bottom by unconformities and their



correlative conformities. Base level is where equilibrium exists between sedimentation and
erosion. Embry (2002) used the idea of base level as a ceiling for sedimentation (Figure 7). If
base level exists below sea level then no sedimentation will occur, and the earth’s surface will
be eroded. If base level exists above sea level then the area between base level and sea level is
accommodation in which sediment will accumulate. Embry (2002) explained that a change in
base level is a combination of sea level rise or fall, and changes in sedimentation rates. Sea level
rise and fall result from one of two things, eustacy or tectonics. Eustasy is a term used

to describe global sea level, or sea surface, with respect to a fixed datum (Dutton, 1889). Sea
level can also change relative to a surface due to uplift during an orogeny. It is impossible to
determine the effect of one factor by itself on base level, therefore the net effects of
sedimentation and sea level must be determined. Sequence stratigraphy recognizes
depositional trends and determines the interactions between accommodation and
sedimentation necessary to produce these trends.

Embry (2002) stated that during a cycle of base level rise and fall there are six distinct
depositional trends. These trends involve the movement of the shoreline (transgression or
regression), and sedimentation (accumulation or erosion). These six unique depositional trends
result in identifiable surfaces in the sedimentary record. Four of these surfaces are formed
during base level rise (the maximum regressive surface, shoreface ravinement-unconformable,
shoreface ravinement-normal, and maximum flooding surface), while two develop during base
level fall (the subaerial unconformity, and regressive surface of marine erosion) (Figure 8).

When base level rise begins, the shoreline continues to advance basinward (regression),

but when the rate of base level rise exceeds the rate of sedimentation the shoreline begins to



move landward (transgression). When this occurs, the maximum regressive surface forms and
marks the change from regression to transgression. This change to transgression also may
result in the formation of the shoreface ravinement surface (either unconformable or normal).
This erosive surface is formed by wave action cutting away the shoreface and transporting
sediments basinward. Shoreface ravinement occurs throughout the entire period of
transgression. It is unconformable if it cuts down through the underlying subaerial
unconformity, and normal if it does not. When the rate of sedimentation starts to exceed the
rate of base level rise the maximum flooding surface is formed, and once base level starts to fall
erosion of earth’s exposed surface produces a subaerial unconformity. The regressive surface of
marine erosion also forms from base level fall when the inner shelf erodes in order to remain at
equilibrium. This erosion occurs throughout the entire time of base level fall.

Embry (2002) described how these unique surfaces can be used to define a type of sequence.
He stated that a transgressive-regressive sequence “is the only type that meets all the criteria
for practicality and usefulness.” This unconformable part of this type of sequence is defined by
either a subaerial unconformity or shoreface ravinement-unconformable, but it differs from
other type of sequences in that its conformable part is simply defined by the maximum
regressive surface. Embry (2002) also discussed how a sequence can further be subdivided into
systems tracts, which are bounded by recognizable surfaces. He states that there are only two
kinds of practical systems tracts, regressive systems tracts and transgressive systems tracts. The
transgressive systems tract refers to strata between the subaerial unconformity and the
maximum flooding surface. The regressive systems tract refers to the strata between the

maximum flooding surface and either the subaerial unconformity, shoreface ravinement-



unconformable, or the maximum regressive surface. The transgressive-regressive sequence,
along with transgressive and regressive systems tracts were used by Houseknecht and Bird
(2004) in their discussion of the Kingak Formation.
Mapped Horizons and Faults

Interpretation of the subsurface in this study area relied highly on seismic interpretation
due to the sparseness of wells in this area. The interpretation was done in SMT’s Kingdome
Suiteo 8.7. Interpretation of the stratigraphy and structure of the Brooks Range foothills used
the 26 regional seismic lines in NPRA that were reprocessed using post-stack time processing
techniques (Miller et al., 2000; Miller et al.,2001). The interpreted horizons were tied to USGS
formation tops after time-depth functions were generated for each well in the study area
(Appendix A). Faults and folds were mapped using the principles of fault-related folding
outlined by Shaw et al. (2005). The K1 through K4 of the Kingak Formation were fully
reinterpreted throughout NPRA using both principals of modern sequence stratigraphy outlined
by Embry (2002) and Houseknecht and Bird’s (2004) interpretation as a reference (Figure 9).

Each horizon was mapped based on the following criteria. Figure 10 shows the
stratigraphic location of each horizon in Arctic Alaska. To map each horizon we followed a
continuous reflector. If the seismic imaging became poor we made our best guess mapping the
horizon by ties with intersecting seismic lines
Shublik Formation — This Shublik Formation is a mixture of carbonate, mudstone, shale and
sandstone deposited on a southward sloping margin and represents a regional marine

transgression (Moore et al., 1994). This horizon was mapped by tying it to the USGS pick in the



Inigok well (Bird, 1985) (Figure 11) after a time-depth function was generated for that well
(Appendix A).

Kingak Formation — The Kingak Shale was deposited in a succession of sequences during the rift
opening of the Canada basin. The first strong trough below the Lower Cretaceous Unconformity
defines the top of the Kingak Formation and this horizon was mapped by tying it to the USGS
pick in the Inigok well (Bird, 1985) (Figure 11). The top could be K1, K2, K3, or K4 depending on
the position in NPRA.

K1 Sequence —Interpretation of this sequence within the Kingak Shale was done by
referencing Houseknecht and Bird’s (2004) interpretation of seismic lines R-1, R-14, and R-21.
The first strong continuous trough above the Shublik representing a sequence boundary was
followed in order to map this horizon (Figure 12).

K2 Sequence— Interpretation of this sequence within the Kingak Shale was done by
referencing Houseknecht and Bird’s (2004) interpretation of seismic lines R-1, R-14, and R-21.
The first strong continuous trough above the K1 sequence on northern part of line R-21 was
followed in order to map this horizon. This is not always the first strong trough above K1,
because K2 thickens where K1 is thin (Figure 12).

K3 Sequence - Interpretation of this sequence within the Kingak Shale was done by
referencing Houseknecht and Bird’s (2004) interpretation of seismic lines R-1, R-14, and R-21.
The first strong continuous trough below the Lower Cretaceous unconformity was followed on
the northern part of line R-21 in order to map this horizon. K3 is the top of the Kingak formation
in northern NPRA (Figure 3), and then its shelf margin pinches out into in the K2 sequence to

the south (Figure 12).



K4 Sequence — Interpretation of this sequence within the Kingak Shale was done by
referencing Houseknecht and Bird’s (2004) interpretation of seismic lines R-1 and R-21. The first
strong continuous trough below the Lower Cretaceous Unconformity at the ultimate Kingak
shelf margin was followed in order to map this horizon. The K4 sequence thickens south of the
K3 shelf margin (Figure 12). Following the strong continuous trough to the north the K4
sequence is truncated by the Lower Cretaceous Unconformity (Figure 12).

Pebble Shale — This is thin organic rich black shale that lies uncomformably on the LCU (Kingak
Shale across most of study area) (Moore et al., 1994). The horizon was mapped as the first
strong continuous trough above the top of the Kingak Formation (Figure 13) and it can also be
tied to the Inigok well (Bird, 1985) (Figure 11).

Torok Formation — This is a series of clinoform depositional sequences composed of dark
marine shale and sandstone deposited in the Colville basin by an eastward—northeastward
sediment dispersal system (Houseknecht et al., 2009; Houseknecht and Bird, 2001). The top of
the Torok formation was not picked, but three sequences within it were, the lower, middle, and
upper Torok. The middle Torok is the first strong fairly continuous trough above the pebble
shale, and the upper Torok is the strong fairly continuous trough above the lower Torok (Figure
11). Fairly continuous is used because both these horizons eventually pinch out to the east into
the pebble shale (Figure 12). The lower Torok is only present in southern NPRA near the Kingak
shelf margin before it quickly downlaps to the north onto the pepple shale either right before
or after the shelf margin (Figure 14). What we are calling the lower Torok in this study could
possibly the Fortress Mountain Formation. The strong reflectors that were used to map these

horizons are drapes of condensed shale on flooding surfaces.



DISCUSSION
Results
Structural Style

The structure in NPRA decreases in complexity northward as stated by Moore et al.,
1994 and many others. All the faults mapped in the study area are thrust faults, most of which
dip to the south or slightly southwest (Figures 15 and 16).The structures are fault-related folds
that show a greater degree of imbrication in southern NPRA (Figures 15 and 16). The thrusts
step up from a detachment in the basal condensed section which is made up of the Shublik
Formation, Kingak Shale, and the pebble shale. There are places where each of these horizons
can be seen acting as the detachment in seismic lines (Figure 17). The thrusts then ramp up and
detach again within the Kingak formation, at the top of the Kingak, or in the Torok (Figures 15
and 16).

Most folds observed in the study area are fault-bend folds as described by Shaw et al.
(2005). Figure 18 shows a very simple fault-bend fold that is not imbricated. This is because this
section of R-22 is in the northern foothills and structures are not as complicated. Imbricated
break-forward fault-bend folds are observed at the boundary between the northern and
southern foothills (Figure 19). Break forward means that the younger fault is structurally lower
than and has further deformed the older fault and older fault-bend fold. Backthrusting is
present in some of the structures that have a large amount of slip (Figures 15, 16, and 19).
These backthrusts dip to the north or slightly northeast and have occurred in order to form a
wedge that can accommodate the large amount of slip. The wedge is made up of a thrust and

the backthrust and slip along both of the faults accommodates the input slip (Shaw et al.,



2005). Some of the faults involved with the imbricated fault-bend folding appear to break
through to the surface, although it is hard to tell due to the truncation of the seismic lines
beneath the surface. The major imbricate systems at the boundary of the northern and
southern foothills show a total slip of about 10km.
Depositional Trends

Depositional trends observed in the study area are consistent with those documented in
previous work. The K3 and K4 sequences of the Kingak Shale, as well as the clinoform
depositional profiles within the sequences, dip to the southwest near their respective shelf
margins (Figure 12). This is in agreement with the interpretation of Houseknecht and Bird
(2004). Isopach were generated in SMT’s Kingdome Suitee 8.7 of the Kingak Shale (Figure 20)
and of the K1-K4 sequences (Figure 21). The isopachs are fairly consistent with ones generated
by Houseknecht and Bird (2004) (Figure 3), which validates that interpretation of the Kingak
sequences in this study. Because the isopachs were constructed by subtracting the depth of the
shallower horizon from the deeper horizon, the lack of the presence of the K3 sequence in the
south made the isopach of K4 sequence incomplete. It is important to note that Houseknecht and
Bird (2004) generated isopachs in depth whereas the ones generated in this study are in time.
Carbon Creek Fault (?) Zone

This study proposes part of the Carbon Creek fault (?) zone as the Carbon Creek anticline
(Figure 22). An imbricate of repeated Kingak through Torok Formation underlies the Carbon
Creek anticline, and its trend is ultimately controlled by the distribution and thickness of the

Kingak Shale. The Carbon Creek fault (?) zone is only oblique to other structure where the



Carbon Creek anticline is present (Figure 22). This Carbon Creek anticline is the southeastern
oblique part of a structure mapped as the Carbon anticline by Kirshiner et al. (1987).

Structures in the Carbon Creek anticline is oblique to other structures in southwestern
NPRA because the Kingak shelf margin controlled the locations of thrust ramps (Figure 23), and
the Kingak shelf margin is oblique to the strike of the Brooks Range in this area. The Kingak
margin is striking northwest-southeast, and the Brooks Range is striking west-east. Figure 15
shows the four seismic lines that are associated with the Carbon Creek anticline, and shows the
imbricated fault-bend folding occurring at the Kingak shelf margin. Figure 24 shows how the
strike of the Brooks Range differs from the strike of the Kingak Shelf margin in western NPRA.

Structural features near the southeastern part of the Carbon Creek fault (?) zone are not
oblique to the strike of the Brooks Range. They both trend southeast — northwest (Figure 24).
Figure 16 shows that the major imbricated fault-bend folds no longer occur at the Kingak shelf
margin although there is still thrusting associated with the Kingak margin because it is a good
surface for ramp localization. The major structural break is south of the Kingak margin where
the Carbon Creek fault (?) zone has been mapped (Figure 25).
Conclusion

The stratigraphy of southern NPRA had a major influence on the structure. The major
detachment is the basal condensed section which is made up of the Shublik Formation, Kingak
Shale, and the pebble shale unit. Thrust faults step up from this detachment to the top of the
Kingak, another depositional sequence within the Kingak Formation, or a sequence boundary
within the Torok Formation. The structural style is imbricate fault-bend folding. There is some

fault-propagation folding, and thrusts with large amounts of displacement locally incorporate



backthrusting to form a wedge in order to accommodate large amounts of slip. These major
imbricate systems and other smaller thrusts make use of the Kingak ultimate shelf margin,
which is an easy surface for thrusts to ramp up on.

The obliqueness of the Carbon Creek anticline is due to the Kingak shelf margin. The
Kingak margin is oblique to the strike of the Brooks Range in the area of the Carbon Creek

anticline and, therefore, thrusting influenced by the margin becomes structurally oblique. In th

e

southeastern portion of the Carbon Creek fault (?) zone the strike of the Brooks Range changes

from east-west to northwest-southeast. Therefore, even though structures in this area are
striking northwest-southeast, just as the Carbon Creek anticline does, they are not oblique to
the Brooks Range.
Future Work

Balanced cross-sections would further improve the validity of the interpretation. In
order to do this data would need to be converted into depth. Further definition of sequences
within the Torok Formation would help constrain where in the section the upper detachments
reside. The interplay of thrusting as the Torok thins to the east could also be constrained.
Balanced cross-sections combined with further interpretation within the Torok Formation
would show retrodeformed Torok clinoform sets and therefore their original thicknesses could

then be delineated.
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Figure 2: Generalized stratigraphic column for northern Alaska and its
tectono-stratigraphic sub-division, reflecting tectonic development of the
region. HRZ =highly radioactive zone of the Hue Shale; LCU = the regional
Lower Cretaceous Unconformity (from Bird, 2001)
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Figure 5: A kinematic model of a fault-bend fold progressing from 0-2.
The active axial surface is pinned to the fault bend where as the
inactive axial surface moves with increased slip (from Shaw et al.,
2005).
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Sediment source area,
/,.f’ subject to denudation

Equilibrium profile of a fluvial system,
for a given elevation of the source area

sea level [~ base level)

towest level of continental demisdation

Figure 7: A diagram showing the relationship between sedimentation
and erosion with respect to base level in which below base level
sedimentation occurs, and above base level erosion occurs (from
Catuneanu, 2002)
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Offshore Sheif Slope Basin
Turbidites

Subaerial Unconformity . .. ................. sSuU
Shoreface Ravinement - Unconformable . . . . . SR-U
Shoreface Ravinement - Normat. .. ........SR-N
Regressive Surface of Marine Erosion . . . . .. RSME
Maximum Regressive Surface . ............ MRS

Maximum Fiooding Surface . ... ...... ... ..
Within-trend Facies Contact

Figure 8: A schematic cross section which shows the spatial relationships of the six
surfaces of sequence stratigraphy: subaerial unconformity, regressive surface of
marine erosion, shoreface ravinement-unconformable, shoreface ravinement-
normal, maximum regressive surface, and maximum flooding surface. Because
these surfaces are generated during specific times of a base-level transit cycle,
they always have a similar relationship to one another, and this arrangement of
surfaces constitues a model for sequence stratigraphy (from Embry, 2002).
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Carbon Creek Anticline
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Figure 23: This isopach map of the Kingak formation, along with the
structure map show that the shelf margin of the Kingak formation is
influencing what this study is calling the Carbon Creek Anticline. In this area
of NPRA the strike of the Brooks Range is oblique to the Kingak shelf
margin.
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Carbon Creek Fault (?)
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Figure 25: In the southeastern portion of the Carbon Creek
Fault (?) Zone the structural break happens south of the
Kingak shelf margin. There is still thrusting controlled by the
Kingak shelf margin but not the large imbricated fault-bend
folds. The strike of the Brooks Rang is not oblique to the
Kingak shelf margin in this part of NPRA.
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APPENDIX A

Wells in NPRA are in depth and the seismic lines are in time therefore time-depth (T-D)

charts needed to be generated for wells in the study area. This was done using SynPAK in SMT’s

Kingdome Suite© 8.7.

Synthetics Generation

Time-depth (T-D) charts were generated for the wells in the study area that had both a

sonic and density log. The initial skeleton T-D chart was created using an average velocity given

by the sonic curve and contained only two points. The values used to generate these simple

functions are shows in Table A-1. The first point was created using Kelly Bushing elevation for

the well and was negative. The second point was created using the Total Depth — the Kelly

Bushing elevation. These velocities ranged from 11000 ft/s to 16000 ft/s. The equation used to

calculate these times was:

Akulik

ta= (2*Es)/v

24 17038 17014 12000 -0.004 2.836
Awuna 1129 11200 10071 14000 -0.161 1.439
Colville 2 372 3254 2882 12000 -0.062 0.480
East Umiat 2 357 2841 2484 12000 -0.060 0.414
Inigok 108 20102 19994 12000 -0.018 3.346
Kolutak 205 5882 5677 12000 -0.034 0.946
Lisburne 1862 17000 15138 16000 -0.233 1.892
Seabee 322 15611 15289 12000 -0.054 2.548
Tulaga 180 11742 11562 11000 -0.033 2.102
Tungak Creek 118 8212 8094 11000 -0.021 1.472
West Karupa 1369 11060 9691 12000 -0.228 1.615

Table A-1. This shows the values used to generate the initial skeleton T-D functions. The initial
time is calculated using the KB elevation and is negative because it is above sea level. Therefore
the initial point is entered as Om elevation and a negative time. The final time is calculated
using the TD-KB and is positive because it is below sea level. Therefore the final point is entered
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as TD and a positive time. In this way the entire depth is accounted for, but positive time still
begins at Om elevation.

The final T-D chart was created in SMT using the “Create a T-D Chart by Integrating a
Log” function in SynPAK. This took the skeleton T-D chart made for each well and applied to it a
sonic log. The skeleton T-D chart was also applied to density logs. The synthetic generated by
SynPAK was then compared to traces on nearby imported seismic lines in order to validate the

T-D functions (Figures A-1 through A-20).
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Koluktak Test Well
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