Bajracharya 1

BreezySLAM: A Simple, efficient, cross-platform
Python package for Simultaneous Localization and

Mapping

Suraj Bajracharya
Professor Levy
CSCl 493

April 28, 2014

Bajracharya 2

Abstract

BreezySLAM is a simple, efficient, multiplatform, open-source Python library for
Simultaneous Localization and Mapping. By using Python C extensions to wrap existing
implementations of existing SLAM algorithms, BreezySLAM provides a Python API for
SLAM that runs nearly as fast as the original C code. By making a SLAM API available in
Python, students and other interested users will be able to get their hands on SLAM very
quickly and efficiently. BreezySLAM has been tested with a number of robots in V-REP

Simulator, as well as on a Neato XV-11, with promising results.

Bajracharya 3

Acknowledgements

This work was supported in part by a Commonwealth Research
Commercialization Fund grant from the Center for Innovative Technology (CRCF
#MF14F-011-MS).

Professor Levy and | would also like to thank Professor Lambert for letting us
borrow the Breezy name.

Last but not the least, | would like to thank Washington and Lee University to

have given me this opportunity to explore and work on SLAM as my Honors Thesis.

Bajracharya 4

Table of Contents
Abstract 2
Acknowledgement 3
Table of Contents 4
Background 5
WAt S SLAM D et e et e e e et r e e e eae e e eenns 5
Probabilistic Robotics and Monte Carlo localization 7
KM AN FIl T e ettt r et et et e e e e e e eens 8
Choosing a SLAM Algorithmcccooiiiiiiiiiiiiiia 9
Why PYython? ..o, 10
Previous Work 10
VR E P ettt et e et eeettaeaaa——.ttararaaaaaraaaan 10
K-JUNIOE MO e e e e e e e e e e e e ranas 12
RO Ot AP e ettt e e r e 13
SLAM Algorithm 15
D P S A ittt e et — e aaett—aaa—a.ttaaaraaaarraaaan 16
TINYSLAM oot e e e e e e e e e e e s e e e eeeeeeeeaees 17
Python Translation for CoreSLAM 19
Odometry 23
Odometry uSing K-JUNIOFooiiiiiiiiiiiieee e e e 29
Neato XV-11 31
Haal O WA et e e e e e e e e e s s enaenesnaenasneenenns 31
NEATOPYIOL ... 31
N EATO-S LA ettt ettt et e et et e aaaaans 32
Conclusion 35
NEXE STEPS wuniiiiiiiiiiie e e e e e e eae e e eaa e ees 35
References 36

Bajracharya 5

Background

What is SLAM?

Simultaneous Localization and Mapping, or SLAM (Dissanayake et al. 2001) is an
algorithm to map an enclosed environment, in which a robot must simultaneously learn
the layout of the environment and determine its position in the environment. SLAM is
especially useful in non-human reachable situations like search-and-rescue inside a
collapsed building.

A map is used to plan an action or navigate an environment. However, a map
being used at a time is not the always the same as the map when it was created. SLAM
runs into this problem too. The initial map, m;, would show what the robot sees when
at its initial position, p;. But when the position of the robot changes, lets say, to p,, the
map the robot sees now is different than what the previous map showed. It is actually
the same environment, but not for the robot at its new position, p,. To incorporate this
new map, m,, drawn by the robot in its new position with map m;, one would need to
keep track of the movement of the robot, hence, the localization.

Localization is the process of determining the position of a robot in a map.
Needless to say, a map is needed for localization. Positions p; and p, needs to be placed
on a map m to make sense of the positions. Without the map, the positions would
merely be two points on an image.

One might think of SLAM as a chicken-and-egg problem. Which came first: the

chicken or the egg? In SLAM, what should be implemented first: localization or

Bajracharya 6

mapping? A good map is required for localization whereas an accurate position is
required to build a map. Therefore, a simultaneous process of both localization and

mapping is required.

Fig. 1(a): Localization of the robot at points Fig. 1(b): A robot mapping its environment

p1and p, on a map, m using a laser scan (green lines). This scan is
more consistent with p;than with p, Note
that the map here is less complete than the
map in 1(a)

Figure 1(a) above shows localization of a robot. The robot is first shown at
position p; at the center of a map, m, of a square room. The same picture also shows
the same robot at position p, on the map.

Figure 1(b) above shows mapping. The map of the room shown in this picture is
corresponding to position p; of Figure 1(a). Note that the laser scan lines are just an
example and does not show the entire 360 degree scan.

In SLAM, we need to simultaneously localize a robot on a map of the

environment, while mapping. Fortunately, we often have odometry (such as wheel

rotation sensors) that would help us keep track of robot motions.

Bajracharya 7

SLAM consists of multiple parts: data reading, data mapping, robot state, state
update and map update. Different SLAM algorithms have different approaches to each
of these parts. | would also like to note that SLAM itself is not an algorithm, but is,
rather, an idea, which can be implemented in different approaches. SLAM also comes in

2D or 3D. We will be considering only 2D SLAM in this paper.

Probabilistic Robotics and Monte Carlo Localization

Probabilistic Robotics (Thrun et al. 2005) is a field of robotics that involves robots
in environments subject to uncertainty. In SLAM, a robot does not know where exactly
its position is in a map. By using recently developed algorithms, it is possible to keep
track of possible positions and the probability of the robot being each of these positions.
Probabilistic is used for localization of the robot in a map. A popular method for doing
this is Monte Carlo localization (Doucet et al. 2001).

Monte Carlo localization is an algorithm that approximates a robot’s position on
a map using “particles”, where each particle is a hypothesis for the position and bearing
of the robot. It starts with assuming the robot can be anywhere. As the robot moves,
the particles are shifted accordingly. These particles are also resampled every time the
robot senses anything. At the end of the algorithm, the particles converge to the actual

position of the robot.

Bajracharya 8

2(a) 2(b) 2(c)
Fig. 2: Monte Carlo localization at work. In the 2(a), the robot assumes it can be
anywhere possible in the map. The particles are resampled every time the robot moves,
hence making a reasonable probability of being on each position. In 2(b), we see the
particles converging to only a few different areas as compared to 2(a). These resampled
particles still have a high probability of being the robot’s actual position. As the

algorithm progresses, the particles are converged to a single location as in figure 2(c),
where the robot is now certain of its position on the map.

Kalman Filter

Another popular approach to localization is the Kalman Filter (Kalman 1960). It is
an algorithm that uses a series of measurements over time containing noises and
inaccuracies and produces estimates of unknown variables that are more precise than
when based on single measurements.

In SLAM, the robot does not know its environment. But the robot has a laser
sensor that maps the environment and also has odometry (e.g. wheel-rotation sensors)
describing how it moves in the environment. These data are generated continuously.
Using Kalman Filter with the map and motion inputs as input variables, the best
estimate of the position and bearing of the robot is known.

Being a recursive process, Kalman Filter takes in the most recent map as an input
variable, updates the map, and uses this new map as an input variable for the next

iteration. It also takes in the most recent state of the robot (position and bearing),

Bajracharya 9

updates the state using the given motion inputs, and gives out the best estimate of the
new state (position on the new map and the bearing). Kalman Filter performs this
process repeatedly every second, with different positions of the robot, and hence,

drawing out different variations of the map for every iteration.

Fig. 3: A Dynamic Bayes net (Russell and Norvig 2009, Fig 25.5)

Figure 3 above shows a Dynamic Bayes net (Murphy 2002), a recently developed
generalization of the Kalman filter. At time t, the current state, X; of the robot is
determined by the action, A;;, and the state, X; ;, at time t-1, to give an observation Z. It
then uses the current state and action to determine the likeliest next state and

observation.

Choosing a SLAM Algorithm

The main constraints in choosing a SLAM algorithm to implement were:
(1) The need to be able to run code on a System-on-a-Chip (SoC) /

Computer-On-Module (COM), supporting computation onboard the robot’s own

Bajracharya 10

hardware. This is important in environments where communication between the robot
and a remote computer is unavailable or actively jammed as in our grant-funded work
on miniature aerial vehicles with Advanced Aerials, Inc.

(2) The desire to program in Python.

Why Python?

Python, conceived in early 1980’s, is one of the most powerful, widely used high-
level programming languages today (Venners 2003). It highly focuses on readability. By
using Python C extensions to wrap code around C, code speed can also be made up to
par with native C implementations. We will be seeing more of this later in the paper.

Making SLAM available in Python has two major advantages. First, it makes
SLAM available to a broad variety of researchers, students, educators, and hobbyists.
Second, Python can easily be run Computer-on-Module (COM) platforms like Raspberry

Pi and Gumstix Overo.

Previous Work

V-REP

Virtual Robot Experimentation Platform (V-REP) is a robot simulator developed
by Coppelia Robotics, Switzerland (http://www.coppeliarobotics.com/). It is a powerful,
open-source simulator, provided free of cost for educational use. It has many built-in

robots and additional tools such as different types of sensors and configurable

Bajracharya 11

environments, and it also allows the user to build their own robot or tools.

Fig. 4: V-REP, with different available built-in robots in a default environment

In winter of 2013, | worked on an independent study project with Professor Levy,
where | first found out about SLAM. | used V-REP for the project. In the project, | worked
on building a virtual robot on the simulator that moves around and maps out a virtual
room (environment) | built into it. However, most of this time was spent understanding
V-REP and the way it works. Codes were borrowed from existing robot models in the
software and were written in Lua, V-REP’s native language. During this project, we also
did figure out V-REP’s remote API, that allows the simulator to run on different other
languages. Python is one of the many different languages that can be used for

prototyping algorithms in V-REP. This also provided a test platform for BreezySLAM.

Bajracharya 12

Fig. 5: V-REP performing SLAM using a K-Junior robot

The left figure above shows a K-Junior robot in an enclosed simulation
environment. The K-Junior is equipped with a 360 degrees laser scanner (more on this
later). The figure on the right is the mapping performed by the K-Junior as it moves

around in the simulation environment.

K-Junior Model

First released to the public in early 2010, V-REP proved to be a basis for my initial
independent study project. “The Swiss army knife among robot simulators”, V-REP had a
built-in robot model for K-Junior, which | believed was a very good robot to perform
SLAM with. So | built a 360 degrees laser sensor on top of the built-in K-Junior model.
Adding extra weight to the light robot with the LIDAR sensor caused the robot to initially
topple over. Realizing that V-REP takes physics into account very seriously, | compared

the K-Junior to the robots talked about in the literature paper.

Bajracharya 13

| realized that these were much heavier and bigger in dimension than K-Junior. If
| were to build one of these robot’s model in V-REP from scratch, the same laser model |
used on K-Junior would not be a problem if used on the Neato model because its weight
would be negligible as compared to the base it is attached to, the robot. However,
building a Neato model in V-REP from scratch would not have been ideal since we had
to focus on SLAM. So, as a workaround, | made the weight of the laser components on
top of the K-Junior model negligible in weight (0.0001 kg). This allowed the K-Junior
model to function normally as it would without any components on top of it, but still

have a laser sensor attached to it to perform scans for our SLAM.

Fig. 6(a): K-Junior model on V-REP Fig. 6(b): My K-Junior model with a laser
component

Remote API

V-REP also has six different programming approaches, including ROS (Robot OS)
APl and Remote API. ROS is a very good platform for robotics. In fact, ROS even has a
laser-based SLAM node. However, ROS is not supported (at least not fully) on any other

OS than Ubuntu. Since the goal of this project is to make SLAM available to anyone

Bajracharya 14

interested, it would have to be supported on multiple platforms. So we chose to use V-
REP’s Remote API in BreezySLAM.

Remote API allows users to use their code written in different languages to work
as either a server or a client for the simulation. Using V-REP’s remote API, | was able to
use the Python-using BreezySLAM to act as a client that continuously receives raw scan
data from the simulator (server), performs the necessary SLAM implementations, and
sends robot movements back to V-REP so that the robot could move on the simulator.

Server side code (written in Lua):

' simSetStringSignal (““points”, simPackFloats(points))

Client side code (written in Python):

clientlD = vrep.simxStart(address, port, True, True, /
5000, 1)

vrep.simxStartSimulation(clientlD, /
vrep.simx_opmode_oneshot_wait)

errorCode, signalVal = vrep.simxGetStringSignal \
(clientlD, “points”, \
vrep.simx_opmode_oneshot_wait)

1T errorCode == vrep.simx_error_noerror:
points = vrep.simxUnpackFloats(signalVval)

vrep.simxStopSimulation(clientiD, /
vrep.simx_opmode_oneshot_wait)

As you can see in the code snippets above, it takes only one line of Lua code for
the server to send laser scan values from V-REP to the remote client. In the first snippet,

the 360 different points the laser scanner detects are packed as floats and sent to the

Bajracharya 15

client.

The second snippet, which is written entirely in Python, is the client code. The
first line connects the client code to the V-REP server using the IP address and the port
the server is located on. This returns a client ID, which is used in every V-REP method
used thereafter in the client code, including starting the simulation (line 2), getting scan
values from the server (line 3), or stopping the simulation (line 9). Unpacking the float
points from the packed data sent by the server is performed with a single line of code in

line 5.

SLAM Algorithm

Since various approaches to SLAM are already available, Professor Levy and |
decided we would just work on a SLAM algorithm that is already written, but create a
Python API for the implementation. Naturally, we searched for SLAM written in Python.
To our surprise, we did not find any SLAM code in Python.

We came across OpenSLAM.org, where different authors have posted different
implementations of SLAM in different programming languages, none of them being in
Python. Many of them were also just demos of what the authors had done in their
research, and none of them had a simple, intuitive API. So our first goal became writing
an API to support on a simulator or an actual robot.

| specifically looked into two different SLAM algorithms from OpenSLAM.org: DP-

SLAM (Eliazar and Parr 2003), which seems to be most popular in SLAM and TinySLAM

Bajracharya 16

(a.k.a. CoreSLAM) (Steux and Hamzaoui 2010).

DP-SLAM

DP-SLAM, developed by Austin Eliazar and Ronald Parr from Duke University in
2003, uses particle filter to maintain a joint probability distribution over maps and robot
positions. They used iRobot ATRV Jr. as their vehicle to perform SLAM.

DP-SLAM was the first SLAM algorithm | looked into. While it did have good C
code, the README file stated that it “requires a LOT of memory —on the order of
several GB.” The reason DP-SLAM requires such a huge amount of memory is that it is a
full version of SLAM: every hypothesis is a position and an orientation of the robot along
with a map corresponding to that position. A naive version of this scheme would mean
multiple possible positions would have their own possible maps, with the memory
storage taking number of position hypotheses times the number of points on a map.
Although the DP-SLAM algorithm uses an innovative sharing mechanism to minimize the
duplication of maps, the amount of memory required is still impractical for our

constraints to fit on a SoC.

Bajracharya 17

Fig. 7: iRobot ATRV Jr. (Source: DP-SLAM, http://www.cs.duke.edu/~parr/dpslam/)

Fig. 8: DP-SLAM Map (Source: DP-SLAM, http.//www.cs.duke.edu/~parr/dpslam/)
Note the high degree of accuracy, even in a long, narrow corridor

TinySLAM (CoreSLAM)

Putting DP-SLAM aside, | looked into TinySLAM, developed by Bruno Steux and
Oussama El Hamzaoui in 2010. TinySLAM, as the name implies, has very little code. In
fact, the algorithm itself is around 200 lines of C. Additional algorithmic and SIMD

architecture optimizations were also possible (Hamzaoui and Steux 2010). Thus, we

Bajracharya 18

decided to translate CoreSLAM into Python.

Unlike DP-SLAM, CoreSLAM stores a single position and a single map at a time.
This makes CoreSLAM need much less memory than DP-SLAM, making it suitable for our
needs. Using the most recent map and the new odometry, CoreSLAM guesses the best
new position for the robot and updates the map accordingly.

The developers used a MinesRover as their robot. It is a homebrew, six-wheeled
robot developed by Mines ParisTech and SAGEM DS, equipped with a Hokuyo URG04

laser scanner (Steux and Hamzaoui 2010).

Fig. 9: A MinesRover Robot

Bajracharya 19

Fig. 10: TinySLAM Map (Source: TinySLAM, https://openslam.org/tinyslam.html)
In the above map, white color represents the areas the Hokuyo scanner has

scanned and found to be free of obstacles. Red color represents the obstacles in the

environment, and blue color represents trajectory for the moving MinesRover.

Python Translation for CoreSLAM

Instead of using the Simplified Wrapper and Interface Generator (SWIG)
(http://www.swig.org/), Professor Levy translated CoreSLAM into Python line-by-line, so

that we could thoroughly understand the details of the algorithm. With lack of

Bajracharya 20

comments in the code, terse description in the papers, and some mistranslations of
terminology, the papers and the code were a challenge to understand. So, even
translating the code line-by-line was not fully helpful, though it did help us understand
most of CoreSLAM. This approach also helped us in factoring various parts of the code in
our translated version. In addition, the random number generator in CoreSLAM
assumed only a 32-bit architecture and would not work on a 64-bit architecture.

BreezySLAM provides the pure Python classes: Robot (robot odometry-to-
velocity method), Laser (laser parameters), and Odometry (measured at each instant).
These are the classes that users will want to modify. The rest of the code is
implemented as C extensions. As shown in the following code fragment, the APl is
extremely simple: a constructor that accepts Laser parameters and the size, in pixels,
and scale of the map, in pixels per meter; an update method that takes the current scan
and returns the new robot position and angular rotation (theta); and a method for

retrieving the current map as a byte array.

laser = laserparams()
mapbytes = bytearray(800+800)
slam = CoreSLAM(laser, 800, 0.1)
while True:
scan = readLaser()
X, Yy, theta = slam.update(scan)
slam.getmap(mapbytes)

If odometry is available, it can also be passed into the update method for
improved accuracy. Bytearray for the map is pre-allocated before instantiating
CoreSLAM.

Since Python is primarily interpreted rather than compiled, Python is bound to

Bajracharya 21

run slower than C — especially for loop-intensive algorithms like SLAM. Testing Professor
Levy’s pure Python implementation of CoreSLAM against the original C version, we
found that processing 100 scans took 50 seconds in pure Python and only 0.8 seconds in
C (2.7 GHz Intel Core Duo iMac, OS 10.8.5 running Ubuntu 13.10 in VMware 6.0; five
trials, p <.000001). In other words, the pure Python implementation was over 60 times
slower than the original C implementation.

Consistent with (Steux and Hamzaoui 2010), profiling the Python code revealed
that the calls taking the most time were di st anceScanToMap based on the current
laser scan and map (used for determining the likelihood of a given robot position) and
maplLaser Ray (for integrating a new scan into the map). So, Professor Levy wrote C
extensions for these two functions. This change provided a dramatic speedup, but still
made Python take around 2.25 the runtime of the original C code. Further profiling
revealed that most of the runtime was now being taken by the Monte-Carlo particle
filter (Random-mutation Hill-climbing). Hence, Professor Levy translated this code into a
C extension as well. This resulted in our Python code taking only 25% longer than the
original C —i.e., much faster than real-time (10 Hz scan rate of data acquisition).

Finally, we attempted to replicate the favorable results that the CoreSLAM
authors presented when comparing pure Monte Carlo scan-matching localization to
scan matching plus odometry. Our initial failure to replicate these results turned out to
have been caused by the original pseudo-random number generator, which assumed a
32-bit architecture. Professor Levy re-implemented this pseudo-random number

generator (Marsaglia and Tsang 2000) to run on both 32- and 64-bit architectures, and

Bajracharya 22

successfully reproduced the results from (Steux and Hamzaoui 2010).

Fig. 11(a): V-REP with a K-Junior robot scanning the environment

Fig. 11(b): A sample mapping obtained using BreezySLAM

Bajracharya 23

Figure 11 shows sample results with a simulated wheeled robot using the
popular V-REP simulator from Coppelia Robotics. The plotted trajectory shows that the
robot had traveled a relatively short distance at the point at which the screenshot was
taken. The map also shows that our CoreSLAM implementation supports retrieval of the
current point-cloud (set of hypothesis about robot position and orientation) obtained

through Monte Carlo localization.

Odometry

Fig. 12(a): MinesRover top-view (left) and side-view (right)

Fig. 12(b): K-Junior top-view (left) and side-view (right)

Bajracharya 24

Figure 12(a) is a model of ParisTech’s MinesRover robot, a schematic for the
MinesRover robot in Figure 9. It has six identical wheels, each with radius r. Each wheel
is equidistant from its counterpart wheel in the other side of the robot, with the
distance between them, or the axle length, being R. The same goes for K-Junior, as
shown in Figure 12(b): R is half the distance between its two wheels, whereas r is the

radius of each of the identical wheels.

self.r = 0.077 # wheel radius

self.R = 0.165 # half axis length
self.inc = 2000 # counter iInc per turn
self.ratio = 1.0 # left/right wheel ratio

self.m = self.r * pi1 / self.inc
def computeVelocities(self, odometry_prev, odometry_curr):

dxy = self.m * \
(odometry_curr.ql — odometry_prev.gql + \
(odometry_curr.g2 — odometry_prev.g2) \
* self._ratio)

dtheta = (self.m * \
((odometry_curr.q2 — odometry prev.g2) * \
self.ratio — odometry_curr.gql + \
odometry prev.ql) / self.R)

The above code snippet is the direct Python translation of a part of CoreSLAM.
This particular snippet computes the forward velocity dxy and angular velocity dtheta of
the MinesRover given the odometries of the wheels. These velocities can then be used
to help estimate the robot’s new position based on the time between measurements. It
took me a long time to understand the above code. First of all, what does the big R
stand for? What is “half axis length”? Then, what is inc? Do we really need the ratio?

What is m?

Bajracharya 25

After playing around with the values and thinking for a long time, Professor Levy
figured out that the authors actually meant ‘axle’ rather than ‘axis’, thus the big R
representing half the distance between the wheels. This is important because the
wheels might be moving at different speed at a given time, but the distance between
the wheels is the same, thus turning the robot. Inc refers to the number of ticks a wheel
makes in one complete rotation, and m represents the distance the wheel moves per
click. The values for the variables r, R, inc, and ratio above are for the MinesRover robot.

The conput eVel oci ti es method takes in the current odometry and the
most recent previous odometry, and gives out the distance travelled by the MinesRover
(dxy) and the angle it turns by (dtheta). g1 and g2 refers to the left and the right wheels.

| took the above code written for MinesRover, and wrote very similar code for K-

Junior:

self.wheelRadiusMeters = 0.01525
self_halfAxleLengthMeters = 0.04

def computeVelocities(self, odometry_prev, odometry_curr):

dxy = (odometry curr.ql — odometry_ prev.gql + \
odometry_curr.g2 — odometry_prev.q2)

dtheta = ((odometry prev.g2 — odometry_curr.g2) - \
(odometry_prev.ql — odometry_curr.ql)) / \
self.halfAxleLengthMeters

Note that | eliminated inc as the wheels on K-Junior did not have clicks on them.
Naturally, mis also eliminated. | also eliminated ratio because the robots we are testing
on always have the same right and left wheel radii.

After making the changes above, | came to the remaining pieces of the puzzle. If

Bajracharya 26

we look back at the code for how m was assigned, we see:

' self.m = self.r * pi / self.inc

If m were to be the distance a wheel moves every time it makes a click, it would
rather be the circumference of the wheel divided by the number of ticks on the wheel.
But we do not see the circumference being calculated in the above snippet. Instead, we
see half the circumference being calculated. Basically, the radius is supposed to be

doubled to make sense out of the above snippet, without confusing the code reader:

' self.m = 2 * self.r * pi / self.inc

With this, the calculation of dxy and dtheta would then be incorrect with the
above formulas. Hence, computeVelocities turned out to be as follows, without using

the variable m:

self.wheelRadiusMeters = 0.01525
self_halfAxleLengthMeters = 0.04

def computeVelocities(self, odometry_prev, odometry_curr):

dxy = (odometry curr.ql — odometry_ prev.gql + \
odometry_curr.g2 — odometry_prev.q2) / 2

dtheta = ((odometry prev.g2 — odometry_curr.g2) - \
(odometry_prev.ql — odometry_curr.ql)) / \
(2 * self.halfAxleLengthMeters)

Basically, dxy, the distance the robot travels in a second, is assigned to be the
average of the distance covered by each of the wheels. Similarly, the angle the robot
turns per second is calculated. As the wheels are at a fixed distance from each other at

any given point, the angle the robot turns per time interval would be the distance

Bajracharya 27

covered by a wheel minus the distance covered by the other wheel divided by the
distance between the two wheels.

Using the above model, | created a Wheel edRobot () class, which takes in the
radius of the wheel and the half axle length of the robot a user is using, and calculates

dxy and dtheta with the above formulas:

class WheeledRobot(object):
An abstract class supporting ododmetry for wheeled robots. Your
implementing class should provide the method:
extractOdometry(self, timestamp, leftWheel, rightWheel) -->
(timestampSeconds, leftWheelDegrees, rightWheelDegrees)

def __init__ (self, wheelRadiusMeters, \
halfAxleLengthMeters):

wheelRadiusMeters - radius of each odometry wheel, in
meters
halfAxleLengthMeters - half the length of the axle between
the odometry wheels, in meters

self.wheelRadiusMeters = wheelRadiusMeters
self_halfAxleLengthMeters = halfAxleLengthMeters

self.timestampSecondsPrev = None
self._leftWheelDegreesPrev = None
self._rightWheelDegreesPrev = None

(Continues on next page...)

Bajracharya 28

def computeVelocities(self, timestamp, \
leftWheelOdometry, rightWheelOdometry):

Computes forward and angular velocities based on odometry.

Parameters:
timestamp - time stamp, in whatever units your robot uses

leftWheelOdometry - odometry for left wheel, in whatever
units your robot uses

rightWheelOdometry - odometry for right wheel, in
whatever units your robot uses

Returns a tuple (dxyMeters, dthetaDegrees, dtSeconds):
dxyMeters - forward distance traveled, iIn meters
dthetaDegrees - change in angular position, in degrees
dtSeconds - elapsed time since previous odometry, in

seconds

dxyMeters = 0
dthetaDegrees = 0
dtSeconds = 0

timestampSecondsCurr, leftWheelDegreesCurr, \
rightWheelDegreesCurr = self.extractOdometry(\
timestamp, leftWheelOdometry, rightWheelOdometry)

1T self.timestampSecondsPrev != None:
leftDiffDegrees = leftWheelDegreesCurr - \
self.leftWheelDegreesPrev
rightDiffDegrees = rightWheelDegreesCurr - \
self.rightWheelDegreesPrev

dxyMeters = (math.radirans(leftDiffDegrees) + \
math.radians(rightDiffDegrees)) / 2

dthetaDegrees = (rightDiffDegrees - \
leftDiffDegrees) /7 (2 * self._halfAxleLengthMeters)

dtSeconds = timestampSecondsCurr - \
self.timestampSecondsPrev

Store current odometry for next time
self.timestampSecondsPrev = timestampSecondsCurr
self.leftWheelDegreesPrev leftWheelDegreesCurr
self.rightWheelDegreesPrev = rightWheelDegreesCurr

Return linear velocity, angular velocity, time difference
return dxyMeters, dthetaDegrees, dtSeconds

Bajracharya 29

Using a generic Wheel edRobot () class to calculate dxy and dtheta, we can
now create a model for any robot we are using by just passing in the radius of the
wheels and half the distance between the wheels (half of axle length), both in meters.

Thus, the K-Junior model is coded as:

' class KJunior(WheeledRobot):
5 def __init_ (self):
WheeledRobot._ _init__ (self, 0.01525, 0.04)

Similarly, a model for any other two-wheeled robot can be created easily just by
changing the values for the variables representing the radius and the half axle length.
For example, the model for Neato XV-11, the robot | will be using for real-time, real-

environment simulation, would be as follows:

class XV11(WheeledRobot):
def __init_ (self):
WheeledRobot._ _init__ (self, 0.047746,0.1425)

Odometry using K-Junior

The above formulas were used to keep track of K-Junior’s odometry as it maps
an environment and moves within it. However, the map was not correct. Seeing nothing
wrong with the algorithm, Professor Levy and | tried to figure out what might be causing
this problem. We soon found out that because K-Junior is a very small robot, and its
wheels further smaller, the wheels were rotating much faster than the sampling rate,
thus causing aliasing. The scans were being under sampled, which made the K-Junior

appear to move backwards, thus giving an incorrect map.

Bajracharya 30

Fig. 13: Smaller wheel rotates multiple times over a short period of time causing aliasing.
Bigger wheels do not rotate as many times within that same amount of time.

Let’s say we have two different wheels, each of a different radius. The first wheel
is small, with a circumference of only 1 cm, whereas the other wheel is 5 cm in
circumference. When both the wheels are moving at the same velocity, let’s say 5 cm
per second, the smaller wheel makes almost a turn in a second whereas the bigger
wheel turns very slightly. Figure 13 above describes the circular motion of these two
wheels. Note that the smaller wheel almost makes a turn. However, since sampling
takes place only at t; and t2, the first wheel’s entire turn is not recorded, but only its
orientation at time t,, as shown above. So, it would look like the wheel moved a quarter
turn backward rather than three quarters forward.

As | was working on a different simulated robot (dr-20) in V-REP, we decided we
would rather return to working on a physical robot rather than the simulator, as we
started running out of time. Though, | am certain that performing odometry based
SLAM on a larger robot on V-REP would not be a problem. Thus, we started transporting

our code to the robot, the XV-11.

Bajracharya 31

Neato XV-11

Hardware

Fig. 14: Neato XV-11

Neato XV-11 is a robotic vacuum cleaner built by Neato Robotics (http://www.
neatorobotics.com) with a 360 degrees LIDAR scanner attached to it (the bulge on the
top right on the picture above). It has a wheel attached to either side of it, which are
capable of rotating backward, allowing the Neato to move in both forward and
backward directions. Moving one of the wheels in a slower speed than the other
performs rotation. The manufacturer provides an APl allowing a programmer to send

commands to the XV-11 and receive data from it over the USB port.

NeatoPylot

NeatoPylot (http://home.wlu.edu/~levys/software/neatopylot/) is a XV-11

AutoPylot program written by Professor Levy that allows the user to drive the Neato

Bajracharya 32

using a joystick. NeatoPylot also provides a server for LIDAR data for XV-11 and can be
run on a Raspberry Pi or other computer-on-module mounted on the XV-11 (shown

below). A client computer connects to the Pi using a Wi-Fi connection.

Fig. 15: Neato XV-11 with a Raspberry Pi (in the transparent box on top of the LIDAR
component) and a battery pack (black device on top of the Pi). Wi-Fi dongle is on the left
side, above the USB cable, connecting the Pi to the XV-11.

Neato-SLAM

As | suspected earlier with K-Junior’s wheels being too small to help with the
odometry, the XV-11 did, in fact, return fairly accurate values. The figures below show

the result of running BreezySLAM on the XV-11:

Bajracharya 33

Fig. 16(a): Neato XV-11 performing SLAM, starting position, p;

Fig. 16(b): Neato XV-11 performing SLAM, position p,, straight ahead of p;

Bajracharya 34

Fig. 16(c): Neato XV-11 performing SLAM, position ps, rotated 180 degrees from p,.
Errors can be seen on this map (tilted map)

Fig. 16(d): Neato XV-11 performing SLAM, end position, p4, straight ahead from ps. Note
the sharp trajectory (blue line) and sharp edges of the map (black lines).

Bajracharya 35

Conclusion

Professor Levy and | have been able to successfully make BreezySLAM run with a
simulator, V-REP and a real physical robot, the XV-11. With Professor Levy’s translation
of CoreSLAM into Python and my testing of his code on various platforms, we have been
able to create a map that is fairly accurate, as you can see in Figure 16.

Currently, BreezySLAM is up online in the following link:

http://home.wlu.edu/~levys/ software/breezyslam/

As we hoped earlier, BreezySLAM has been made available to the public now. In
fact, we already have at least two people using BreezySLAM as two people have

contacted us regarding it.

Next Steps

The next step for anyone working on BreezySLAM will be to create wrappers for
Java and Matlab, so that an even larger group of people will have access to BreezySLAM
without having to go through the hassle of writing their own SLAM code or having to
translate an existing algorithm into a different language. Professor Levy has already
written the C++ version for BreezySLAM. Currently, he is also factoring out Scan and
Map classes to be available as Python C classes rather than just the top-level algorithms.
We also hope to allow users to implement their own SLAM algorithm using

BreezySLAM.

Bajracharya 36

References

Dissanayake, G.; Newman, P.; Clark, S.; Durrant-Whyte, H.; and Csorba, M. A solution to
the simultaneous localization and map building (slam) problem. IEEE
Transactions of Robotics and Automation 17(3): 229-241, 2001.

Doucet, A., de Freitas, J.F.G., Gordon, N.J. Sequential Monte Carlo Methods In Practice.
Springer Verlag, New York, 2001.

Eliazar, A., and Parr, R. Dp-slam: Fast, robust simultaneous localization and mapping
without predetermined landmarks. In in Proc. 18th Int. Joint Conf. on Artificial
Intelligence (1JCAI-03), 1135-1142. Morgan Kaufmann, 2003.

Hamzaoui, O. E., and Steux, B. A fast scan matching for grid-based laser slam using
streaming simd extensions. In ICARCV, 1986—-1990. IEEE, 2010.

Hamzaoui, O.E., and Steux, B. Slam algorithm with parallel localization loops: Tinyslam
1.1. In Automation and Logistics (ICAL), 2011 IEEE International Conference on,
137-142, 2011.

Kalman, R. E., A New Approach to Linear Filtering and Prediction Problems. In Journal of
Basic Engineering 82 (1): 35-45. doi:10.1115/1.3662552, 1960.

Marsaglia, G., and Tsang, W. The ziggurat method for generating random variables.
Journal of Statistical Software 5(8): 1-7, 2000.

Murphy, K.P. Dynamic bayesian networks: representation, inference and learning. PhD
thesis, UC Berkeley, Computer Science Division, July 2002.

Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, Third Edition.

Prentice Hall, New Jersey, 2009.

Bajracharya 37

Steux, B., and Hamzaoui, O. E. tinyslam: A slam algorithm in less than 200 lines c-
language program. In ICARCV, 1975-1979, 2010.

Thrun, S., Fox, D., Burgard, W. Probabilistic Robotics. MIT Press, Cambridge,
Massachussettes, 2005.

Venners, B. The Making of Python. Artima Developer, Artima, 2007.

