Runs in Permutations

Onyebuchi Ekenta

November 2014

1 Introduction

Let $\sigma \in S_{n}$ be a permutation of length n. A run of length ℓ with a distance of d and a rise of r is a sequence of ℓ numbers in σ, all at a fixed distance d with the difference between successive numbers all being r. A run of length ℓ is called an ℓ-run. For example, 124635 contains 246 as 3 -run of rise 2 and distance 1 , while 162435 contains 123 as a 3 -run of rise 1 and distance 2.

Let $S_{r, d}^{\ell}(n, k)$ denote the number of permutations in S_{n} which contain exactly k runs of length ℓ with a rise of r and a distance of d. Our goal is to derive formulas which evaluate $S_{r, d}^{\ell}(n, k)$ for all values of ℓ, r, n, k when $d=1$.

Runs in permutations and similar topics have been studied by various authors under different names. Hegarty [4] examined permutations of finite abelian groups which avoid what he called progressions. Riordan [5] studied 3-runs (which he called 3-sequences) and derived a formula to compute the number of permutations containing $x 3$-runs with rise of 1 and a distance of 1 . Dymacek [3] investigated 3 -runs with $d=1$ and $r=1$ or $r=2$. To our knowledge there has not been a formula produced for the cases where both $r>1$ and $d>1$.

2 Definitions

Let $[n]=\{1, \ldots, n\}$.
Definition 1. A sequential partition of $[n]$ is a set of disjoint sequences of integers whose union (taking the sequences as sets) is $[n]$.

Sequential partitions will be written as $\left[s_{1}, \ldots, s_{k}\right]$ where each s_{i} is a sequence whose elements are disjoint from the others. For example $[(1,2,3),(4,5)]$ and $[(1,2,4),(5,3)]$ are two sequential partitions of $\{1,2,3,4,5\}$. The sequences in a sequential partition are called parts. Let S_{n} denote the set of all sequential partitions of $[n]$. Parts containing only one part are called trivial parts. For convenience in writing sequential partitions of $[n]$, we will omit the trivial parts as they can be inferred from the rest. That is, $[(1,2),(4,5,3),(6)]$ will be written $[(1,2),(4,5,3)]$ with the (6) implied. Let $\mathcal{A}_{n}=\{[(i, j)] \mid 1 \leq i, j \leq n, i \neq j\}$, the set of all sequential partitions with exactly one nontrivial part which has length 2 . The elements of \mathcal{A} are called atomic partitions. Notice that if a sequential partition in S_{n} contains only one part, that part must necessarily be a permutation of $[n]$. Furthermore, any permutation, $\sigma \in S_{n}$ can be used to form a sequential partition σ as its only part. Thus, there is a one-to-one correspondence between permutations and sequential partitions with one part. Because of this when we refer to a permutation $\sigma \in S_{n}$ we mean the corresponding sequential partition in \mathcal{S}_{n}. Finally, for a given n, let $\mathbf{0}=[(1), \ldots,(n)]$.

For any two sequences s and s^{*}, we say that s is contained in s^{*} if the sequence s appears in the sequence s^{*}. So, $(1,2)$ is contained in $(3,1,2,4)$ but not $(1,3,2,4)$. A sequence s is a called a subpart of a sequential partition π if s is contained in a part of π. For example, $(2,3)$ is not a part of $[(1,2,3),(4,5)]$ but it is a subpart of $[(1,2,3),(4,5)]$. We say a sequential partition π_{1} is below another sequential partition π_{2}, denoted $\pi_{1} \leq \pi_{2}$, if each part of π_{1} is a subpart of π_{2}. If π_{1} is below π_{2}, we also say that π_{2} is above π_{1}. Note that since parts of π partition $[n]$ it is necessarily true that all the trivial parts of π_{1} are contained in some part of
π_{2}. Thus, to prove $\pi_{1} \leq \pi_{2}$ it is sufficient to show that all nontrivial parts of π_{1} are subparts of π_{2}. We use $\pi_{1}<\pi_{2}$ to mean $\pi_{1} \leq \pi_{2}$ and $\pi_{1} \neq \pi_{2}$. If $\pi_{1} \leq \pi_{2}$, we define the interval $\left[\pi_{1}, \pi_{2}\right]=\left\{\pi \in \mathcal{S}_{n}: \pi_{1} \leq \pi \leq \pi_{2}\right\}$. Let $D(\pi)$ denote the down-set of π, the set of all sequential partitions below π and let $U(\pi)$ denote the up-set of π, the set of all sequential partitions above π. We will see that \mathcal{S}_{n} under the \leq relation forms a partially ordered set.

Since $\mathbf{0}$ is composed of only trivial parts, we have $\mathbf{0} \leq \pi$ for every $\pi \in \mathcal{S}_{n}$. It is easy to see that for any $\beta \in \mathcal{A}$ there exists no $\pi \in \mathcal{S}_{n}$ such that $\mathbf{0}<\pi<\beta$. Hence, atomic partitions are atoms \mathcal{S}_{n}. It is also clear that for any $\sigma \in S_{n}$ there exists no $\pi \in \mathcal{S}_{n}$ such that $\sigma<\pi$. Thus, permutations are are the maximal elements of \mathcal{S}_{n}.

Definition 2. Two sequential partitions π_{1} and π_{2} are called compatible if there exists a sequential partition π above both π_{1} and π_{2}.

For example, $[(1,2,3)]$ and $[(2,3,4)]$ are compatible, as $[(1,2,3,4)]$ is above them both . The sequences $[(2,3)]$ and $[(3,2)]$ are not compatible. To see this, suppose they were both below some sequential partition π. Then π must have both $(2,3)$ and $(3,2)$ as subparts. But, this is impossible as that would necessarily imply that 3 or 2 appears in two places in π. Notice that any two sequential partitions in an interval $[\mathbf{0}, \pi]$ are compatible.

Definition 3. For any $\pi \in \mathcal{S}_{n}$ define the support of π with $\operatorname{supp}(\pi)=\left\{\beta \in \mathcal{A}_{n}: \beta \leq \pi\right\}$, that is the set of atomic partitions below π.

We now show that for any $\pi \in \mathcal{S}_{n}$, the poset induced on $[\mathbf{0}, \pi]$ by \leq is isomorphic to the lattice of subsets of $\operatorname{supp}(\pi)$ ordered via subset inclusion.

Lemma 2.1. For all sequential partitions π_{1} and π_{2}, we have $\pi_{1} \leq \pi_{2}$ if and only if $\operatorname{supp}\left(\pi_{1}\right) \subseteq \operatorname{supp}\left(\pi_{2}\right)$.
Proof. Suppose $\pi_{1} \leq \pi_{2}$. Then any part of π_{1} is a subpart of π_{2}. Suppose $\beta=[(i, j)] \in \operatorname{supp}\left(\pi_{1}\right)$. Then (i, j) is a subpart of π_{1}, and therefore (i, j) is contained in a part of π_{1} which is a subpart of π_{2}. Thus, (i, j) is a subpart of π_{2}. Since (i, j) is the only nontrivial part of β, this implies $\beta \leq \pi_{2}$, so $\beta \in \operatorname{supp}\left(\pi_{2}\right)$.

Suppose $\operatorname{supp}\left(\pi_{1}\right) \subseteq \operatorname{supp}\left(\pi_{2}\right)$. Let $s=\left(s_{1}, \cdots, s_{k}\right)$ be a nontrivial part of π_{1}. Then, for $1 \leq i \leq k-1$, $\left.\beta_{i}=\left[\left(s_{i}, s_{i+1}\right)\right]\right] \in \operatorname{supp}(\pi)$. Thus, $\beta_{i} \in \operatorname{supp}\left(\pi_{2}\right)$. Thus, there exists a part in π_{2} containing the subparts $\left(s_{1}, s_{2}\right)$ and $\left(s_{2}, s_{3}\right)$. Since $\left(s_{1}, s_{2}\right)$ and $\left(s_{2}, s_{3}\right)$ both contain s_{2}, they must belong to the same part, or else π_{2} would have two parts with the same number in it. Also, since s_{2} can only appear once in any part, this part must contain (s_{1}, s_{2}, s_{3}). Continuing on in this manner, this part will contain (s_{1}, \cdots, s_{k}). Thus, all nontrivial parts of π_{1} are subparts of π_{2}. so $\pi_{1} \leq \pi_{2}$.

Lemma 2.2. If $\operatorname{supp}\left(\pi_{1}\right)=\operatorname{supp}\left(\pi_{2}\right)$, then $\pi_{1}=\pi_{2}$.
Proof. Let s be a part of π_{1}. By the previous lemma, $\pi_{1} \leq \pi_{2}$ so s is contained in a part t of π_{2}. Similarly, $\pi_{2} \leq \pi_{1}$ so t is contained in a part of π_{1}. Since s and t share numbers, the part of π_{1} which contains t must be s. Hence, $s=t$ and so every part of π_{1} is a part of π_{2}. Analogous reasoning shows that every part of π_{2} is a part of π_{1}. Thus, $\pi_{1}=\pi_{2}$.

Lemma 2.3. If $\pi_{1} \in \mathcal{S}_{n}$ and $T \subseteq \operatorname{supp}\left(\pi_{1}\right)$, then there exists a sequential partition π_{2} such that $\operatorname{supp}\left(\pi_{2}\right)=T$
Proof. Let $\beta=[(x, y)] \in \operatorname{supp}\left(\pi_{1}\right) \backslash T$. Let $s=\left(s_{1}, \cdots, x, y, \cdots, s_{k}\right)$ be the part of π_{1} containing (x, y). Let $u=\left(s_{1}, \cdots, x\right)$ and $v=\left(y, \cdots, s_{k}\right)$. Let π^{\prime} be the sequential partition formed from π_{1} by replacing the part s with the parts u and v. It is clear that $\beta \notin \operatorname{supp}\left(\pi^{\prime}\right)$ and for every $\beta^{\prime} \in \operatorname{supp}\left(\pi_{1}\right), \beta^{\prime} \neq \beta, \beta^{\prime} \in \operatorname{supp}\left(\pi^{\prime}\right)$. Thus, we can repeat this process to obtain a sequential partition containing all the elements of T but none of the elements of $\operatorname{supp}\left(\pi_{1}\right) \backslash T$.

Theorem 2.4. For any $\pi \in \mathcal{S}_{n},([\mathbf{0}, \pi], \leq)$ is isomorphic to $(\mathcal{P}(\operatorname{supp}(\pi)), \subseteq)$.
Proof. This is a direct consequence of Lemmas 2.1, 2.2 and 2.3.

These results allow us to define the join and meet of sequential partitions.
Definition 4. For any two compatible sequential partitions, $\pi_{1}, \pi_{2} \in \mathcal{S}_{n}$, define the join of π_{1} and π_{2}, denoted $\pi_{1} \vee \pi_{2}$, as the element least sequential partition above both π_{1} and π_{2}. That is to say $\pi_{1} \vee \pi_{2}=\pi$, where $\pi \in U\left(\pi_{1}\right) \cap U\left(\pi_{2}\right)$ and for all $\pi^{*} \in U\left(\pi_{1}\right) \cap U\left(\pi_{2}\right), \pi \leq \pi^{*}$. If π_{1}, \ldots, π_{m} is any sequence of sequential partitions, then $\bigvee_{i=1}^{m} \pi_{i}=\pi_{1}$ if $m=1$ and $\pi_{m} \vee\left(\bigvee_{i=1}^{m-1} \pi_{i}\right)$ otherwise.

Notice that if π_{1} and π_{2} are incompatible, then $\pi_{1} \vee \pi_{2}$ is undefined as $U\left(\pi_{1}\right) \cap U\left(\pi_{2}\right)$ is the empty set.
Definition 5. For any two sequential partitions (compatible or incompatible), $\pi_{1}, \pi_{2} \in \mathcal{S}_{n}$, define the meet of π_{1} and π_{2}, denoted $\pi_{1} \wedge \pi_{2}$, as the greatest sequential partition below both π_{1} and π_{2}. That is to say, $\pi_{1} \wedge \pi_{2}=\pi$, where $\pi \in D\left(\pi_{1}\right) \cap D\left(\pi_{2}\right)$ and for all $\pi^{*} \in P\left(\pi_{1}\right) \cap P\left(\pi_{2}\right), \pi^{*} \leq \pi$. If π_{1}, \cdots, π_{m} is an sequence of sequential partitions, then $\bigwedge_{i=1}^{m} \pi_{i}=\pi_{1}$ if $m=1$ and $\pi_{m} \wedge\left(\bigwedge_{i=1}^{m-1} \pi_{i}\right)$ otherwise.
Lemma 2.5. If $\Omega \in \mathcal{S}_{n}$, and $\pi_{1}, \pi_{2} \leq \Omega$, then there exists a unique sequential partition $\pi \in[\mathbf{0}, \Omega]$ such that $\operatorname{supp}(\pi)=\operatorname{supp}\left(\pi_{1}\right) \cup \operatorname{supp}\left(\pi_{2}\right)$, and $\pi=\pi_{1} \vee \pi_{2}$. For any two sequential partitons π_{1}, π_{2}, then there exists a unique sequential partition π such that $\operatorname{supp}(\pi)=\operatorname{supp}\left(\pi_{1}\right) \cap \operatorname{supp}\left(\pi_{2}\right)$ and $\pi=\pi_{1} \wedge \pi_{2}$.

Proof. This is an obvious consequence of 2.4.
Now for some notational conventions.
Definition 6. For any $\Omega \in \mathcal{S}_{n}$ and any $\pi \in[\mathbf{0}, \Omega]$ let $[\pi]_{\Omega}$ denote the set of permutations σ such that $\Omega \wedge \sigma=\pi$ and let $|\pi|_{\Omega}$ denote the number of permutations σ such that $\Omega \wedge \sigma=\pi$.

Definition 7. If Ω is any sequential partition and $S \subseteq[\mathbf{0}, \Omega]$ let $[S]_{\Omega}$ denote the set of permutations σ such that $\Omega \wedge \sigma \in S$ and let $|S|_{\Omega}$ denote the number of permutations, σ, such that $\Omega \wedge \sigma \in S$.
Definition 8. For any sequential partition $\pi=\left[s_{1}, \cdots, s_{k}\right]$ let $\nu(\pi)=k$, the number of parts in π. Let $\eta(\pi)=|\operatorname{supp}(\pi)|$, the number of atomic partitions below π.

We close with an important definition of the probability polynomial of a set of sequential partitions and the evaluator, which we will see will be essential to computing $|S|_{\Omega}$ for a given set $S \subseteq[\mathbf{0}, \Omega]$.
Definition 9. Suppose we are given $\Omega \in \mathcal{S}_{n}$. Define $\mathcal{P}_{\Omega}:[\mathbf{0}, \Omega] \rightarrow Z[p]$ with,

$$
\mathcal{P}_{\Omega}(\pi)=p^{\eta(\pi)}(1-p)^{\eta(\Omega)-\eta(\pi)}
$$

If $S \subseteq[\mathbf{0}, \Omega]$ then the probability polynomial of S is ,

$$
\mathcal{P}_{\Omega}(S)=\sum_{\pi \in S} \mathcal{P}_{\Omega}(\pi)
$$

The evaluator is an operation on a polynomial in p defined as follows,
Definition 10. Given a polynomial in $p, F(p)=c_{0}+\cdots c_{k} p^{k}$, and an integer $n>k$, the evaluator $[F]_{n}$ is

$$
[F]_{n}=\sum_{j=0}^{k} c_{j}(n-j)!
$$

Notice that if $\eta(\Omega)=n$ and $\eta(\pi)=k$, then $\mathcal{P}_{\Omega}(\pi)$ has the same form as the probability of getting a particular set of k heads (and no others) from n independent toss of coin when the probability of heads is p. This is not a coincidence. To derive the various values of $S_{r, d}^{l}(n, k)$ we will begin by first computing a polynomial $R(p)$ which represents the probability of a particular sequence of coin-tosses satisfies an analogous set of conditions. The computation of $[R(p)]_{n}$ converts evaluation of p^{j} to the evaluation of $(n-j)$!, which transforms the result from one about coin tosses to one about runs in permutations.

3 Some Useful Results

Lemma 3.1. Suppose $\Omega=\left[s_{1}, \cdots, s_{k}\right]$ is a sequential partition with k parts. For $1 \leq i \leq k$, let $\Pi_{i}=\left[s_{i}\right]$, the sequential partition whose only nontrivial part is s_{i}. Then, for each $\pi \leq$ Omega there exists a unique set of sequential partitions π_{1}, \cdots, π_{k} such that $\pi=\pi_{1} \vee \cdots \vee \pi_{k}$ and $\pi_{i} \leq \Pi_{i}$ for $1 \leq i \leq k$. Furthermore, every part of π is appears as a part of exactly one π_{i}.

Proof. Let $\pi_{i}=\Pi_{i} \wedge \pi$. Then, obviously $\pi_{i} \leq \Pi_{i}$ for $1 \leq i \leq k$. Suppose s is a part of π. Since $\pi \leq \Omega, s$ is a subpart of Π_{j} for some value of j. But then $[s] \leq \pi$ and $[s] \leq \Pi_{j}$, so then, since $\pi_{j}=\Pi_{j} \wedge \pi,[s] \leq \pi_{j}$. Thus, s is a subpart of π_{j}. Since, s is a part of π and $\pi_{j} \leq \pi$ it must be the case that s is a part of π_{j}. Thus, every part of π is a part of π_{i} for some i. Thus, $\pi \leq \pi_{1} \vee \cdots \vee \pi_{k}$. But since $\pi_{i} \leq \pi$ for $1 \leq i \leq k$ we also have that $\pi_{1} \vee \cdots \vee \pi_{k} \leq \pi$. Thus, $\pi=\pi_{1} \vee \cdots \vee \pi_{k}$.

Suppose π_{1}, \ldots, π_{k} form a set of sequential partitions satisfying the conditions. For each i, j with $i \neq j$, $\Pi_{i} \wedge \Pi_{j}=\mathbf{0}$. Since $\pi_{i} \leq \Pi_{i}$, we have that if $i \neq j$ that $\operatorname{supp}\left(\pi_{i}\right) \cap \operatorname{supp}\left(\Pi_{j}\right) \subseteq \operatorname{supp}\left(\Pi_{i}\right) \cap \operatorname{supp}\left(\Pi_{j}\right)=\emptyset$. Thus, $\pi_{i} \wedge \Pi_{j}=\mathbf{0}$. It follows that

$$
\begin{aligned}
\pi \wedge \Pi_{j} & =\left(\bigvee_{i=1}^{k} \pi_{i}\right) \wedge \Pi_{j} \\
& =\bigvee_{i=1}^{k}\left(\pi_{i} \wedge \Pi_{j}\right) \\
& =\mathbf{0} \vee \cdots \pi_{j} \cdots \vee \mathbf{0} \\
& =\pi_{j}
\end{aligned}
$$

Thus, $\pi_{j}=\pi \wedge \Pi_{j}$ so the solution is unique.
Lemma 3.2. For any sequential partition the number of permutations, σ, the number of permutations above π is $\nu(\pi)$!.

Proof. For any sequential partition π the set of permutations above π correspond to the possible orderings of the parts of π. There thus, $\nu(\pi)$! permutations above π.

Proposition 3.3. If $\pi \in \mathcal{S}_{n}$, then $n=\eta(\pi)+\nu(\pi)$.
Proof. Let the length of a part s of π be denoted by $|s|$. Note, that a part π corresponds to $|s|-1$ elements of $\operatorname{supp}(\pi)$. Thus

$$
\begin{aligned}
\eta(\pi) & =|\operatorname{supp}(\pi)| \\
& =\sum_{s \in \pi}(|s|-1) \\
& =\sum_{s \in \pi}|s|-\sum_{s \in \pi} 1 \\
& =n-\nu(\pi)
\end{aligned}
$$

Theorem 3.4. If $\Omega \in \mathcal{S}_{n}$ and if $\pi \in[0, \Omega]$. Then, $|\pi|_{\Omega}$ is

$$
\begin{equation*}
\sum_{j=0}^{\eta(\Omega)-\eta(\pi)}(-1)^{j}\binom{\eta(\Omega)-\eta(\pi)}{j}(n-\eta(\pi)-j)! \tag{3.1}
\end{equation*}
$$

Proof. Let S be the set of permutations above π and let $h=\eta(\Omega)-\eta(\pi)$. Let $\beta_{i}, 1 \leq i \leq h$ be the elements of $\operatorname{supp}(\Omega) \backslash \operatorname{supp}(\pi)$. Let E_{i} be the intersection of the set of permutations above β_{i} with S. For any subset M of $[h]$ let $T_{M}=\bigcap_{i \in M} E_{i}$. Hence $\sigma \in T_{M}$ if and only if σ is above π and β_{i} for $i \in M$, or in other words $\operatorname{supp}(\pi) \subseteq \sigma$ and $\operatorname{supp}\left(\beta_{i}\right) \subseteq \pi$ for $i \in M$.

Let π_{M} be the sequential partition such that $\operatorname{supp}\left(\pi_{M}\right)=\operatorname{supp}(\pi) \cup\left\{\beta_{i}: i \in M\right\}$. Hence $\sigma \in T_{M}$ if and only if σ is above π_{M}. By Lemma $3.2\left|T_{M}\right|=\nu\left(\pi_{M}\right)!=\left(n-\eta\left(\pi_{M}\right)\right)!=(n-\eta(\pi)-|M|)$!. Thus, for a given $\pi,\left|T_{M}\right|$ depends only on $|M|$, so let $T_{i}^{\prime}=\left|T_{M}\right|$ for some M where $|M|=i$.

Let $R=S \backslash \bigcup_{i=1}^{h} E_{i}$. Thus, R is the set of permutations σ such that $\operatorname{supp}(\pi) \subseteq \operatorname{supp}(\sigma)$ and $\operatorname{supp}(\sigma) \cap$ $(\operatorname{supp}(\Omega) \backslash \operatorname{supp}(\pi))=\emptyset$. For any $\sigma \in R$ it follows that

$$
\begin{aligned}
\operatorname{supp}(\sigma) \cap \operatorname{supp}(\Omega) & =\operatorname{supp}(\sigma) \cap(\operatorname{supp}(\pi) \cup(\operatorname{supp}(\Omega) \backslash \operatorname{supp}(\pi))) \\
& =(\operatorname{supp}(\sigma) \cap \operatorname{supp}(\pi)) \cup(\operatorname{supp}(\sigma) \cap(\operatorname{supp}(\Omega) \backslash \operatorname{supp}(\pi)) \\
& =\operatorname{supp}(\pi)
\end{aligned}
$$

Thus $\sigma \in R$ if and only if $\sigma \wedge \Omega=\pi$. Then,

$$
\begin{aligned}
|R| & =\left|S \backslash \bigcup_{i=1}^{h} E_{i}\right| \\
& =|S|-\left|\bigcup_{i=1}^{h} E_{i}\right| \\
& =|S|-\sum_{j=1}^{h}(-1)^{j-1}\left(\sum_{M \subseteq[h],|M|=j}\left|T_{M}\right|\right) \\
& =|S|+\sum_{j=1}^{h}(-1)^{j}\binom{h}{j} T_{j}^{\prime} \\
& =(n-\eta(\pi))!-\sum_{j=1}^{h}(-1)^{j}\binom{h}{j}(n-\eta(\pi)-j)! \\
& =\sum_{j=0}^{h}(-1)^{j}\binom{h}{j}(n-\eta(\pi)-j)!
\end{aligned}
$$

as desired.
Corollary 3.5. If $\Omega \in \mathcal{S}_{n}$ and if $\pi \in[0, \Omega]$. Then, $|\pi|_{\Omega}$ is

$$
\left[p^{\eta(\pi)}(1-p)^{\eta(\Omega)-\eta(\pi)}\right]_{n}
$$

Proof. This follows from 3.4 upon expanding the polynomial and computing the evaluator.
Corollary 3.6. If $S \subseteq[0, \Omega]$, then

$$
|S|_{\Omega}=\left[\mathcal{P}_{\Omega}(S)\right]_{n}
$$

4 Main Results

We have built up the machinery sufficient to prove our first result. From now on let Ω_{r} denote the sequential partition formed from all the runs of rise r in \mathcal{S}_{n}. More explicitly, let $P_{i}=(i, i+r, i+2 r, \ldots, i+\lfloor(n-i) / r\rfloor r)$ for $1 \leq i \leq r$. Then $\Omega_{r}=\left[P_{1}, \cdots, P_{r}\right]$. Thus, for any permutation $\sigma \in S_{n}$ if $\pi=\Omega_{r} \wedge \sigma$, then the runs of rise r in σ are the subparts of π.

Theorem 4.1. The number of permutations in S_{n} containing exactly k runs with a rise of r and a distance of 1 , can be computed by

$$
S_{r, 1}^{2}(n, k)=\left[\binom{n-r}{k} p^{k}(1-p)^{n-r-k}\right]_{n}
$$

Proof. Let A be the set of sequential partitions $\pi \in\left[\mathbf{0}, \Omega_{r}\right]$ such that $\eta(\pi)=k$. Since supp is a bijection between sequential partitions in $\left[\mathbf{0}, \Omega_{r}\right]$ and subsets of $\operatorname{supp}\left(\Omega_{r}\right)$, there are exactly $\binom{n-r}{k}$ elements in A. Then, $|A|_{\Omega_{r}}$ counts the number of permutations with exactly k runs of rise r. Then 3.5 implies

$$
\begin{aligned}
|A|_{\Omega_{r}} & =\sum_{\pi \in A}|\pi|_{\Omega} \\
& =\binom{n-r}{k}\left[p^{k}(1-p)^{n-r-k}\right]_{n} \\
& =\left[\binom{n-r}{k} p^{k}(1-p)^{n-r-k}\right]_{n}
\end{aligned}
$$

Using, the coin analogy once more, the polynomial used to calculate $S_{r, 1}^{2}(n, k)$ takes the form of the probability of getting exactly k heads out of $n-r$ independent coin flips. The evaluator uses this polynomial to calculate the number of permutations with exactly k runs from the set of $n-r$ possible runs of rise r.

5 Case: $\ell \geq 2, k=0, d=1, r=1$

We now derive the formula for the number of permutations which contain no 2 -runs, with a distance of 1 and a rise of 1 . We will extend these results to count permutations containing a given number of runs of a given length with an arbitrary rise and distance.

For any sequential partition $\pi, \pi \leq \Omega_{1}$, we have $\operatorname{supp}(\pi) \subseteq \operatorname{supp}\left(\Omega_{1}\right)$. Thus, we can represent $\operatorname{supp}(\pi)$ as a binary vector $b=\left(b_{1}, \cdots, b_{n-1}\right)$ such that $b_{i}=1$ if $[(i, i+1)] \in \operatorname{supp}(\pi)$ and $b_{i}=0$ otherwise. Let $\left.B_{(} \pi\right)$ denote the binary string corresponding to π in this manner. So if $\sigma \in S_{n}$ and $\pi=\Omega_{1} \wedge \sigma$, then then the l-runs in σ correspond to runs of $l-1$ consecutive 1's in $B_{\Omega_{1}}(\pi)$. Furthermore, the number of 1's in $B_{(}(\pi)$ is $\eta(\pi)$. Let $b_{n, l}(k)$ stand for the number of binary sequences of length n with no runs of l consecutive 1's and containing exactly k 1's. Then, let $R_{n, l}(p)$ be defined as

$$
\begin{equation*}
R_{n, l}(p)=\sum_{k=0}^{n-1} b_{n-1, l-1}(k) p^{k}(1-p)^{n-1-k} \tag{5.1}
\end{equation*}
$$

We can use this polynomial to count permutations that of length n containing l-runs with

$$
\begin{equation*}
S_{1,1}^{\ell}(n, 0)=\left[R_{n, l}(p)\right]_{n} \tag{5.2}
\end{equation*}
$$

Thus, the problem is reduced to computing the probability polynomial $R_{n, l}(p)$. But in order to this, we must first be able to compute $b_{n, l}(k)$. For this, we employ the Goulden Jackson Cluster Method, described in the next section.

5.1 Goulden Jackson Cluster Method

Let $\boldsymbol{\Sigma}$ be an alphabet with d characters. A word is a sequence of elements from $\boldsymbol{\Sigma}$. Let $\boldsymbol{\Sigma}^{*}$ denote the set of all possible words (including the empty word with no characters). The length of a word is denoted by $|w|$. Given any word $w=w_{1} \ldots w_{n}$ a factor is a word of the form $w_{i} w_{i+1} \ldots w_{j-1} w_{j}$, with $1 \leq i \leq j \leq n$. A proper factor of a word w is any factor other than w itself. Now associate to each symbol $a \in \boldsymbol{\Sigma}$ a variable q_{a}. For any $w \in \boldsymbol{\Sigma}^{*}, w=w_{1} \ldots w_{n}$, we define the weight function weight $(w)=\prod_{i=1}^{n} q_{w_{i}}$. For example, if $\boldsymbol{\Sigma}$ were the English alphabet, then weight $(H I P H O P)=q_{H}^{2} q_{P}^{2} q_{I} q_{O}$. In general, if $\boldsymbol{\Sigma}$ has the characters c_{1}, \ldots, c_{d} and w is any word in $\boldsymbol{\Sigma}^{*}$ then weight $(w)=q_{c_{1}}^{e_{1}} \cdots q_{c_{d}}^{e_{d}}$ where e_{i} is the number of occurrences of the character c_{i} in w.

Let D be the set of "bad" words to be avoided. The set D must be such that no element of D is a proper factor of any other element of D. For example, D cannot contain both $A C$ and $A C D C$. It is possible, however, for words in D to overlap. For instance, if $A B$ and $B A$ were in D, then $A B A$ contains two overlapping factors. If a factor of a word w is an element of D, it is called a marked factor. Let $\left[i_{1}, j_{1}\right], \cdots,\left[i_{k}, j_{k}\right]$ be the start and end positions of the k marked factors in some word w. Since no element of D is contained in another, we can assume that $j_{1}<j_{2}<\cdots<j_{d}$ and all the i_{x} are distinct. A word is called a cluster if every letter in the word is part of a marked factor and neighboring marked factors, ordering them by their end positions, overlap. For instance, suppose again that $A B$ and $B A$ are in D. Then, $A B A B$ is composed of factors which overlap, an $A B$ followed by a $B A$ followed by another $A B$. But, $A B B A$ is not a cluster since the factor $A B$ does not overlap with $B A$, and $B B$ is not an element of D.

Suppose $\boldsymbol{\Sigma}$ is a language and c_{1}, \cdots, c_{d} are the characters of $\boldsymbol{\Sigma}$. Given any (possibly infinite) set of words $\mathcal{S} \subseteq \boldsymbol{\Sigma}^{*}$, for any d-tuple $\mathbf{e}=\left(e_{1}, \ldots, e_{d}\right)$, let $a_{\mathbf{e}}$ be the number of elements in \mathcal{S} containing exactly e_{i} instances of the character c_{i}. Define the enumerator polynomial of \mathcal{S} as the polynomial F that is the sum of the weights of all the words in \mathcal{S}. It follows that

$$
\begin{aligned}
F_{S} & =\sum_{w \in \mathcal{S}} \operatorname{weight}(w) \\
& =\sum_{\mathbf{e} \in \mathbb{N}^{d}} a_{\mathbf{e}} \prod_{i=1}^{d} q_{c_{i}}^{e_{i}}
\end{aligned}
$$

Note that F will have an infinite number of terms if and only if S is infinite. The enumerating polynomials will serve as a useful tool for efficiently counting permutations with certain kinds of runs. In our case, we let \mathcal{S} be the set of binary strings which contain no pairs of consecutive 1's. Every such binary string corresponds to a sequential partition, $\pi \leq \Omega_{1}$, that represents permutations with no 3-runs.

Let D be a set of words to be avoided. Let \mathcal{L}_{D} be the set of words in $\boldsymbol{\Sigma}^{*}$ which contain no words in D as factors. Let \mathcal{C}_{D} be the collection of all clusters in $\boldsymbol{\Sigma}^{*}$. Define G_{D} as the enumerating polynomial for \mathcal{L}_{D} and H_{D} as the enumerating polynomial for the \mathcal{C}_{D}. The Goulden-Jackson cluster method provides us with a simple method computing the generating function for H_{D} and G_{D}. Letting $Q=q_{c_{1}}+\cdots+q_{c_{d}}$, It is shown in [2] that

$$
\begin{equation*}
G_{D}=\frac{1}{1-Q-H_{D}} \tag{5.3}
\end{equation*}
$$

What follows is a brief description of the method to compute \mathcal{H}_{D}. Proof of the correctness of this algorithm can be found in [2].

For any word $w=w_{1} \cdots w_{n}$, let $\operatorname{HEAD}(w)$ be the set of all proper prefixes:

$$
\operatorname{HEAD}(w)=\left\{w_{1}, w_{1} w_{2}, \ldots, w_{1} w_{2} \cdots w_{n-1}\right\}
$$

and let $\operatorname{TAIL}(w)$ denote the set of all proper suffixes.

$$
\operatorname{TAIL}(w)=\left\{w_{n}, w_{n-1} w_{n}, \ldots, w_{2} \cdots w_{n}\right\}
$$

Given two words u and v, define the set $\operatorname{OVERLAP}(u, v)=\operatorname{TALL}(u) \cap \operatorname{HEAD}(v)$. For instance, $\operatorname{OVERLAP}(A B C A B C, B C A B C A)=\{B C A B C, B C\}$. Now, if $x \in \operatorname{HEAD}(v)$ then we can write $v=$ $x x^{\prime}$, where x^{\prime} is the word obtained from v by removing its head x. Denote x^{\prime} by $v \backslash x$. For example $D R A G O N \backslash D R A G=O N$. For any two words u, v, define

$$
u: v=\sum_{x \in \operatorname{OVERLAP}(u, v)} \operatorname{weight}(v \backslash x)
$$

For example,

$$
A B C A B C: B C A B C A=q_{A}+q_{A}^{2} q_{B} q_{C}
$$

For any $y \in D$, let $\mathcal{C}_{D}[y]$ denote the set of clusters whose final marked factor is y. Let $C_{D}[y]$ be the enumerator polynomial for the set $\mathcal{C}_{D}[y]$. The results [2] show the polynomials $C_{D}[x]$ satisfy the following relationship. For every $y \in D$,

$$
\begin{equation*}
C_{D}[y]=-\operatorname{weight}(y)-\sum_{x \in D}(x: y) \cdot C_{D}[x], \tag{5.4}
\end{equation*}
$$

Moreover, since the set $\left\{\mathcal{C}_{D}[x] \mid x \in D\right\}$ forms a partition of \mathcal{C}_{D} it follows that

$$
C_{D}=\sum_{x \in D} C_{D}[x] .
$$

Thus, by solving the system of equations in Equation 5.4 we can compute H_{D} and G_{D}.

5.2 Computing $b_{n, l}(k)$

Let $\Sigma=\{0,1\}$ so $d=2$. Let o_{m} refer to the word of m consecutive 1 's. Let $D=\left\{o_{m}\right\}$. Let q_{0} and q_{1} be the variables associated with 0 and 1 , respectively.

In order to compute C_{D} we must solve the system of equations specified in Equation 5.4. In this case D, only has one element so there is only one equation to solve. First we compute $o_{m}: o_{m}$. Since o_{m} consists of m consecutive 1's, $\operatorname{OVERLAP}(o, o)$ includes the sequences of j consecutive 1's for $1 \leq j \leq m$. Thus

$$
o_{m}: o_{m}=\sum_{i=1}^{m-1} q_{1}^{i}=\frac{q_{1}^{m}-q_{1}}{q_{1}-1}
$$

From equation 5.4, we have

$$
\begin{aligned}
& C_{D}\left[o_{m}\right]=-q_{1}^{m}-\frac{q_{1}^{m}-q_{1}}{q_{1}-1} C_{D}\left[o_{m}\right] \\
& C_{D}\left[o_{m}\right]=-\frac{\left(1-q_{1}\right) q_{1}^{m}}{\left(1-q_{1}^{m}\right)}
\end{aligned}
$$

Since o_{m} is the only element of $D, C_{D}[o]=C_{D}$. Thus, using Equation 5.3 we obtain the following formula for G_{D}.

$$
\begin{aligned}
G_{D} & =\frac{1-q_{1}^{m}}{1-q_{0}-q_{1}+q_{0} q_{1}^{m}} \\
& =\sum_{i, j \geq 0} g_{i, j} q_{0}^{i} q_{1}^{j}
\end{aligned}
$$

Note that $g_{i, j}$ is the number of binary sequences with exactly $i 0$'s, and $j 1$'s which contain no subsequences of $l-1$ consecutive 1's. Thus, computing $b_{n, m}(k)$, the number of binary sequences of length n with no subsequences of m consecutive 1's that contain exactly $k 1$'s is the same as computing the coefficient $g_{n-k, k}$.

In computing G_{D} with $D=\left\{o_{m}\right\}$, suppose we made the following substitutions. Substitute $(1-p) u$ fof q_{0} and $p u$ for q_{1}. Thus, G_{D} becomes

$$
\begin{aligned}
G_{D} & =\frac{1-(p u)^{m}}{1-u+p^{m} u^{m+1}-p^{m+1} u^{m+1}} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} g_{n-k, k} p^{k}(1-p)^{n-k} u^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} b_{n, m}(k) p^{k}(1-p)^{n-k}\right) u^{n}
\end{aligned}
$$

Recall that $R_{n, \ell}(p)$ is the probability of no sequences of $\ell-1$ consecutive 1 's in a binary string of length $n-1$. Then, $R_{n, \ell}(p)$ is the coefficient of u^{n-1} in G_{D} when $m=\ell-1$. Thus,

$$
\begin{equation*}
\frac{1-(u p)^{\ell-1}}{1-u+p^{l-1} u^{\ell}-p^{\ell} u^{\ell}}=\sum_{n=1}^{\infty} R_{n, \ell}(p) u^{n-1} \tag{5.5}
\end{equation*}
$$

Using equation 5.2, we can compute $S_{1,1}^{\ell}(n, 0)$ with $S_{1,1}^{\ell}(n, 0)=\left[R_{n, \ell}(p)\right]_{n}$.

5.3 Example

To compute the value of $S_{1,1}^{3}(8,0)$ (note $\ell=3$) we have

$$
G_{D}=\frac{p u+1}{(p-1) p u^{2}+(p-1) u+1}
$$

Using Mathematica, we see that the coefficient of u^{7} is

$$
R_{8,3}(p)=1-6 p^{2}+5 p^{3}+6 p^{4}-9 p^{5}+3 p^{6} .
$$

Using definition 10 ,

$$
\left[R_{8,3}(p)\right]_{8}=1-6(8-2)!+5(8-3+6(8-4)!-9(8-5)!+3(8-6)!=36,696
$$

Thus, there are 36,696 permutations of length 8 containing no 3 -runs

6 Case: $\ell \geq 2, k>0, d=1, r=1$

This process is almost identical to the case with $k=0$. The only difference is that we must now compute the two variable polynomial $R_{n, \ell}(p, t)$ so that the coefficient of $t^{j} u^{n}$ is the probability that a exactly j sets of ℓ consecutive heads appear in a sequence of n coin flips.

Let $\boldsymbol{\Sigma}=\{0,1\}$. Let D be a set of words such that no element of D is a factor of another. For each word $w \in \boldsymbol{\Sigma}$ let $e_{D}(w)$ be the number of factors of w that are elements of D. Let G_{D} be the series

$$
G_{D}=\sum_{w \in \boldsymbol{\Sigma}^{*}} t^{e_{D}(w)} \operatorname{weight}(w)
$$

Then, the results of [2] give us a method to calculate G. Let $\mathcal{C}_{D}[y]$ denote the set of clusters whose final marked factor is y. Then, we must solve a system of equations similar to equation 5.4. Using the polynomial $C_{D}[y]$ for $y \in D$, we solve

$$
\begin{equation*}
C_{D}[y]=(t-1) \operatorname{weight}(y)-\sum_{x \in D}(x: y) \cdot C_{D}[x] \tag{6.1}
\end{equation*}
$$

If $H_{D}=\sum_{y \in D} C_{D}[y]$, we have that G_{D} is given by

$$
\begin{equation*}
G_{D}=\frac{1}{1-\left(q_{1}+\ldots+q_{d}\right)-H_{D}} \tag{6.2}
\end{equation*}
$$

If o_{m} is the only element of D then, we compute G_{D}. Once gain we substitute $p u$ and $(1-p) u$ for q_{1} and q_{0} in G_{D}. Then, $R_{n, \ell}(p, t)$ becomes the coefficient of u^{n-1} in the expansion of G_{D} when $m=\ell-1$. The end result is

$$
\begin{aligned}
G_{D} & =\frac{1-p t u-p^{m} u^{m}+t p^{m} u^{m}}{1-u-p t u-t p^{m} u^{m+1}+p^{m} u^{m+1}+p t u^{2}-p^{m+1} u^{m+1}+t p^{m+1} u^{m+1}} \\
& =\sum_{n=1}^{\infty} R_{n, \ell}(p, t) u^{n-1}
\end{aligned}
$$

6.1 Example

Let's compute the distribution $S_{1,1}^{3}(8, k)$ for $0 \leq k \leq 5$ (as there can be no more than 5 runs of length 3 in a permutation of length 8). Using Mathematica, we see that the coefficient of u^{7} is

$$
\begin{aligned}
R_{8,3}(p, t)= & \left(1+3 p^{6}-9 p^{5}+6 p^{4}+5 p^{3}-6 p^{2}\right)+\left(2 p^{7}-14 p^{6}+24 p^{5}-8 p^{4}-10 p^{3}+6 p^{2}\right) t \\
& +\left(-7 p^{7}+22 p^{6}-18 p^{5}-2 p^{4}+5 p^{3}\right) t^{2}+\left(8 p^{7}-12 p^{6}+4 p^{4}\right) t^{3} \\
& +\left(-2 p^{7}-p^{6}+3 p^{5}\right) t^{4}+\left(2 p^{6}-2 p^{7}\right) t^{5}
\end{aligned}
$$

Then, $\left[R_{8,3}(p, t)\right]$ is computed by making the substitution $p^{k} \rightarrow(8-k)$!. The result is

$$
\left[R_{8,3}(p, t)\right]=36,969+3046 t+481 t^{2}+80 t^{3}+14 t^{5}+2 t^{5}
$$

The coefficient of t^{k} in this expression represents the number of permutations with exactly $k 3$-runs of rise 1 and distance 1.

7 Case: $\ell \geq 2, k=0, d=1, r \geq 1$
The case for larger values of r can be handled with minimal modifications. Let σ be a permutation. For $1 \leq i \leq r$, let $P_{i}=(i, i+r, \ldots, i+r\lfloor(n-i) / r)\rfloor$. Let $\Omega_{r}=\left[P_{1}, \ldots, P_{r}\right]$, the sequential partition containing all runs of rise r. Let $\Pi_{i}=\left[\left(P_{i}\right)\right]$, the sequential partition formed from the i-th part of Ω_{r}. If σ is a permutation, let $\pi=\Omega_{r} \wedge \sigma$. The runs of rise r in σ are the subparts of π. Let S be the set of sequential partitions below Ω_{r} containing no part of length ℓ or greater. A permutation σ contains no ℓ-runs of rise r if and only if $\Omega_{r} \wedge \sigma \in S$.

For each $\pi \in S$, Lemma 3.1 implies there exists a unique set of sequential partitions π_{1}, \ldots, π_{r} such that $\pi=\pi_{1} \vee \cdots \vee \pi_{r}, \pi_{i} \leq \Pi_{i}$. For $1 \leq i \leq r$, let S_{i} be the set of sequential partitions below Π_{i} which contain no parts of size ℓ or greater. Then, $\pi \in S$ if and only if $\pi_{i} \in S_{i}$ for $1 \leq i \leq r$. Let $\widehat{S}=\left\{\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{r}\right) \mid \pi_{i} \in S_{i}\right\}$. Hence,

$$
\begin{aligned}
\mathcal{P}_{\Omega_{r}}(S) & =\sum_{\pi \in S} \mathcal{P}_{\Omega_{r}}(\pi) \\
& =\sum_{\pi \in S} p^{\eta(\pi)}(1-p)^{\eta\left(\Omega_{r}\right)-\eta(\pi)} \\
& =\sum_{\boldsymbol{\pi} \in \widehat{S}} p^{\eta\left(\pi_{1} \wedge \cdots \wedge \pi_{r}\right)}(1-p)^{\eta\left(\Pi_{1} \wedge \cdots \Pi_{r}\right)-\eta\left(\pi_{1} \wedge \cdots \wedge \pi_{r}\right)} \\
& =\sum_{\pi \in \widehat{S}} p^{\eta\left(\pi_{1}\right)+\cdots+\eta\left(\pi_{r}\right)}(1-p)^{\left(\eta\left(\Pi_{1}\right)-\eta\left(\pi_{1}\right)\right)+\cdots+\left(\eta\left(\Pi_{r}\right)-\eta\left(\pi_{r}\right)\right)} \\
& =\sum_{\pi \in \widehat{S}}\left(p^{\eta\left(\pi_{1}\right)}(1-p)^{\eta\left(\Pi_{1}\right)-\eta\left(\pi_{1}\right)}\right) \cdots\left(p^{\eta\left(\pi_{r}\right)}(1-p)^{\eta\left(\Pi_{r}\right)-\eta\left(\pi_{r}\right)}\right) \\
& =\left[\sum_{\pi_{1} \in S_{1}} p^{\eta\left(\pi_{1}\right)}(1-p)^{\eta\left(\Pi_{1}\right)-\eta\left(\pi_{1}\right)}\right] \cdots\left[\sum_{\pi_{r} \in S_{r}} p^{\eta\left(\pi_{r}\right)}(1-p)^{\eta\left(\Pi_{r}\right)-\eta\left(\pi_{r}\right)}\right] \\
& =\mathcal{P}_{\Pi_{1}}\left(S_{1}\right) \cdots \mathcal{P}_{\Pi_{r}}\left(S_{r}\right)
\end{aligned}
$$

But, for any given i, we can do what we did before and represent elements below Π_{i} as binary sequences. Since Π_{i} contains a single part of length $n_{i}=1+\lfloor(n-i) / r\rfloor, S_{i}$ is then just the set of binary sequences of length n_{i} with no sets of $\ell-1$ consecutive 1's. Thus, $\mathcal{P}_{\Pi_{i}}\left(S_{i}\right)$ is just $R_{n_{i}, \ell}(p)$, which can be computed from Equation 5.5. It then follows that $|S|_{\Omega}=\left[\mathcal{P}_{\Omega_{r}}(S)\right]_{n}=\left[R_{n_{1}, l}(p) \cdots R_{n_{r}, p}(p)\right]_{n}$. Thus,

Theorem 7.1. Let $n_{i}=1+\lfloor(n-i) / r\rfloor$. The number of permutations with no ℓ-runs of rise r at a distance of 1 is given by

$$
S_{r, 1}^{\ell}(n, 0)=\left[\prod_{i=1}^{r} R_{n_{i}, \ell}(p)\right]_{n}
$$

References

[1] Lint, Jacobus Hendricus van, and R. M. Wilson. 1992. A course in combinatorics. Cambridge [England]: Cambridge University Press.
[2] Noonan, John, and Zeilberger Doron. The Goulden Jackson Cluster Method: Extensions and Implementations. http://www.math.rutgers.edu/ zeilberg/mamarim/mamarimPDF/gj.pdf
[3] Dymacek, Wayne, Lambert, Isaac, and Parsons Kyle. Arithmetic Progressions in Permutations, Congressus Numerantium 208 (2011), pp. 147-165.
[4] P., Hegarty, Permutations Avoiding Arithmetic Patterns, Electron. J. Combin. 11 (2004),\#R39
[5] J., Riodran, Permutations without 3-Sequences Sequences, Bull. Amer. Math. Soc. 51 (1945), 745-748.

