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1 Introduction

Let σ ∈ Sn be a permutation of length n. A run of length ` with a distance of d and a rise of r is a sequence
of ` numbers in σ, all at a fixed distance d with the difference between successive numbers all being r. A
run of length ` is called an `-run. For example, 124635 contains 246 as 3-run of rise 2 and distance 1, while
162435 contains 123 as a 3-run of rise 1 and distance 2.

Let S`r,d(n, k) denote the number of permutations in Sn which contain exactly k runs of length ` with a

rise of r and a distance of d. Our goal is to derive formulas which evaluate S`r,d(n, k) for all values of `, r, n, k
when d = 1.

Runs in permutations and similar topics have been studied by various authors under different names.
Hegarty [4] examined permutations of finite abelian groups which avoid what he called progressions. Riordan
[5] studied 3-runs (which he called 3-sequences) and derived a formula to compute the number of permutations
containing x 3-runs with rise of 1 and a distance of 1. Dymacek [3] investigated 3-runs with d = 1 and r = 1
or r = 2. To our knowledge there has not been a formula produced for the cases where both r > 1 and d > 1.

2 Definitions

Let [n] = {1, . . . , n}.

Definition 1. A sequential partition of [n] is a set of disjoint sequences of integers whose union (taking the
sequences as sets) is [n].

Sequential partitions will be written as [s1, . . . , sk] where each si is a sequence whose elements are disjoint
from the others. For example [(1, 2, 3), (4, 5)] and [(1, 2, 4), (5, 3)] are two sequential partitions of {1, 2, 3, 4, 5}.
The sequences in a sequential partition are called parts. Let Sn denote the set of all sequential partitions of
[n]. Parts containing only one part are called trivial parts. For convenience in writing sequential partitions
of [n], we will omit the trivial parts as they can be inferred from the rest. That is, [(1, 2), (4, 5, 3), (6)]
will be written [(1, 2), (4, 5, 3)] with the (6) implied. Let An = {[(i, j)] | 1 ≤ i, j ≤ n, i 6= j}, the set of all
sequential partitions with exactly one nontrivial part which has length 2. The elements of A are called atomic
partitions. Notice that if a sequential partition in Sn contains only one part, that part must necessarily be
a permutation of [n]. Furthermore, any permutation, σ ∈ Sn can be used to form a sequential partition σ
as its only part. Thus, there is a one-to-one correspondence between permutations and sequential partitions
with one part. Because of this when we refer to a permutation σ ∈ Sn we mean the corresponding sequential
partition in Sn. Finally, for a given n, let 0 = [(1), . . . , (n)].

For any two sequences s and s∗, we say that s is contained in s∗ if the sequence s appears in the sequence
s∗. So, (1, 2) is contained in (3, 1, 2, 4) but not (1, 3, 2, 4) . A sequence s is a called a subpart of a sequential
partition π if s is contained in a part of π. For example, (2, 3) is not a part of [(1, 2, 3), (4, 5)] but it is a
subpart of [(1, 2, 3), (4, 5)]. We say a sequential partition π1 is below another sequential partition π2, denoted
π1 ≤ π2, if each part of π1 is a subpart of π2. If π1 is below π2, we also say that π2 is above π1. Note that
since parts of π partition [n] it is necessarily true that all the trivial parts of π1 are contained in some part of

1



π2. Thus, to prove π1 ≤ π2 it is sufficient to show that all nontrivial parts of π1 are subparts of π2. We use
π1 < π2 to mean π1 ≤ π2 and π1 6= π2. If π1 ≤ π2, we define the interval [π1, π2] = {π ∈ Sn : π1 ≤ π ≤ π2}.
Let D(π) denote the down-set of π, the set of all sequential partitions below π and let U(π) denote the up-set
of π, the set of all sequential partitions above π. We will see that Sn under the ≤ relation forms a partially
ordered set.

Since 0 is composed of only trivial parts, we have 0 ≤ π for every π ∈ Sn. It is easy to see that for
any β ∈ A there exists no π ∈ Sn such that 0 < π < β. Hence, atomic partitions are atoms Sn. It is also
clear that for any σ ∈ Sn there exists no π ∈ Sn such that σ < π. Thus, permutations are are the maximal
elements of Sn.

Definition 2. Two sequential partitions π1 and π2 are called compatible if there exists a sequential partition
π above both π1 and π2.

For example, [(1, 2, 3)] and [(2, 3, 4)] are compatible, as [(1, 2, 3, 4)] is above them both . The sequences
[(2, 3)] and [(3, 2)] are not compatible. To see this, suppose they were both below some sequential partition
π. Then π must have both (2,3) and (3,2) as subparts. But, this is impossible as that would necessarily
imply that 3 or 2 appears in two places in π. Notice that any two sequential partitions in an interval [0, π]
are compatible.

Definition 3. For any π ∈ Sn define the support of π with supp(π) = {β ∈ An : β ≤ π}, that is the set of
atomic partitions below π.

We now show that for any π ∈ Sn, the poset induced on [0, π] by ≤ is isomorphic to the lattice of subsets
of supp(π) ordered via subset inclusion.

Lemma 2.1. For all sequential partitions π1 and π2, we have π1 ≤ π2 if and only if supp(π1) ⊆ supp(π2).

Proof. Suppose π1 ≤ π2. Then any part of π1 is a subpart of π2. Suppose β = [(i, j)] ∈ supp(π1). Then
(i, j) is a subpart of π1, and therefore (i, j) is contained in a part of π1 which is a subpart of π2. Thus, (i, j)
is a subpart of π2. Since (i, j) is the only nontrivial part of β, this implies β ≤ π2, so β ∈ supp(π2).

Suppose supp(π1) ⊆ supp(π2). Let s = (s1, · · · , sk) be a nontrivial part of π1. Then, for 1 ≤ i ≤ k − 1,
βi = [(si, si+1)]] ∈ supp(π). Thus, βi ∈ supp(π2). Thus, there exists a part in π2 containing the subparts
(s1, s2) and (s2, s3). Since (s1, s2) and (s2, s3) both contain s2, they must belong to the same part, or else
π2 would have two parts with the same number in it. Also, since s2 can only appear once in any part, this
part must contain (s1, s2, s3). Continuing on in this manner, this part will contain (s1, · · · , sk). Thus, all
nontrivial parts of π1 are subparts of π2. so π1 ≤ π2.

Lemma 2.2. If supp(π1) = supp(π2), then π1 = π2.

Proof. Let s be a part of π1. By the previous lemma, π1 ≤ π2 so s is contained in a part t of π2. Similarly,
π2 ≤ π1 so t is contained in a part of π1. Since s and t share numbers, the part of π1 which contains t must
be s. Hence, s = t and so every part of π1 is a part of π2. Analogous reasoning shows that every part of π2

is a part of π1. Thus, π1 = π2.

Lemma 2.3. If π1 ∈ Sn and T ⊆ supp(π1), then there exists a sequential partition π2 such that supp(π2) = T

Proof. Let β = [(x, y)] ∈ supp(π1) \ T . Let s = (s1, · · · , x, y, · · · , sk) be the part of π1 containing (x, y). Let
u = (s1, · · · , x) and v = (y, · · · , sk). Let π′ be the sequential partition formed from π1 by replacing the part
s with the parts u and v. It is clear that β /∈ supp(π′) and for every β′ ∈ supp(π1), β′ 6= β, β′ ∈ supp(π′).
Thus, we can repeat this process to obtain a sequential partition containing all the elements of T but none
of the elements of supp(π1) \ T .

Theorem 2.4. For any π ∈ Sn, ([0, π],≤) is isomorphic to (P(supp(π)),⊆).

Proof. This is a direct consequence of Lemmas 2.1, 2.2 and 2.3.
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These results allow us to define the join and meet of sequential partitions.

Definition 4. For any two compatible sequential partitions,π1, π2 ∈ Sn, define the join of π1 and π2, denoted
π1 ∨ π2, as the element least sequential partition above both π1 and π2. That is to say π1 ∨ π2 = π, where
π ∈ U(π1) ∩ U(π2) and for all π∗ ∈ U(π1) ∩ U(π2), π ≤ π∗. If π1, . . . , πm is any sequence of sequential

partitions, then
∨m
i=1 πi = π1 if m = 1 and πm ∨

(∨m−1
i=1 πi

)
otherwise.

Notice that if π1 and π2 are incompatible, then π1 ∨ π2 is undefined as U(π1) ∩ U(π2) is the empty set.

Definition 5. For any two sequential partitions (compatible or incompatible), π1, π2 ∈ Sn, define the meet
of π1 and π2, denoted π1 ∧ π2, as the greatest sequential partition below both π1 and π2. That is to say,
π1 ∧ π2 = π, where π ∈ D(π1) ∩D(π2) and for all π∗ ∈ P (π1) ∩ P (π2), π∗ ≤ π. If π1, · · · , πm is an sequence

of sequential partitions, then
∧m
i=1 πi = π1if m = 1 and πm ∧

(∧m−1
i=1 πi

)
otherwise.

Lemma 2.5. If Ω ∈ Sn, and π1, π2 ≤ Ω, then there exists a unique sequential partition π ∈ [0,Ω] such that
supp(π) = supp(π1) ∪ supp(π2), and π = π1 ∨ π2. For any two sequential partitons π1,π2, then there exists
a unique sequential partition π such that supp(π) = supp(π1) ∩ supp(π2) and π = π1 ∧ π2.

Proof. This is an obvious consequence of 2.4.

Now for some notational conventions.

Definition 6. For any Ω ∈ Sn and any π ∈ [0,Ω] let [π]Ω denote the set of permutations σ such that
Ω ∧ σ = π and let |π|Ω denote the number of permutations σ such that Ω ∧ σ = π.

Definition 7. If Ω is any sequential partition and S ⊆ [0,Ω] let [S]Ω denote the set of permutations σ such
that Ω ∧ σ ∈ S and let |S|Ω denote the number of permutations, σ, such that Ω ∧ σ ∈ S.

Definition 8. For any sequential partition π = [s1, · · · , sk] let ν(π) = k, the number of parts in π. Let
η(π) = |supp(π)|, the number of atomic partitions below π.

We close with an important definition of the probability polynomial of a set of sequential partitions and
the evaluator, which we will see will be essential to computing |S|Ω for a given set S ⊆ [0,Ω].

Definition 9. Suppose we are given Ω ∈ Sn. Define PΩ : [0,Ω]→ Z[p] with,

PΩ(π) = pη(π)(1− p)η(Ω)−η(π)

.
If S ⊆ [0,Ω] then the probability polynomial of S is ,

PΩ(S) =
∑
π∈S
PΩ(π)

.

The evaluator is an operation on a polynomial in p defined as follows,

Definition 10. Given a polynomial in p, F (p) = c0 + · · · ckpk, and an integer n > k, the evaluator [F ]n is

[F ]n =

k∑
j=0

cj(n− j)!

.

Notice that if η(Ω) = n and η(π) = k, then PΩ(π) has the same form as the probability of getting a
particular set of k heads (and no others) from n independent toss of coin when the probability of heads is
p. This is not a coincidence. To derive the various values of Slr,d(n, k) we will begin by first computing a
polynomial R(p) which represents the probability of a particular sequence of coin-tosses satisfies an analogous
set of conditions. The computation of [R(p)]n converts evaluation of pj to the evaluation of (n− j)!, which
transforms the result from one about coin tosses to one about runs in permutations.
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3 Some Useful Results

Lemma 3.1. Suppose Ω = [s1, · · · , sk] is a sequential partition with k parts. For 1 ≤ i ≤ k, let Πi = [si],
the sequential partition whose only nontrivial part is si. Then, for each π ≤ Omega there exists a unique
set of sequential partitions π1, · · · , πk such that π = π1 ∨ · · · ∨ πk and πi ≤ Πi for 1 ≤ i ≤ k. Furthermore,
every part of π is appears as a part of exactly one πi.

Proof. Let πi = Πi ∧ π. Then, obviously πi ≤ Πi for 1 ≤ i ≤ k. Suppose s is a part of π. Since π ≤ Ω, s is a
subpart of Πj for some value of j. But then [s] ≤ π and [s] ≤ Πj , so then, since πj = Πj ∧π, [s] ≤ πj . Thus,
s is a subpart of πj . Since, s is a part of π and πj ≤ π it must be the case that s is a part of πj . Thus, every
part of π is a part of πi for some i. Thus, π ≤ π1 ∨ · · · ∨ πk. But since πi ≤ π for 1 ≤ i ≤ k we also have
that π1 ∨ · · · ∨ πk ≤ π. Thus, π = π1 ∨ · · · ∨ πk.

Suppose π1, . . . , πk form a set of sequential partitions satisfying the conditions. For each i, j with i 6= j,
Πi ∧ Πj = 0. Since πi ≤ Πi, we have that if i 6= j that supp(πi) ∩ supp(Πj) ⊆ supp(Πi) ∩ supp(Πj) = ∅.
Thus, πi ∧Πj = 0. It follows that

π ∧Πj =

(
k∨
i=1

πi

)
∧Πj

=

k∨
i=1

(πi ∧Πj)

= 0 ∨ · · ·πj · · · ∨ 0

= πj

.
Thus, πj = π ∧Πj so the solution is unique.

Lemma 3.2. For any sequential partition the number of permutations, σ, the number of permutations
above π is ν(π)!.

Proof. For any sequential partition π the set of permutations above π correspond to the possible orderings
of the parts of π. There thus, ν(π)! permutations above π.

Proposition 3.3. If π ∈ Sn, then n = η(π) + ν(π).

Proof. Let the length of a part s of π be denoted by |s|. Note, that a part π corresponds to |s| − 1 elements
of supp(π). Thus

η(π) = |supp(π)|

=
∑
s∈π

(|s| − 1)

=
∑
s∈π
|s| −

∑
s∈π

1

= n− ν(π)

Theorem 3.4. If Ω ∈ Sn and if π ∈ [0,Ω]. Then, |π|Ω is

η(Ω)−η(π)∑
j=0

(−1)j
(
η(Ω)− η(π)

j

)
(n− η(π)− j)! (3.1)

.
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Proof. Let S be the set of permutations above π and let h = η(Ω)− η(π). Let βi, 1 ≤ i ≤ h be the elements
of supp(Ω) \ supp(π). Let Ei be the intersection of the set of permutations above βi with S. For any subset
M of [h] let TM =

⋂
i∈M Ei. Hence σ ∈ TM if and only if σ is above π and βi for i ∈ M , or in other words

supp(π) ⊆ σ and supp(βi) ⊆ π for i ∈M .
Let πM be the sequential partition such that supp(πM ) = supp(π) ∪ {βi : i ∈M}. Hence σ ∈ TM if and

only if σ is above πM . By Lemma 3.2 |TM | = ν(πM )! = (n− η(πM ))! = (n− η(π)− |M |)!. Thus, for a given
π, |TM | depends only on |M |, so let T ′i = |TM | for some M where |M | = i.

Let R = S \
⋃h
i=1Ei. Thus, R is the set of permutations σ such that supp(π) ⊆ supp(σ) and supp(σ) ∩

(supp(Ω) \ supp(π)) = ∅. For any σ ∈ R it follows that

supp(σ) ∩ supp(Ω) = supp(σ) ∩ (supp(π) ∪ (supp(Ω) \ supp(π)))

= (supp(σ) ∩ supp(π)) ∪ (supp(σ) ∩ (supp(Ω) \ supp(π))

= supp(π)

.
Thus σ ∈ R if and only if σ ∧ Ω = π. Then,

|R| =

∣∣∣∣∣S \
h⋃
i=1

Ei

∣∣∣∣∣
= |S| −

∣∣∣∣∣
h⋃
i=1

Ei

∣∣∣∣∣
= |S| −

h∑
j=1

(−1)j−1

 ∑
M⊆[h],|M |=j

|TM |


= |S|+

h∑
j=1

(−1)j
(
h

j

)
T ′j

= (n− η(π))!−
h∑
j=1

(−1)j
(
h

j

)
(n− η(π)− j)!

=

h∑
j=0

(−1)j
(
h

j

)
(n− η(π)− j)!

as desired.

Corollary 3.5. If Ω ∈ Sn and if π ∈ [0,Ω]. Then, |π|Ω is[
pη(π)(1− p)η(Ω)−η(π)

]
n

.

Proof. This follows from 3.4 upon expanding the polynomial and computing the evaluator.

Corollary 3.6. If S ⊆ [0,Ω], then

|S|Ω = [PΩ(S)]n

.
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4 Main Results

We have built up the machinery sufficient to prove our first result. From now on let Ωr denote the sequential
partition formed from all the runs of rise r in Sn. More explicitly, let Pi = (i, i+r, i+2r, . . . , i+b(n− i)/rcr)
for 1 ≤ i ≤ r. Then Ωr = [P1, · · · , Pr]. Thus, for any permutation σ ∈ Sn if π = Ωr ∧ σ, then the runs of
rise r in σ are the subparts of π.

Theorem 4.1. The number of permutations in Sn containing exactly k runs with a rise of r and a distance
of 1, can be computed by

S2
r,1(n, k) =

[(
n− r
k

)
pk(1− p)n−r−k

]
n

.

Proof. Let A be the set of sequential partitions π ∈ [0,Ωr] such that η(π) = k. Since supp is a bijection
between sequential partitions in [0,Ωr] and subsets of supp(Ωr), there are exactly

(
n−r
k

)
elements in A.

Then, |A|Ωr
counts the number of permutations with exactly k runs of rise r. Then 3.5 implies

|A|Ωr
=
∑
π∈A
|π|Ω

=

(
n− r
k

)[
pk(1− p)n−r−k

]
n

=

[(
n− r
k

)
pk(1− p)n−r−k

]
n

.

Using, the coin analogy once more, the polynomial used to calculate S2
r,1(n, k) takes the form of the

probability of getting exactly k heads out of n−r independent coin flips. The evaluator uses this polynomial
to calculate the number of permutations with exactly k runs from the set of n− r possible runs of rise r.

5 Case: ` ≥ 2, k = 0, d = 1, r = 1

We now derive the formula for the number of permutations which contain no 2-runs, with a distance of 1
and a rise of 1. We will extend these results to count permutations containing a given number of runs of a
given length with an arbitrary rise and distance.

For any sequential partition π, π ≤ Ω1, we have supp(π) ⊆ supp(Ω1). Thus, we can represent supp(π)
as a binary vector b = (b1, · · · , bn−1) such that bi = 1 if [(i, i+ 1)] ∈ supp(π) and bi = 0 otherwise. Let B(π)
denote the binary string corresponding to π in this manner. So if σ ∈ Sn and π = Ω1 ∧ σ, then then the
l-runs in σ correspond to runs of l− 1 consecutive 1’s in BΩ1

(π). Furthermore, the number of 1’s in B(π) is
η(π). Let bn,l(k) stand for the number of binary sequences of length n with no runs of l consecutive 1’s and
containing exactly k 1’s. Then, let Rn,l(p) be defined as

Rn,l(p) =

n−1∑
k=0

bn−1,l−1(k)pk(1− p)n−1−k (5.1)

.
We can use this polynomial to count permutations that of length n containing l-runs with

S`1,1(n, 0) = [Rn,l(p)]n (5.2)

.

6



Thus, the problem is reduced to computing the probability polynomial Rn,l(p). But in order to this, we
must first be able to compute bn,l(k). For this, we employ the Goulden Jackson Cluster Method, described
in the next section.

5.1 Goulden Jackson Cluster Method

Let Σ be an alphabet with d characters. A word is a sequence of elements from Σ. Let Σ∗ denote the set
of all possible words (including the empty word with no characters). The length of a word is denoted by
|w|. Given any word w = w1 . . . wn a factor is a word of the form wiwi+1 . . . wj−1wj , with 1 ≤ i ≤ j ≤ n. A
proper factor of a word w is any factor other than w itself. Now associate to each symbol a ∈ Σ a variable
qa. For any w ∈ Σ∗, w = w1 . . . wn, we define the weight function weight(w) =

∏n
i=1 qwi . For example,

if Σ were the English alphabet, then weight(HIPHOP ) = q2
Hq

2
P qIqO. In general, if Σ has the characters

c1, . . . , cd and w is any word in Σ∗ then weight(w) = qe1c1 · · · q
ed
cd

where ei is the number of occurrences of the
character ci in w.

Let D be the set of “bad” words to be avoided. The set D must be such that no element of D is
a proper factor of any other element of D. For example, D cannot contain both AC and ACDC. It is
possible, however, for words in D to overlap. For instance, if AB and BA were in D, then ABA contains
two overlapping factors. If a factor of a word w is an element of D, it is called a marked factor. Let
[i1, j1], · · · , [ik, jk] be the start and end positions of the k marked factors in some word w. Since no element
of D is contained in another, we can assume that j1 < j2 < · · · < jd and all the ix are distinct. A word is
called a cluster if every letter in the word is part of a marked factor and neighboring marked factors, ordering
them by their end positions, overlap. For instance, suppose again that AB and BA are in D. Then, ABAB
is composed of factors which overlap, an AB followed by a BA followed by another AB. But, ABBA is not
a cluster since the factor AB does not overlap with BA, and BB is not an element of D.

Suppose Σ is a language and c1, · · · , cd are the characters of Σ. Given any (possibly infinite) set of
words S ⊆ Σ∗, for any d-tuple e = (e1, . . . , ed), let ae be the number of elements in S containing exactly ei
instances of the character ci. Define the enumerator polynomial of S as the polynomial F that is the sum
of the weights of all the words in S. It follows that

FS =
∑
w∈S

weight(w)

=
∑
e∈Nd

ae

d∏
i=1

qeici

.
Note that F will have an infinite number of terms if and only if S is infinite. The enumerating polynomials

will serve as a useful tool for efficiently counting permutations with certain kinds of runs. In our case, we let
S be the set of binary strings which contain no pairs of consecutive 1’s. Every such binary string corresponds
to a sequential partition, π ≤ Ω1, that represents permutations with no 3-runs.

Let D be a set of words to be avoided. Let LD be the set of words in Σ∗ which contain no words in D
as factors. Let CD be the collection of all clusters in Σ∗. Define GD as the enumerating polynomial for LD
and HD as the enumerating polynomial for the CD. The Goulden-Jackson cluster method provides us with
a simple method computing the generating function for HD and GD. Letting Q = qc1 + · · ·+ qcd , It is shown
in [2] that

GD =
1

1−Q−HD
(5.3)

.
What follows is a brief description of the method to compute HD. Proof of the correctness of this

algorithm can be found in [2].
For any word w = w1 · · ·wn, let HEAD(w) be the set of all proper prefixes:
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HEAD(w) = {w1, w1w2, . . . , w1w2 · · ·wn−1}

and let TAIL(w) denote the set of all proper suffixes.

TAIL(w) = {wn, wn−1wn, . . . , w2 · · ·wn}

.
Given two words u and v, define the set OVERLAP(u, v) = TAIL(u) ∩ HEAD(v). For instance,

OVERLAP(ABCABC,BCABCA) = {BCABC,BC}. Now, if x ∈ HEAD(v) then we can write v =
xx′, where x′ is the word obtained from v by removing its head x. Denote x′ by v \ x. For example
DRAGON \DRAG = ON . For any two words u, v, define

u : v =
∑

x∈OVERLAP(u,v)

weight(v \ x)

.
For example,

ABCABC : BCABCA = qA + q2
AqBqC

For any y ∈ D, let CD[y] denote the set of clusters whose final marked factor is y. Let CD[y] be the
enumerator polynomial for the set CD[y]. The results [2] show the polynomials CD[x] satisfy the following
relationship. For every y ∈ D,

CD[y] = −weight(y)−
∑
x∈D

(x : y) · CD[x], (5.4)

.
Moreover, since the set {CD[x]|x ∈ D} forms a partition of CD it follows that

CD =
∑
x∈D

CD[x].

Thus, by solving the system of equations in Equation 5.4 we can compute HD and GD.

5.2 Computing bn,l(k)

Let Σ = {0, 1} so d = 2. Let om refer to the word of m consecutive 1’s. Let D = {om}. Let q0 and q1 be the
variables associated with 0 and 1, respectively.

In order to compute CD we must solve the system of equations specified in Equation 5.4. In this case D,
only has one element so there is only one equation to solve. First we compute om : om. Since om consists of
m consecutive 1’s, OVERLAP(o, o) includes the sequences of j consecutive 1’s for 1 ≤ j ≤ m. Thus

om : om =

m−1∑
i=1

qi1 =
qm1 − q1

q1 − 1

.
From equation 5.4, we have

CD[om] = −qm1 −
qm1 − q1

q1 − 1
CD[om]

CD[om] = − (1− q1)qm1
(1− qm1 )

.
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Since om is the only element of D, CD[o] = CD. Thus, using Equation 5.3 we obtain the following formula
for GD.

GD =
1− qm1

1− q0 − q1 + q0qm1

=
∑
i,j≥0

gi,jq
i
0q
j
1

Note that gi,j is the number of binary sequences with exactly i 0’s, and j 1’s which contain no subsequences
of l − 1 consecutive 1’s. Thus, computing bn,m(k), the number of binary sequences of length n with no
subsequences of m consecutive 1’s that contain exactly k 1’s is the same as computing the coefficient gn−k,k.

In computing GD with D = {om}, suppose we made the following substitutions. Substitute (1− p)u fof
q0 and pu for q1. Thus, GD becomes

GD =
1− (pu)m

1− u+ pmum+1 − pm+1um+1

=

∞∑
n=0

n∑
k=0

gn−k,kp
k(1− p)n−kun

=
∞∑
n=0

(
n∑
k=0

bn,m(k)pk(1− p)n−k
)
un

Recall that Rn,`(p) is the probability of no sequences of `− 1 consecutive 1’s in a binary string of length
n− 1. Then, Rn,`(p) is the coefficient of un−1 in GD when m = `− 1. Thus,

1− (up)`−1

1− u+ pl−1u` − p`u`
=

∞∑
n=1

Rn,`(p)u
n−1 (5.5)

Using equation 5.2, we can compute S`1,1(n, 0) with S`1,1(n, 0) = [Rn,`(p)]n.

5.3 Example

To compute the value of S3
1,1(8, 0) (note ` = 3) we have

GD =
pu+ 1

(p− 1)pu2 + (p− 1)u+ 1
.

Using Mathematica, we see that the coefficient of u7 is

R8,3(p) = 1− 6p2 + 5p3 + 6p4 − 9p5 + 3p6.

Using definition 10,

[R8,3(p)]8 = 1− 6(8− 2)! + 5(8− 3 + 6(8− 4)!− 9(8− 5)! + 3(8− 6)! = 36, 696

Thus, there are 36,696 permutations of length 8 containing no 3-runs
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6 Case: ` ≥ 2, k > 0, d = 1, r = 1

This process is almost identical to the case with k = 0. The only difference is that we must now compute
the two variable polynomial Rn,`(p, t) so that the coefficient of tjun is the probability that a exactly j sets
of ` consecutive heads appear in a sequence of n coin flips.

Let Σ = {0, 1}. Let D be a set of words such that no element of D is a factor of another. For each word
w ∈ Σ let eD(w) be the number of factors of w that are elements of D. Let GD be the series

GD =
∑
w∈Σ∗

teD(w)weight(w)

Then, the results of [2] give us a method to calculate G. Let CD[y] denote the set of clusters whose final
marked factor is y. Then, we must solve a system of equations similar to equation 5.4. Using the polynomial
CD[y] for y ∈ D, we solve

CD[y] = (t− 1)weight(y)−
∑
x∈D

(x : y) · CD[x], (6.1)

If HD =
∑
y∈D CD[y], we have that GD is given by

GD =
1

1− (q1 + . . .+ qd)−HD
(6.2)

.
If om is the only element of D then, we compute GD. Once gain we substitute pu and (1−p)u for q1 and

q0 in GD. Then, Rn,`(p, t) becomes the coefficient of un−1 in the expansion of GD when m = `− 1. The end
result is

GD =
1− ptu− pmum + tpmum

1− u− ptu− tpmum+1 + pmum+1 + ptu2 − pm+1um+1 + tpm+1um+1

=

∞∑
n=1

Rn,`(p, t)u
n−1

.

6.1 Example

Let’s compute the distribution S3
1,1(8, k) for 0 ≤ k ≤ 5 (as there can be no more than 5 runs of length 3 in

a permutation of length 8). Using Mathematica, we see that the coefficient of u7 is

R8,3(p, t) =(1 + 3p6 − 9p5 + 6p4 + 5p3 − 6p2) +
(
2p7 − 14p6 + 24p5 − 8p4 − 10p3 + 6p2

)
t

+
(
−7p7 + 22p6 − 18p5 − 2p4 + 5p3

)
t2 +

(
8p7 − 12p6 + 4p4

)
t3

+
(
−2p7 − p6 + 3p5

)
t4 +

(
2p6 − 2p7

)
t5

Then, [R8,3(p, t)] is computed by making the substitution pk → (8− k)!. The result is

[R8,3(p, t)] = 36, 969 + 3046t+ 481t2 + 80t3 + 14t5 + 2t5

.
The coefficient of tk in this expression represents the number of permutations with exactly k 3-runs of

rise 1 and distance 1.
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7 Case: ` ≥ 2, k = 0, d = 1, r ≥ 1

The case for larger values of r can be handled with minimal modifications. Let σ be a permutation. For
1 ≤ i ≤ r, let Pi = (i, i+r, . . . , i+rb(n− i)/r)c. Let Ωr = [P1, . . . , Pr], the sequential partition containing all
runs of rise r. Let Πi = [(Pi)], the sequential partition formed from the i-th part of Ωr. If σ is a permutation,
let π = Ωr ∧ σ. The runs of rise r in σ are the subparts of π. Let S be the set of sequential partitions below
Ωr containing no part of length ` or greater. A permutation σ contains no `-runs of rise r if and only if
Ωr ∧ σ ∈ S.

For each π ∈ S, Lemma 3.1 implies there exists a unique set of sequential partitions π1, . . . , πr such
that π = π1 ∨ · · · ∨ πr, πi ≤ Πi. For 1 ≤ i ≤ r, let Si be the set of sequential partitions below Πi

which contain no parts of size ` or greater. Then, π ∈ S if and only if πi ∈ Si for 1 ≤ i ≤ r. Let
Ŝ = {π = (π1, . . . , πr) | πi ∈ Si}. Hence,

PΩr (S) =
∑
π∈S
PΩr (π)

=
∑
π∈S

pη(π)(1− p)η(Ωr)−η(π)

=
∑
π∈Ŝ

pη(π1∧···∧πr)(1− p)η(Π1∧···Πr)−η(π1∧···∧πr)

=
∑
π∈Ŝ

pη(π1)+···+η(πr)(1− p)(η(Π1)−η(π1))+···+(η(Πr)−η(πr))

=
∑
π∈Ŝ

(
pη(π1)(1− p)η(Π1)−η(π1)

)
· · ·
(
pη(πr)(1− p)η(Πr)−η(πr)

)

=

[ ∑
π1∈S1

pη(π1)(1− p)η(Π1)−η(π1)

]
· · ·

[ ∑
πr∈Sr

pη(πr)(1− p)η(Πr)−η(πr)

]
= PΠ1

(S1) · · · PΠr
(Sr)

.
But, for any given i, we can do what we did before and represent elements below Πi as binary sequences.

Since Πi contains a single part of length ni = 1 + b(n− i)/rc, Si is then just the set of binary sequences of
length ni with no sets of `− 1 consecutive 1’s. Thus, PΠi(Si) is just Rni,`(p), which can be computed from
Equation 5.5. It then follows that |S|Ω = [PΩr (S)]n = [Rn1,l(p) · · ·Rnr,p(p)]n. Thus,

Theorem 7.1. Let ni = 1 + b(n− i)/rc. The number of permutations with no `-runs of rise r at a distance
of 1 is given by

S`r,1(n, 0) =

[
r∏
i=1

Rni,`(p)

]
n

.
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