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ABSTRACT

In this thesis, we investigate sequences defined by linear recurrence relations.
These are sequences whose subsequent terms are generated using some linear com-
bination of the previous terms. We call the equation that determines the next terms
of the sequence the “linear recurrence relation” satisfied by the sequence.

As it turns out, if the ring over which the sequence is defined is finite, then
the sequence is guaranteed to eventually repeat. It is then natural to consider the
following questions: (1) What factors determine the periods of these sequences once
they begin to repeat? And (2) which periods arise from sequences that satisfy a
particular linear recurrence relation, or from linear recurrences over a particular
ring? Here we address these kinds of questions. Predicting the periodic behavior of
any particular linearly recurring sequence, however, is actually exceedingly difficult,
and so we instead attempt to determine the sets of periods that will arise from
sequences defined by linear recurrences of a fixed degree and over some well-behaved
ring.

In Chapter 2, we discuss various properties of sequences defined over a finite
(commutative) ring with unity. In particular, we generalize a result of Ward [2] to
show that the set of sequences has a natural ring structure and decomposes into a
direct sum of periodic and null sequences (see Proposition 2.30). In Chapter 3, we
give an exposition of the theory of sequences defined over finite fields. In particular,
we show that the (least) period of a sequence is the order of a certain polynomial
(see Theorem 3.17). We use this to describe the sets of possible periods of all linear
recurrences of given degree k for small k. Finally, in Chapter 4, we apply some of the
earlier theory to understand the periods of sequences defined over finite quotients of
principal ideal domains.
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CHAPTER 1. INTRODUCTION

Let s := (si)i≥0 be a sequence of elements in a ring R. Then s is said to satisfy
a linear recurrence relation of degree k ∈ Z+ if each term from sk onward in the
sequence can be expressed as a linear function of the k previous terms, i.e. there
exist elements a0, a1, . . . , ak−1 ∈ R such that for every integer i ≥ 0, we have:

a0si + a1si+1 + . . .+ ak−1si+k−1 = si+k (1)

A sequence defined by a linear recurrence of degree k is completely determined
by its first k terms. Later, we will refer to these terms collectively as the initial state
vector (see Definition 2.1). For example, the sequence of Fibonacci numbers over Z
is given by s := (0, 1, 1, 2, 3, 5, ) and satisfies the linear recurrence relation of degree
2:

1 · si + 1 · si+1 = si+2 ∀i ≥ 0

with initial state vector (0, 1).

If there exists n ∈ Z+ such that for some integer m ≥ 0, si = si+n for all
integers i ≥ m, then we say that s is ultimately periodic, and call n a period of s.
If m = 0, then we say that s is purely periodic, or simply periodic. The least period
ρ(s) of s is defined to be a period satisfing ρ(s) ≤ n for all periods n of s, and
the preperiod η(s) of s is the least nonnegative integer such that the subsequence
(si)i≥η(s) is periodic. Finally, if si = 0 for all integers i ≥ n for some n, then we say
s is a null sequence.

The terms in the Fibonacci sequence over Z increase exponentially, so that the
sequence is not ultimately periodic. However, if we consider the Fibonacci sequence
s over Z2, such that s satisfies the same linear recurrence relation and initial state
vector as the sequence of Fibonacci numbers over Z, we get:

s := (0, 1, 1, 0, 1, 1, 0, 1, 1, . . .)

For every integer i ≥ 0, we obtain the same tuple of length 3: (s3i, s3i+1, s3i+2) =
(0, 1, 1). Thus, s is periodic, with η(s) = 0 and ρ(s) = 3. Indeed, all the periods of s
are of the form 3n, where n ∈ Z+, as we shall see in Lemma 1.1.

Note that since any tuple of length k in a sequence satisfying a linear recurrence
relations of degree k completely determines all subsequent terms in the sequence, a
sufficient condition for s to begin to repeat (and be ultimately periodic) is for the
same tuple of length k to appear twice in the sequence. Thus, for the Fibonacci

1



sequence s over Z2, we see that s repeats immediately since the initial state vector
(0, 1) reappears after a shift of 3 terms.

Consider now the Fibonacci sequence s over Z4:

s := (0, 1, 1, 2, 3, 1, 0, 1 . . .)

Since we have returned to our initial state vector (0, 1) after a shift of 6, we know
that s repeats immediately, with η(s) = 0 and ρ(s) = 6.

In Lemma 2.4, we shall see that since Z2 and Z4 are finite rings (with unity),
any linearly recurring sequence s is ultimately periodic. Furthermore, if s satisfies a
linear recurrence such that, with respect to the notation in Equation 1, a0 is a unit,
then s is purely periodic. If a0 in the linear recurrence is not a unit, then the latter
does not necessarily hold. Consider the following sequence t over Z4 satisfying the
linear recurrence relation 2ti + ti+1 = ti+2 for every integer i ≥ 0 and having the
initial state vector (0, 1):

t := (0, 1, 1, 3, 1, 3, . . .)

In this case, we never return to our initial state vector. Rather, t begins to repeat
at t2 = 1, with the tuple (1, 3) of length 2 reappearing after a shift of 2. Thus,
η(t) = 2 and ρ(t) = 2, and so t is ultimately periodic, but not periodic. Notice that
t is defined in almost exactly the same way as the Fibonacci sequence s over Z4.
The only difference is that, with respect to the notation in Equation 1, here we have
a0 = 2 not a unit in Z4.

The objective of this thesis is to study the sets of least periods that arise from
linear recurrences of a specified degree k over finite fields and over related finite quo-
tients of principal ideal domains. In Chapter 2, we will look into the general char-
acteristics of sequences over finite rings with unity, laying the foundations for later
chapters. In Chapter 3, we will focus on sequences over finite fields, and completely
determine their least periods using the uniquely determined minimal polynomials
associated to those sequences. Finally, in Chapter 4, we will study the broader class
of linearly recurring sequences over principal ideal domains in order to draw conclu-
sions about sequences over various types of quotients of polynomial rings over finite
fields. We will then apply these results, in particular, to sequences defined over cyclic
group algebras.
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1.1. General Properties of Ultimately Periodic Sequences

Since all linearly recurring sequences over a finite ring with unity inevitably
repeat, we shall first analyze general properties of ultimately periodic sequences so
as to lay the groundwork for future inquiry.
Lemma 1.1. Let s be an ultimately periodic sequence. Then n ∈ Z+ is a period of
s if and only if ρ(s)|n.

Proof. Since s is ultimately periodic with (least) period ρ(s), it follows that for all
sufficiently large integers i, si = si+ρ(s). By induction, we then have si = si+j·ρ(s) for
each integer j ≥ 0, so that every integer n := j · ρ(s) is a period of s

Conversely, let n be a period of s. Then n ≥ ρ(s) by definition. By the division
algorithm, n = q · ρ(s) + r for some unique nonnegative integers q and r, where
0 ≤ r < ρ(s). Since s is ultimately periodic with periods n and ρ(s), it follows that
for all sufficiently large integers i, si = si+ρ(s) and si = si+n. We know from above
that si = si+j·ρ(s) for each integer j ≥ 0. Thus,

si = si+n = si+q·ρ(s)+r = si+r+q·ρ(s) = si+r,

for sufficiently large i, so either r < ρ(s) is also a period of s or r = 0. We rule out
the former by the definition of ρ(s). Hence, n = q · ρ(s), i.e. ρ(s)|n.

Definition 1.2. Let s := (si)i≥0 be a sequence and let j be a nonnegative integer.
Then s(j) := (sj+i)i≥0 denotes the j-shifted subsequence of s.

It is obvious that any period of an ultimately periodic sequence is bound to arise
in a shift of the sequence. Hence, using the above notation, for every integer j ≥ 0,
ρ(s(j)) = ρ(s).
Lemma 1.3. Let S1 and S2 be sets, and let s := (ui, vi)i≥0 be a sequence in the
cartesian product S1 × S2, with component sequences u := (ui)i≥0 in S1 and v :=
(vi)i≥0 over S2. Then s is ultimately periodic if and only if u and v are ultimately
periodic, and in this case ρ(s) = lcm(ρ(u), ρ(v)).

Proof. s is ultimately periodic if and only if for sufficiently large integer i ≥ 0 and
some n ∈ Z+, si = (ui, vi) = si+n = (ui+n, vi+n) if and only if u and v are each
ultimately periodic. Now suppose s is ultimately periodic. Let c := lcm(ρ(u), ρ(v)).
Note that ρ(s) is a period of s, and is subsequently a period of its components.
Hence, ρ(u)|ρ(s) and ρ(v)|ρ(s), so that c|ρ(s). On the other hand, by Lemma 1.1, c
is a period of u and v, so that for all sufficiently large integer i ≥ 0, si = (ui, vi) =
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(ui+c, vi+c) = si+c. Hence, c is also a period of s, which implies that ρ(s)|c. Therefore,
ρ(s) = c.

We can inductively apply Lemma 1.3 to obtain the following generalized state-
ment:
Corollary 1.4. For any n ∈ Z+, the least period of a linearly recurring sequence
over the (external) direct sum of n rings with unity is equal to the least common
multiple of the corresponding least periods of the component sequences.

1.2. Review Material on Algebra

In this section, we remind the reader of certain facts in Abstract Algebra, mostly
pertaining to finite fields and principal ideal domains, that will come into play later
on in the thesis. It may be helpful to skip it for now and refer back to it as needed
when reading through later chapters. Much of the results and definitions in this
section can be found in [3].

1.2.1. External and Internal Direct Sums
Definition 1.5. Let A1 and A2 be abelian groups. We define the (external) direct
sum of A1 and A2 (commonly denoted by A1 ⊕ A2) to be the group of elements in
the set {(x, y) | x ∈ R1, y ∈ R2} — i.e. the cartesian product of A1 and A2 — with
commutative addition (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Theorem 1.6. Let N,P be subgroups of an abelian group A. If N ∩ P = {0} and
N + P = A, then the map φ : N ⊕ P → A defined by φ((n, p)) = n + p is a group
isomorphism.

Definition 1.7. When the conditions in Theorem 1.6 hold, we say that A is an
internal direct sum of N and P .

Definition 1.8. Let R1 and R2 be rings. We define the (external) direct sum of
R1 and R2 (commonly denoted by R1 ⊕ R2) to be the ring of elements in the set
{(x, y) | x ∈ R1, y ∈ R2} with addition and multiplication defined component-wise,
so that (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and (x1, y1)(x2, y2) = (x1x2, y1y2).

Theorem 1.9. Let I, J be ideals in a commutative ring R. If I ∩ J = {0} and
I + J = R, then the map φ : I ⊕ J → R defined by φ((x, y)) = x + y is a ring
isomorphism.
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Definition 1.10. When the conditions in Theorem 1.9 hold, we say that R is an
internal direct sum of I and J .

1.2.2. Matrices
Definition 1.11. Let R be a ring. Then Mk(R) denotes the space of all k × k
matrices with entries in R. GLk(R) denotes the group (under matrix multiplication)
of all invertible k× k matrices in Mk(R), where invertibility means that a two-sided
inverse exists. If R is commutative and has unity, the determinant can be defined,
and a matrix M is invertible if and only if det(M) is a unit in R.

Finally, if R is a finite commutative ring with unity, then GLk(R) is a finite group
under matrix multiplication. For any A ∈ GLk(R), let ord(A) denote the multiplica-
tive order of A in GLk(R). In general, if G is a finite group, we will use ord(g) to
denote the order of the element g ∈ G.

1.2.3. Finite Fields, Polynomials, and Extensions
Lemma 1.12. Let F be a field, I a nonzero ideal in F[x], and g(x) ∈ F[x]. Then
I = 〈g(x)〉 if and only if g(x) is a nonzero polynomial of minimum degree in I.

Proof. See [3] Theorem 16.4.

Lemma 1.13. Let R be a commutative ring with prime characteristic p, and let
n ∈ Z+. Then for any x, y ∈ R, (x+ y)p

n
= xp

n
+ yp

n

Proof. See [3] Chapter 13, Exercise # 45.

Lemma 1.14. Let F be a field. Then any polynomial f(x) ∈ F[x] has a multiple zero
(in some extension of F) if and only if f(x) and its derivative f ′(x) share a common
factor of positive degree in F[x].

Proof. See [3] Theorem 20.5.

Lemma 1.15. Let Fq be a finite field with q elements, and let f(x) ∈ Fq[x] have
degree k ∈ Z+. Then the quotient ring Fq[x]

/
〈f(x)〉 has qk distinct residue classes.

Proof. Since Fq is a UFD, so is Fq[x]. Thus, for any g(x) ∈ Fq[x], there exist unique
polynomials q(x), r(x) ∈ Fq[x] with deg(r(x)) < k for which g(x) = f(x)q(x) + r(x),
so that g(x) ≡ r(x) mod f(x). Hence, every residue class of Fq[x]

/
〈f(x)〉 contains

some r(x) with deg(r(x)) < k. Now, suppose that there exist r1(x), r2(x) ∈ Fq[x]
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with r1(x) ≡ r2(x) mod f(x) and deg(r1(x)), deg(r2(x)) < k. Then r1(x)− r2(x) ≡ 0
mod f(x), and deg(r1(x) − r2(x)) < k. This is only true if r1(x) = r2(x). Thus,
every polynomial r(x) ∈ Fq[x] uniquely represents a residue class of Fq[x]

/
〈f(x)〉 .

There exist qk such polynomials, from the q possible coefficients of each power of x
between 0 and k − 1. Hence, Fq[x]

/
〈f(x)〉 has qk distinct residue classes.

If we replace the finite field Fq in Lemma 1.15 with an arbitrary commutative
ring R of order q, then the statement there still holds under the additional assump-
tion that f(x) has a unit leading coefficient, as in the following lemma.

Lemma 1.16. Let R be a commutative ring with q elements, and let f(x) ∈ R[x] have
degree k ∈ Z+ and a unit leading coefficient. Then the quotient ring R[x]

/
〈f(x)〉

has qk distinct residue classes.

Proof. Since f(x) has a unit leading coefficient, every g(x) ∈ R[x] has r(x) ∈ R[x]
with deg(r(x)) < k such that g(x) ≡ r(x) mod f(x) via long division. Hence, there
are at most qk residue classes. For us to prove that each residue class has a unique
representative with degree less than k, we note that if f(x)|r(x) and deg(r(x)) < k,
then we must have r(x) = 0, since the leading coefficient of f(x) is a unit (and hence
not a zero divisor). Thus, using the same reasoning as in Lemma 1.15, it follows that
each polynomial r(x) of degree less than k uniquely represents a residue class of the
quotient R[x]

/
〈f(x)〉 .

Corollary 1.17. Let Fq be a finite field, and let p(y) ∈ Fq[y] be an irreducible
polynomial of degree d. Then

Fq[y]
/
〈p(y)〉 ∼= Fqd

Proof. See [3] Theorems 17.5 (Corollary 1), 20.3, and 22.3. We then apply Lemma 1.15
and the fact that finite fields are unique up to isomorphism.

1.2.4. Principal Ideal Domains
Definition 1.18. If R is a commutative ring with unity, we say that ideals I, J ⊆ R
are relatively prime if I + J = R. We then say that elements x, y ∈ R re relatively
prime if the principal ideals 〈x〉 and 〈y〉 are relatively prime.
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Lemma 1.19. Chinese Remainder Theorem

Let R be a principal ideal domain, let m ∈ R, and let m := q1q2 · · · qr be a
decomposition of m in R such that {qi | i = 1, 2, . . . r} is a pairwise relatively prime
set. Then R

/
〈m〉 ∼= R

/
〈q1〉 ⊕R

/
〈q2〉 ⊕ · · · ⊕R

/
〈qr〉 .

Proof. We will prove this by induction. For integers 1 ≤ s ≤ r, define Qs :=
∏s

i=1 qi.
Consider the homomorphism φ1 : R → R

/
〈Q1〉 ⊕ R

/
〈q2〉 that maps x 7→ (x +

〈Q1〉, x+ 〈q2〉). Since Q1 and q2 are relatively prime, there exist a1, a2 ∈ R such that
a1Q1 + a2q2 = 1. Let (x1 + 〈Q1〉, x2 + 〈q2〉) ∈ R

/
〈Q1〉 ⊕ R

/
〈q2〉 . We then consider

x = x2a1Q1+x1a2q2 ∈ R. Since a1Q1 ≡ 1 mod q2 and a2q2 ≡ 1 mod Q1, we thus have
φ(x) = (x+〈Q1〉, x+〈q2〉) = (x1(a2q2)+〈Q1〉, x2(a1Q1)+〈q2〉) = (x1+〈Q1〉, x2+〈q2〉).
Therefore, φ1 is surjective. Now, ker(φ) := {x ∈ R | φ(x) = (0 + 〈Q1〉, 0 + 〈q2〉)} =
〈lcm(Q1, q2)〉 = 〈Q1q2〉, since Q1 and q2 are relatively prime. Therefore, by the First
Isomorphism Theorem,

R
/
〈Q2〉 = R

/
〈Q1q2〉 ∼= R

/
〈Q1〉 ⊕R

/
〈q2〉 = R

/
〈q1〉 ⊕R

/
〈q2〉

Now consider the homomorphism φ2 : R → R
/
〈Q2〉 ⊕ R

/
〈q3〉 that maps x 7→

(x+〈Q2〉, x+〈q3〉). We note that since {qi | i = 1, 2, . . . r} is a set of pairwise relatively
prime elements, for any i, qi is relatively prime to

∏
j∈S qj, where S ⊂ {1, 2, . . . r}

such that i /∈ S. Thus, by similar arguments as above, since Q2 and q3 are relatively
prime, we have

R
/
〈Q3〉 = R

/
〈Q2q3〉 ∼= R

/
〈Q2〉 ⊕R

/
〈q3〉 ∼= R

/
〈q1〉 ⊕R

/
〈q2〉 ⊕R

/
〈q3〉

More generally, an inductive argument shows that:

R
/
〈m〉 = R

/
〈Qr〉 ∼= R

/
〈q1〉 ⊕R

/
〈q2〉 ⊕ . . .⊕R

/
〈qr〉

7



Corollary 1.20. Let R be a principal ideal domain, let m ∈ R, and let m :=
pe11 p

e2
2 · · · perr be the prime factorization of m in R.Then R

/
〈m〉 ∼= R

/
〈pe11 〉⊕R

/
〈pe22 〉⊕

· · · ⊕R
/
〈perr 〉 .

Proof. For integers 1 ≤ s ≤ r, define qs := pess . The statement then follows from
Lemma 1.19.

Lemma 1.21. Let R be a principal ideal domain. If p ∈ R is prime, then for every
e ∈ Z+, 〈pe〉

/
〈pe+1〉 ∼= R

/
〈p〉 .

Proof. Consider the surjective homomorphism φ : R→ 〈pe〉
/
〈pe+1〉 that maps x 7→

xpe+〈pe+1〉. Then ker(φ) = 〈p〉 so that by the First Isomorphism Theorem, R
/
〈p〉 ∼=

〈pe〉
/
〈pe+1〉 .

Lemma 1.22. Let R be a principal ideal domain. Then R
/
〈m〉 is finite for every

nonzero m ∈ R if and only if R
/
〈p〉 is a finite field for every prime p ∈ R.

Proof. In a principal ideal domain, primes are irreducible, and so the ideals they
generate are maximal. Quotients of commutative rings with unity by maximal ideals
are in turn fields. Thus, for any prime p ∈ R, R

/
〈p〉 is a field. If for every nonzero

m ∈ R, R
/
〈m〉 is finite, then R

/
〈p〉 is a finite field, since p 6= 0.

Conversely, we now suppose that for every prime p ∈ R, R
/
〈p〉 is a finite

field. By Lemma 1.21, we know that for any arbitrary prime p and any e ∈ Z+,
R
/
〈p〉 ∼= 〈pe〉

/
〈pe+1〉 . Specifically, R

/
〈p〉 ∼= 〈p〉

/
〈p2〉 . Let n := |R

/
〈p〉 | =

|〈p〉
/
〈p2〉 |. By the Third Isomorphism Theorem, R

/
〈p2〉

/
〈p〉
/
〈p2〉 ∼= R

/
〈p〉 , so

that |R
/
〈p2〉

/
〈p〉
/
〈p2〉 | = |R

/
〈p〉 | = n. Thus, there exist n residue classes in

R
/
〈p2〉

/
〈p〉
/
〈p2〉 , with each residue class having |〈p〉

/
〈p2〉| = n elements. Thus,

|R
/
〈p2〉 | = n2. We may then use similar arguments to show that |R

/
〈p3〉 | = n3,

and that, by induction, |R
/
〈pe〉 | = ne for every e ∈ Z+.

Now let m ∈ R be an arbitrary nonzero element. Then m has a unique prime
factorization m =

∏r
i=1 p

er
r . By the Chinese Remainder Theorem (Lemma 1.19),

we then have R
/
〈m〉 ∼= R

/
〈pe11 〉 ⊕ R

/
〈pe22 〉 ⊕ · · · ⊕ R

/
〈perr 〉 . Thus, |R

/
〈m〉 | =∏r

i=1 |R
/
〈peii 〉 |. Letting ni := |R /pi |, we then have, by our previous result, that

|R
/
〈m〉 | =

∏r
i=1 n

ei
i . So R

/
〈m〉 is finite.

8



1.3. Power Series and Reciprocal Polynomials

In Chapter 2, we will introduce the concept of characteristic polynomials, which
allow for the analysis of linear recurrence relations by viewing them as elements of
a polynomial ring. In Chapter 3, we analogously view sequences as ‘polynomials’
of infinite degree, i.e. as power series. This allows for us to view both the linear
recurrence and the linearly recurring sequence as elements of the same algebraic
space (the ring of power series).

This section sets up the machinery that we need to analyze the interaction
between characteristic polynomials of linear recurrence relations and power series
expressions of linearly recurring sequences. It may be beneficial to skip this section
for now and refer to it while reading through Section 3.3.

Definition 1.23. Let R be a ring. Then R[[x]] denotes the ring of power series such
that for every element S(x) ∈ R[[x]]], we express S(x) :=

∑∞
i=0 six

i, where si ∈ R
for all i.

If S(x) = s0 + s1x+ s2x
2 + . . . ∈ R[[x]] and T (x) = t0 + t1x+ t2x

2 + . . . ∈ R[[x]],
then we define:

• S(x) + T (x) = (s0 + t0) + (s1 + t1)x+ (s2 + t2)x
2 + . . .

• S(x)T (x) =
∑∞

i=0

(∑i
j=0 sjti−j

)
xi

Lemma 1.24. Let R be a commutative ring with unity. B(x) :=
∑∞

n=0 bnx
n ∈ R[[x]]

has a multiplicative inverse if and only if B(0) = b0 is a unit.

Proof. ( =⇒ ) Suppose there exists an inverse C(x) :=
∑∞

n=0 cnx
n ∈ R[[x]] such that

B(x)C(x) = 1. Then we have B(x)C(x) =
∑∞

j=0

(∑j
i=0 bicj−i

)
xj = 1, so that the

following infinite set of equalities hold:

b0c0 = 1
b0c1 + b1c0 = 0

b0c2 + b1c1 + b2c0 = 0
...

...
b0cn + b1cn−1 + · · ·+ bnc0 = 0

...
...

From the first equation, b0c0 = 1, we determine that b0 must be a unit.
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( ⇐= ) Now suppose b0 is a unit. Then we may construct a power series
C(x) :=

∑∞
n=0 cnx

n whose coefficients satisfy the infinite array of equations above
in the following manner: We first uniquely determine c0 = b−10 . We subsequently
determine c1 = −b−10 b1c0 from the second equation, c2 from the third, etc., so that by
strong induction, for any nonnegative integer n, we can recursively obtain cn via the
formula cn = −b−10

∑n
i=1 bicn−i. Thus, we have uniquely determined C(x) ∈ R[[x]]

satisfying B(x)C(x) = 1.

Hence, B(x) has a multiplicative inverse if and only if b0 is a unit.

Note If B(x) ∈ R[[x]] is a unit, then 1
B(x)
∈ R[[x]] denotes the multiplicative inverse

of B(x).

Definition 1.25. Let f(x) ∈ R[x] be an arbitrary polynomial of degree k. Then the
reciprocal polynomial f ∗(x) ∈ R[x] of f(x) is given by:

f ∗(x) := xkf(1/x) (2)

Note that by this definition:

f(x) = xkf ∗
(

1

x

)
(3)

where k := deg(f(x)).

Note that deg(f ∗(x)) need not equal k, hence, it is not necessarily the case
that (f ∗)∗(x) = f(x). For example, if f(x) := x2 + x, then f ∗(x) = x + 1 and
(f ∗)∗(x) = x+ 1 6= f(x).

Lemma 1.26. Let R be a ring, and let a(x), b(x), c(x) ∈ R[x] be polynomials such
that a(x) = b(x)c(x). Then a∗(x) = b∗(x)c∗(x).

Proof. Let n := deg(b(x)) and m := deg(c(x)). Treating b(x) and c(x) as power
series, we may then express b(x) =

∑∞
i=0 bix

i and c(x) =
∑∞

i=0 cix
i, where for all

integers i > n, bi = 0, and for all integers i > m, ci = 0. Then a(x) = b(x)c(x) =
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∑∞
j=0

(∑j
i=0 bicj−i

)
xj. Taking their reciprocal polynomials, we have:

b∗(x) = xnb(1/x) = xn

(
∞∑
i=0

bi

(
1

x

)i)
=
∞∑
i=0

bix
n−i

c∗(x) = xmc(1/x) = xm

(
∞∑
i=0

ci

(
1

x

)i)
=
∞∑
i=0

cix
m−i

where b∗(x) and c∗(x) are indeed polynomials, since the coefficients of all negative
exponents vanish by definition.

b∗(x)c∗(x) =
∞∑
j=0

(
j∑
i=0

bicj−i

)
xn+m−j = xn+m

(
∞∑
j=0

(
j∑
i=0

bicj−i

)(
1

x

)j)
= xn+ma(1/x) = a∗(x)

Note that for any integer j > n + m, either i > n or j − i ≥ j − n > m, and so the

coefficient of
(
1
x

)j
vanishes for all j > n + m. Thus, a∗(x) is indeed a polynomial.
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CHAPTER 2. SEQUENCES OVER FINITE RINGS WITH
UNITY

We will now describe properties of linearly recurring sequences over arbitrary
finite rings with unity, with the goal of describing properties about their correspond-
ing least periods which will become useful in the following two chapters. Particularly,
in Section 2.2 we will show that the ring of linearly recurring sequences decomposes
nicely into an internal direct sum of the ideals of purely periodic and null sequences.
In Section 2.3, we will introduce the associated companion matrix of a linear recur-
rence relation, and use it to determine properties of the least periods of sequences
that satisfy the recurrence.

Since the rings with which we are concerned (finite fields and quotients of poly-
nomial rings over finite fields) always have unity, the term ‘ring’ will always mean
ring with unity from this point onward in the thesis. Later, we will also assume the
ring is commutative but not initially.

2.1. Properties of Linearly Recurring Sequences

Recall that a linearly recurring sequence may be completely defined by the linear
recurrence relation that it satisfies and its initial state vector. More generally, any
substring of k terms completely determines the rest of the sequence via the linear
recurrence (of at most k terms). Hence, it is useful to identify these substrings in a
precise way, as follows:
Definition 2.1. Let k ∈ Z+ be fixed. Then the jth state vector sj of a sequence
s := (si)i≥0 is the substring of length k given by sj := (sj, sj+1, . . . , sj+k−1). We will
refer to s0 in particular as the initial state vector of s.

Applying state-vector notation to the ideas discussed in the introductory chap-
ter, we observe that any state vector of a linearly recurring sequence s completely
determines all subsequent terms via the linear recurrence. Thus, a sufficient condi-
tion for s to be ultimately periodic is for two state vectors to be identical. s begins
to repeat at sj for the least integer j ≥ 0 such that sj = sj+n for some n ∈ Z+.
In this case, j = η(s) and ρ(s) is the least such n for which the equality sj = sj+n
holds.

The next two lemmas follow immediately from the definitions. Their proofs are
straightforward and are omitted here:

Lemma 2.2. The following statements about a linearly recurring sequence s are
equivalent for any given integers m ≥ 0 and n > 0:

12



• si = si+n for all integers i ≥ m

• si = si+n for some integer i ≥ m

• s is ultimately periodic with period n and preperiod η(s) ≤ m.

In particular, we conclude the following for the special cases of null and periodic
sequences.

Lemma 2.3. A linearly recurring sequence s is

1. periodic with period n if and only if s0 = sn

2. a null sequence with η(s) ≤ n if and only if sn = 0, where 0 is the the zero
vector.

We are now ready to address the periodicity of linearly recurring sequences.

Lemma 2.4. Let R be a finite ring, and let s = (si)i≥0 be a linearly recurring
sequence over R. Then s is ultimately periodic. If s satisfies a linear recurrence
relation of the form of Equation 1, such that a0 is a unit in R, then s is (purely)
periodic.

Proof. Let s satisfy a linear recurrence relation of degree k given by Equation 1.
Since R is finite, there are only a finite number of possible tuples of elements in R of
length k. On the other hand, s is an infinite sequence, with a subsequently infinite
number of state vectors. Thus, by the pigeonhole principle, there must exist distinct
integers i and j with i < j such that si = sj. Since a tuple of k elements and a linear
recurrence relation of degree k completely determine the subsequent elements in a
sequence, all corresponding elements after si and sj must be the same. Hence, by
Lemma 2.2, the sequence is ultimately periodic.

Referring to Equation 1, suppose a0 is a unit. We can then reorganize the terms
in the linear recurrence relation so as to solve for the previous element in the sequence
from the k subsequent elements, as follows:

si = (−a−10 a1)si+1 + . . .+ (−a−10 ak−1)si+k−1 + a−10 si+k

Thus, we can conclude that all the corresponding elements before every instance of
the repeated length-k substring must match as well, and so s is periodic.

13



Recall that a tuple of length k in a sequence generated by a linear recurrence
relation of degree k completely determines the rest of the sequence. It follows that
for any two sequences s and t satisfying the same linear recurrence relation of degree
k, sj = tj′ for some nonnegative integers j and j′ implies that s(j) = t(j

′), and so we
arrive at the following statement about s and t:

Lemma 2.5. If s and t are sequences that satisfy the same linear recurrence relation
and if t = s(j) for some integer j ≥ 0, then ρ(s) = ρ(t). More generally, ρ(s) = ρ(t)
if s and t share a common state vector.

Although in this thesis we are interested in the least periods of particular lin-
early recurring sequences, our ultimate goal lies in describing in a meaningful way
the sets of least periods that arise from sequences satisfying a general class of linear
recurrences of a given degree over a certain ring. We construct the following notation
to better address these sets.

Definition 2.6. Let k ∈ Z+ and let R be a finite ring. We let P(k,R) denote the
set of least periods that arise from sequences defined by a linear recurrence relation
of degree k over R.

Furthermore, in our notation for a general linear recurrence relation as given by
Equation 1, we do not restrict any of the coefficients to being nonzero. Hence, by
way of example, the linear recurrence that the Fibonacci sequence must satisfy can
be vaguely described as being one of degree k, where k ≥ 2 is an integer, by merely
setting ai = 0 for every i between 0 and ak−3. We shall then uniquely label the least
possible degree of the linear recurrence as its ‘nontrivial’ degree, defined below.

Definition 2.7. We say that a linear recurrence relation has the nontrivial degree
k if the linear recurrence is given by Equation 1 with a0 6= 0.

Proposition 2.8. Let k ∈ Z+ and let R be a finite ring. Then for every integer
l ≥ k, if a sequence s satisfies a linear recurrence relation of nontrivial degree k,
then s also satisfies a linear recurrence relation of nontrivial degree l. In particular,
P(k,R) ⊆ P(l, R).

Proof. Let s be a sequence over R satisfying a linear recurrence relation of degree k
given by Equation 1:

a0si + a1si+1 + . . .+ ak−1si+k−1 = si+k

14



For any integer i ≥ 0, we may express si+k+1 in terms of the previous k terms and
then partially substitute the expansion of si+k, so as to express si+k+1 with respect
to the previous k + 1 terms, as follows:

si+k+1 = a0si+1 + a1si+2 + . . .+ ak−2si+k−1 + ak−1si+k

=

(
k−2∑
j=0

ajsi+j+1

)
+ ak−1si+k.

Writing ak−1si+k = si+k + (ak−1 − 1)si+k and substituting for si+k, we then
obtain:

si+k+1 =
k−2∑
j=0

ajsi+j+1 +
k−1∑
j=0

ajsi+j + (ak−1 − 1)si+k

=
k−2∑
j=0

ajsi+j+1 +

(
a0si +

k−1∑
j=1

ajsi+j

)
+ (ak−1 − 1)si+k

= a0si +

(
k−2∑
j=0

ajsi+j+1 +
k−2∑
j=0

aj+1si+j+1

)
+ (ak−1 − 1)si+k

= a0si +
k−2∑
j=0

(aj + aj+1)si+j+1 + (ak−1 − 1)si+k.

Hence, s also satisfies a linear recurrence relation of degree k + 1, and by in-
duction s satisfies a linear recurrence of degree l, for any integer l ≥ k. The partial
substitution that we used above guarantees that the degree of the new expression of
the linear recurrence relation is nontrivial if the old expression is nontrivial, since we
still have a0 6= 0 as the coefficient of si.

It is often useful to associate polynomials to linear recurrences. The structure in
the associated polynomial ring gives further insight on the behavior of the sequences
that satisfy the recurrences. We define these ‘characteristic polynomials’ in the fol-
lowing manner.

Definition 2.9. We define the characteristic polynomial of degree k associated with
the linear recurrence relation given by Equation 1 to be the polynomial

f(x) = xk − ak−1xk−1 − ak−2xk−2 − . . .− a0 ∈ R[x] (4)
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where R is the ring over which the sequence is defined.

In the extreme case, the empty recurrence relation given by si = 0 (i ≥ 0)
of degree k = 0 and solely satisfied by the zero sequence will have the associated
characteristic polynomial f(x) = 1.

By its definition, the degree of an associated characteristic polynomial is deter-
mined by the degree of the recurrence. Note, however, that since a linear recurrence
can be vaguely described as being of any arbitrary degree by making the coefficients
of a sufficient number of terms zero, it will in turn have an infinite number of possi-
ble associated characteristic polynomials, all differing by a factor of xh, where h is a
nonzero integer. In this thesis, we will always implicitly have a particular degree k
in mind when referring to a linear recurrence relation, and subsequently have the as-
sociated characteristic polynomial be of the same degree k, with Equation 1 directly
linked to the Equation 4 through the natural bijection.

Note that the characteristic polynomial of the form f(x) := xhg(x), where h
is a nonnegative integer and g(0) 6= 0, corresponds to a linear recurrence relation
that ignores the first h terms of the initial state vector when constructing a sequence.
These ignored first terms will be of no consequence to the periodicity of the sequence.
Hence, as will be the case in Chapter 3, we sometimes limit the scope of our analyses
to characteristic polynomials of the form g(x), where again g(0) 6= 0. Lemma 2.10
below will help us when we shift gears from studying sequences defined by f(x) to
studying sequences defined by g(x), which we note corresponds to limiting the scope
of our analysis to linear recurrences of nontrivial degree only.

Lemma 2.10. Let s := (si)i≥0 be a sequence that satisfies a linear recurrence relation
over the ring R with associated characteristic polynomial f(x) := xhg(x) ∈ R[x],
where h ≥ 0 is an integer and g(x) ∈ R[x] such that g(0) 6= 0. Then the subsequence
(si)i≥h satisfies a linear recurrence relation with associated characteristic polynomial
g(x).

Proof. If g(x) = xk − ak−1xk−1 − ak−2xk−2 − . . .− a0, then

f(x) = xhg(x) = xh(xk − ak−1xk−1 − ak−2xk−2 − . . .− a0)
= xh+k − ak−1xh+k−1 − ak−2xh+k−2 − . . .− a0xh

Thus, s satisfies the linear recurrence relation given by

si+ha0 + si+h+1a1 + . . .+ si+h+k−1ak−1 = si+h+k ∀i ≥ 0.
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And so for every integer i ≥ h, s satisfies Equation 1. That is:

sja0 + sj+1a1 + . . .+ sj+k−1ak−1 = sj+k

where j := i+h ≥ h. Therefore, the subsequence (s)i≥h satisfies the linear recurrence
relation given by Equation 1, with an associated characteristic polynomial g(x).

The characteristic polynomial offers a convenient way of referring to the linear
recurrence relation to which it is associated. Accordingly, we use the following no-
tation to refer to sequences that satisfy a particular linear recurrence:

Definition 2.11. Let R be a ring. We let A(f(x)) denote the set of all sequences
over R that satisfy the linear recurrence relation with characteristic polynomial
f(x) ∈ R[x]. If R is finite, then we let P(f(x)) and N (f(x)) denote the subsets
of periodic and null sequences, respectively, that satisfy the given linear recurrence.

Remark 2.12. Let s ∈ A(f(x)). Then for every integer j ≥ 0, the shifted subse-
quence s(j) ∈ A(f(x)).

Using the ring axioms, we can verify that a sequence generated from the term-by-
term sum or difference of two sequences satisfying the same linear recurrence relation
must satisfy the linear recurrence as well. By way of example, suppose two sequences
s := (si)i≥0 and t := (ti)i≥0 satisfy the recurrence ui + 2ui+1 = ui+2 for every integer
i ≥ 0. Then the sequence s + t = (si + ti)i≥0 satisfies (si + ti) + 2(si+1 + ti+1) =
si + ti + 2si+1 + 2ti+1 = (si + 2si+1) + (ti + 2ti+1) = si+2 + ti+2 for every integer i ≥ 0.
Therefore, A(f(x)) is closed under addition. One can check that the associative
property is satisfied as well, that the zero sequence serves as the identity, and that
for every sequence in A(f(x)), we can construct an additive inverse by taking the
inverse of every term. Hence, A(f(x)) is an abelian group.

It is also clear that the sum of two periodic sequences will be periodic and
that the sum of two null sequences will be null. Hence, P(f(x)) and N (f(x)) are
subgroups of A(f(x)).

Since any linearly recurring sequence is ultimately periodic by Lemma 2.4, one
may break it down into the sum of a null and a purely periodic sequence, leading to
the following proposition:
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Proposition 2.13. Let R be a finite ring, and let f(x) ∈ R[x] be the characteristic
polynomial of a linear recurrence relation over R. Then the abelian group A(f(x))
(of component-wise addition) has the internal direct sum decomposition A(f(x)) =
P(f(x))⊕N (f(x)).

Proof. Note that since component-wise addition of sequences is commutative (from R
being a ring), it is straightforward to verify that P(f(x)) and N (f(x)) are subgroups
of A(f(x)).

We also see that by the definition of purely periodic and null sequences, P(f(x))∩
N (f(x)) = {0}, where here 0 denotes the infinite zero sequence.

Now set S := {u + v | u ∈ P(f(x)),v ∈ N (f(x))} ⊆ A(f(x)). We show that
S = A(f(x)) by verifying the reverse containment. Let s = (si)i≥0 ∈ A(f(x)). We
want to construct a purely periodic sequence u ∈ A(f(x)) that matches term-by-
term with s from some point onwards, so that the terms cancel when we subtract
s− u and we are left with a null sequence.

Since s is ultimately periodic by Lemma 2.4, for every integer i ≥ 0, si+η(s) =
si+η(s)+ρ(s). Let n ∈ Z+ be such that n ≥ η(s) and ρ(s)|n. By Lemma 1.1, n is a
period of s. Define u := (ui)i≥0 = s(n). Then for every integer i ≥ 0, ui = si+n =
si+n+ρ(s) = si+ρ(s)+n = ui+ρ(s). Consequently, by Remark 2.12, u ∈ P(f(x)) with
ρ(u) = ρ(s), by Lemma 2.5. Note that n is a period of s by Lemma 1.1, so that for
every integer i ≥ n ≥ η(s), si = si+n. Now define v := (vi)i≥0 = s − u. Then for
every integer i ≥ 0, we have:

vn+i = sn+i − un+i = sn+i − s(n+i)+n = sn+i − sn+i = 0

Hence, vi = 0 for sufficiently large i. It follows that v = s − u ∈ N (f(x)), and
therefore, s = u + v ∈ S. Thus, S = A(f(x)).

We have thus established the conditions necessary to show that the abelian group
A(f(x)) is the internal direct sum of its subgroups of periodic and null sequences.

Example 2.14. Let us revisit the sequence t ∈ A(x2 − x− 2) defined over Z4 from
Chapter 1, which satisfies the linear recurrence relation 2ti+ti+1 = ti+2 for all integers
i ≥ 0 and with initial state vector (0, 1). We know that t := (0, 1, 1, 3, 1, 3, . . .), and
that ρ(t) = 2 and η(t) = 2. Proposition 2.13 implies that t can be uniquely expressed
as the sum of a purely periodic and null sequence in A(x2 − x − 2). We can easily
construct such sequences here by extending the periodic part of t and subtracting
it from t, killing off all of the repeating terms. We replace the first η(t) terms of
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t to construct a purely periodic sequence u := (1, 3, 1, 3, 1, 3, . . .), and subsequently
derive the null sequence v := t−u = (3, 2, 0, 0, 0, 0, . . .), so that t = u + v. One can
check that indeed u,v ∈ A(x2 − x− 2).

We now consider the set of all linearly recurring sequences over a particular ring,
and make similar conclusions about this larger set of sequences.

Definition 2.15. Let R be a ring. We let A(R) denote the set of all linearly
recurring sequences over R. Similarly, P(R) and N (R) denote the subsets of all
linearly recurring periodic and null sequences, respectively, over R.

It is important to note that it is not necessary for any two sequences in A(R)
to satisfy the same linear recurrence. Nevertheless, the following lemma shows that
the set is still closed under component-wise addition, i.e. the sum of any two linearly
recurring sequences is also a linearly recurring sequence.

Lemma 2.16. Let R be a finite ring. Then A(R) is an abelian group, with P(R)
and N (R) subgroups of A(R).

Proof. Let s and t be linearly recurring sequences over R. Since every linearly
recurring sequence is ultimately periodic by Lemma 2.4, s and t must satisfy linear
recurrence relations of the form si+h = si+h+n1 and ti+h = ti+h+n2 for all integers
i ≥ 0, where h ≥ max(η(s), η(t)) is an integer, and where n1 and n2 are periods of s
and t, respectively. Thus, by Lemma 1.1, s and t both satisfy the linear recurrence
relation ui+h = ui+h+n for all integers i ≥ 0, where n := lcm(ρ(s), ρ(t)). Let f(x) =
xh+n−xh be the associated characteristic polynomial of said linear recurrence. Then
s, t ∈ A(f(x)), where A(f(x)) is an abelian group. Thus, s + t,−s ∈ A(f(x)) ⊆
A(R), showing that A(R) is an abelian group. It is subsequently straightforward to
verify that P(R) and N (R) are subgroups of A(R).

Note that in the proof above, we account for the preperiods of s and t by
inserting the extra h term in the linear recurrence relation and, subsequently, the
characteristic polynomial. It is not necessarily the case that for a given characteristic
polynomial f(x), there will exist an integer n > 0 such that f(x)|xn − 1.

Example 2.17. Consider the characteristic polynomial x ∈ Z2[x] associated with
the linear recurrence relation 0 · (si) = si+1 (i ≥ 0). Clearly x does not divide x− 1
over Z2.
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Example 2.18. Consider f(x) = x2 − x − 2 ∈ Z4[x] associated with the linear
recurrence relation 2ti+ti+1 = ti+2. Note that 2 is a root of f(x), and so if f(x)|xe−1
for some e ∈ Z+, then 2 is also a root of xe − 1, i.e. 2e = 1, which is impossible in
Z4. Therefore, no such e exists for which f(x)|xe − 1.

The argument made in the proof of Proposition 2.13 may be extended to the
abelian group of all linearly recurring sequences over a finite ring, so that:

Lemma 2.19. For any finite ring R, the abelian group A(R) has a direct sum de-
composition A(R) = P(R)⊕N (R).

An immediate implication of Proposition 2.13 is that the set of least periods
that arise from sequences in A(f(x)) is equal to the set of least periods that arise
from sequences in P(f(x)), i.e. the purely periodic sequences. In general, since
P(R) and N (R) are also normal subgroups of A(R) through Lemma 2.16, we have
the following Remark.

Remark 2.20. For any k ∈ Z+, we may study P(k,R) by restricting to sequences
in P(R) of degree k.

2.2. Criteria for Null and Periodic Sequences

In this section we explore the notion of the set of all linearly recurring sequences
being expressed as the ring internal direct sum of the sets of all null and periodic
sequences. In particular, we will show that for any given characteristic polynomial
f(x) ∈ R[x], A(f(x)) = P(f(x)) +N (f(x)), where P(f(x)) and N (f(x)) are ideals
in A(f(x)), for an appropriately chosen multiplicative operation.

The results in this section can be found in [2], although the notation we use here
differs significantly from that used by M. Ward, in favor of the notation used in [1].

Definition 2.21. Let s be a sequence over a ring R. Then the associated generating
function S(x) ∈ R[[x]] of s is given by:

S(x) := s0 + s1x+ s2x
2 + . . .+ six

i + . . . =
∞∑
i=0

six
i (5)

Additionally, for r ∈ Z+, we associate to s the truncated generating function Sr(x) ∈
R[x] of s given by:

Sr(x) := s0 + s1x+ s2x
2 + . . .+ sr−1x

r−1 (6)
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Note that it is possible for sr−1 = 0, and so deg(Sr(x)) ≤ r − 1. Set c := r − 1 −
deg(Sr(x)). Applying our definition of the reciprocal polynomial from Section 1.3,
we thus have the following derivation for the reciprocal of Sr(x):

xcS∗r (x) := xn−1Sr

(
1

x

)
= s0x

n−1 + s1x
n−2 + . . . sn−2x+ sn−1. (7)

Definition 2.22. Let S(x) :=
∑∞

i=0 six
i be the generating function of a sequence

satisfying a linear recurrence relation of degree k with characteristic polynomial f(x)

given by Equation 4. We define S
(n)
f (x) := −

∑k−1
j=0

(∑k
i=j+1 aisn−(j+1)+i

)
xj, for in-

tegers n ≥ 0.

When operating on generating functions and characteristic polynomials, as with
the proof of the Lemma 3.11, it is oftentimes useful to express the linear recurrence
relation of Equation 1 in the following manner:

Lemma 2.23. Let s := (si)i≥0 be a sequence. s satisfies Equation 1 if and only if

for all integers i ≥ 0,
∑k

j=0 ajsi+j = 0, where we set ak := −1.

We are now finally ready to prove the following lemma:

Lemma 2.24. Let s be a sequence that satisfies a linear recurrence relation of degree
k with characteristic polynomial f(x) over a commutative ring R, and let S(x) ∈
R[[x]] be the generating function of s. Then for every integer n ≥ k,

f(x)xcS∗n(x) = xnS
(0)
f (x)− S(n)

f (x). (8)

where c := n− 1− deg(Sn(x)).

Proof. Let f(x) be given by Equation 4. Let n > k be an integer. By the definitions
of f(x) and S∗n(x), and setting the coefficient ak := −1, we then have:

f(x)xcS∗n(x) = −

(
k∑
i=0

aix
i

)(
n−1∑
t=0

sn−1−tx
t

)
= −

[
n+k−1∑
j=0

(∑
i+t=j

aisn−1−t

)
xj

]
.

For all integers j ≥ 0, we have

∑
i+t=j

aisn−1−t =

j∑
i=0

aisn−1−(j−i) =

j∑
i=0

aisn−1−j+i
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where ai = 0 for all i > k and sl = 0 for all l < 0. In particular, the coefficient of xj

is 0 once j > n+ k − 1. For 0 ≤ j ≤ n+ k − 1, we consider several cases as follows:

• If 0 ≤ j ≤ k − 1, then

∑
i+t=j

aisn−1−t =

j∑
i=0

aisn−1−j+i.

Now by Lemma 2.23, we have
∑k

i=0 aisn−1−j+i = 0, so that

∑
i+t=j

aisn−1−t =

j∑
i=0

aisn−1−j+i − 0 =

j∑
i=0

aisn−1−j+i −
k∑
i=0

aisn−1−j+i

= −
k∑

i=j+1

aisn−1−j+i = −
k∑

i=j+1

aisn−(j+1)+i.

• If k ≤ j ≤ n− 1, then

∑
i+t=j

aisn−1−t =

j∑
i=0

aisn−1−j+i =
k∑
i=0

aisn−1−j+i = 0

by Lemma 2.23. This case only arises if n > k.

• If n ≤ j ≤ n+ k − 1, then

∑
i+t=j

aisn−1−t =

j∑
i=0

aisn−1−j+i =
k∑

i=j−n+1

aisn−1−j+i.

We want to switch indices so that the summation terms match with the first
case. To do this, we substitute j = l + n, where 0 ≤ l ≤ k − 1, and observe
that

∑
i+t=j

aisn−1−t =
k∑

i=(l+n)−n+1

aisn−1−(l+n)+i =
k∑

i=l+1

ais−1−l+i

=
k∑

i=l+1

ais0−(l+1)+i
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Putting together the terms for all three cases, we thus have:

f(x)xcS∗n(x)

= −

[
k−1∑
j=0

(
−

k∑
i=j+1

aisn−(j+1)+i

)
xj +

n−1∑
j=k

0 · xj +
n+k−1∑
j=n

(
k∑

i=j−n+1

aisn−1−j+1

)
xj

]

= −

[
k−1∑
j=0

(
−

k∑
i=j+1

aisn−(j+1)+i

)
xj + 0 +

k−1∑
l=0

(
k∑

i=l+1

ais0−(l+1)+i

)
xl+n

]

= −

[
−

k−1∑
j=0

(
k∑

i=j+1

aisn−(j+1)+i

)
xj

]
+ xn ·

[
−

k−1∑
l=0

(
k∑

i=l+1

ais0−(l+1)+i

)
xl

]
= −S(n)

f (x) + xnS
(0)
f (x) = xnS

(0)
f (x)− S(n)

f (x).

Comparing Equation 8 above to Equation 13 in Chapter 3, we shall see that
Lemma 2.24 for commutative rings generalizes Lemma 3.12 for finite fields. The fol-
lowing proposition will further show that the statement in Lemma 3.12 can likewise
be more broadly applied to integral domains, and is biconditional for suitably large
periods of the given sequence.

Proposition 2.25. Let S(x) be the generating function of a sequence s satisfying
a linear recurrence relation of degree k with characteristic polynomial f(x) over a
commutative ring R. Then for any integer n > k, the following hold:

1. f(x)|(xn − 1)S
(0)
f (x) if and only if s is (purely) periodic with n as a period.

2. f(x)|xnS(0)
f (x) if and only if s is a null sequence with η(s) ≤ n.

Proof. If s is periodic with period n > k, then si = si+n for all integers i ≥ 0. It fol-

lows that S
(n)
f (x) := −

∑k−1
j=0

(∑k
i=j+1 aisn−(j+1)+i

)
xj = −

∑k−1
j=0

(∑k
i=j+1 ais0−(j+1)+i

)
xj =

S
(0)
f (x), and so by Lemma 2.24, we have

f(x)xcS∗n(x) = xnS
(0)
f (x)− S(n)

f (x) = xnS
(0)
f (x)− S(0)

f (x)

= (xn − 1)S
(0)
f (x)

so that f(x)|(xn − 1)S
(0)
f (x).
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Conversely, if f(x)|(xn − 1)S
(0)
f (x), then f(x)|xnS(0)

f (x)− S(0)
f (x). Rearranging

Equation 8, we have xnS
(0)
f (x) = f(x)xcS∗n(x) + S

(n)
f (x), so that f(x)|f(x)xcS∗n(x) +

S
(n)
f (x) − S

(0)
f (x). Hence, f(x)|S(n)

f (x) − S
(0)
f (x). Since S

(n)
f (x) and S

(0)
f (x) both

have degree less than k = deg(f(x)) by definition, and since f(x) is monic (i.e. its

leading coefficient is unity), it follows that S
(n)
f (x) = S

(0)
f (x). By comparing the

terms of both sides of the equality from the highest power of x down, we see that
since ak = −1 is a unit by definition, for all integers 0 ≤ i ≤ k−1, we have si = si+n.
Thus, by Lemma 2.3, s is periodic with period n.

If s is a null sequence with η(s) ≤ n, then it immediately follows that S
(n)
f (x) = 0,

and so Equation 8 reduces to f(x)xcS∗n(x) = xnS
(0)
f (x), with f(x)|xnS(0)

f (x), as

desired. Conversely, if f(x)|xnS(0)
f (x), then since xnS

(0)
f (x) = f(x)xcS∗n(x) +S

(n)
f (x),

it follows that f(x)|S(n)
f (x). Since deg(S

(n)
f (x)) < k = deg(f(x)) and that again f(x)

is monic, we see that S
(n)
f (x) = 0. Thus, the coefficient of every term of S

(n)
f (x) must

vanish. Since ak = −1 is a unit, we have that sn+i = 0 for all integers 0 ≤ i ≤ k− 1.
Thus, by Lemma 2.3, s is a null sequence with η(s) ≤ n.

We see from Proposition 2.25 that for any sequence s satisfying a linear recur-
rence relation of degree k over a commutative ring, if ρ(s) ≥ k, then ρ(s) is the least
n ∈ Z+ such that item 1 of Proposition 2.25 holds. Such n will always exist for when
f(0) is a unit, as will be shown in Lemma 2.26 below.

Lemma 2.26. Let f(x) ∈ R[x], where R is a finite commutative ring. Suppose that
deg(f(x)) ≥ 1 and that both f(0) and f ∗(0) are units. Then there exists e ∈ Z+ such
that f(x)|(xe − 1).

Proof. Let k := deg(f(x)) and let q := |R|. Since the leading coefficient of f(x)
is a unit, the quotient ring R[x]

/
〈f(x)〉 has at most qk distinct residue classes, by

Lemma 1.16. Consider then the residue classes xj + 〈f(x)〉, for j = 0, 1, . . . , qk.
Therefore, by the pigeonhole principle, there exist integers r and s with 0 ≤ r < s ≤
qk such that xs + 〈f(x)〉 = xr + 〈f(x)〉. This implies xs − xr = xr(xe − 1) ∈ 〈f(x)〉,
where e := s− r. Since f(0) is a unit, x+ 〈f(x)〉 is a unit in R[x]

/
〈f(x)〉 . It follows

that xe − 1 ∈ 〈f(x)〉. Hence, f(x)|xe − 1.

We shall see in the following section that the condition of ρ(s) ≥ k always holds
for the impulse response sequence when f(0) is a unit, and that the least period of
the impulse response is an upper bound for all least periods of sequences satisfying
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a given recurrence relation. Hence, we will always at the very least be able to deter-
mine the upper bound of least periods for f(x) when f(0) is a unit, which we will
later call the “principal period” of f(x).

Definition 2.27. Let R be a commutative ring, and let f(x) ∈ R[x] be monic. We

define ψf : A(f(x))→ R[x]
/
〈f(x)〉 by ψf (s) = S

(0)
f (x) + 〈f(x)〉, where S

(0)
f (x) is as

defined in Definition 2.22.

Proposition 2.28. Let R be a finite commutative ring, and let f(x) ∈ R[x] be monic.
Then the map ψf : A(f(x))→ R[x]

/
〈f(x)〉 is a bijection. Furthermore, it preserves

the additive group structure and so is a group isomorphism.

Proof. For any s ∈ A(f(x)), s is completely determined by its initial state vector,
with k terms. Sequences in A(f(x)) having distinct initial state vectors are also
clearly distinct. Therefore, for q := |R|, there exist qk possible distinct initial state
vectors, so that |A(f(x))| = qk. On the other hand, since f(x) is monic (so that its
leading coefficient is 1), we have by Lemma 1.16 that R[x]

/
〈f(x)〉 has exactly qk

elements. Thus, we can prove that ψf is bijective by showing that every element in
the codomain has a unique preimage.

Let L(x) :=
∑k−1

i=0 lix
i ∈ R[x]

/
〈f(x)〉 . We claim that we can construct a unique

sequence s for which ψf (s) = S
(0)
f (x) = L(x). Such a sequence would have to satisfy

the following array of equations, using the definition of S
(0)
f (x).

−aks0 = lk−1

−(ak−1s0 + aks1) = lk−2
... =

...

−
k∑

i=j+1

aisi−(j+1) = lj

... =
...

−
k∑
i=1

aisi−1 = l0

Since ak = −1 is a unit, we uniquely determine s0 = lk−1 from the first line. Subse-
quently, we also uniquely determine s1 = lk−2 + ak−1s0 = lk−2 − ak−1lk−1. We then
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obtain the following si’s in a similar fashion, so that there exists a uniquely deter-
mined sequence s generated by the initial state vector s0 and the linear recurrence
with characteristic polynomial f(x) such that ψf (s) = L(x). Thus, ψf is bijective.

Finally, since R is a commutative ring, it is straightforward to check the group
homomorphism property: for any s, t ∈ A(f(x)), ψf (s) + ψf (t) = ψf (s + t). There-
fore, ψf is a group isomorphism under addition.

Remark 2.29. We may then define multiplication in A(f(x)) such that for s, t ∈
A(f(x)), we have s · t = ψ−1f (ψf (s) · ψf (t)). In this way, ψf can be viewed as a ring
isomorphism.

We are now in a position to extend the result of Proposition 2.13 and show that
A(f(x)) decomposes into the internal direct sum of its ideals of purely periodic and
null sequences.

Proposition 2.30. Let R be a finite commutative ring, and let f(x) ∈ R[x] be
the characteristic polynomial of a linear recurrence relation over R. Then for an
appropriate definition of multiplication (as in Remark 2.29), the ring A(f(x)) has
the internal direct sum decomposition A(f(x)) = P(f(x))⊕N (f(x)), where P(f(x))
and N (f(x)) are ideals in A(f(x)).

Proof. We already know from Proposition 2.13 that A(f(x)) has the group internal
direct sum decomposition A(f(x)) = P(f(x))⊕N (f(x)). We have left to check that
P(f(x)) and N (f(x)) are indeed ideals in A(f(x)), with multiplication defined as
in Remark 2.29. We do this by applying the ideal test on the their images over the
ring isomorphism map ψf .

Let s, t ∈ P(f(x)) and let u ∈ A(f(x)). Note that since P(f(x)) is a subgroup
of A(f(x)), we immediately have s − t ∈ P(f(x)). Now choose n ∈ Z+ such that
n > k and n is a multiple of ρ(s) . Then n is a period of s , and is sufficiently large
so that, by Proposition 2.25, we have that f(x)|(xn − 1)ψf (s) . Thus, f(x) divides
(xn − 1)ψf (s)ψf (u) = (xn − 1)ψf (s · u), and so s · u ∈ P(f(x)). Therefore, P(f(x))
is an ideal in A(f(x)).

Similarly, let s, t ∈ N (f(x)) and let u ∈ A(f(x)). Note that since N (f(x)) is
a subgroup of A(f(x)), we immediately have s− t ∈ N (f(x)). Now choose n ∈ Z+

such that n > max(k, η(s)). Then by Proposition 2.25, we have that f(x)|xnψf (s) .
Thus, f(x) divides xnψf (s)ψf (u) = xnψf (s · u), and so s · u ∈ N (f(x)). Therefore,
N (f(x)) is an ideal in A(f(x)).
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Thus, A(f(x)) has the ring internal direct sum decomposition

A(f(x)) = P(f(x))⊕N (f(x)).

2.3. The Companion Matrix

In this section, we will introduce what is called a “companion matrix” of a given
linear recurrence relation. We saw in the beginning of the chapter (Lemma 2.2) that
state vectors play an important role describing the periodicity of a linearly recurring
sequence. Just as the linear recurrence determines the next element of a sequence,
the companion matrix determines the next state vector (see Lemma 2.32). It is
through the companion matrix that we will formulate methods for determining the
least period of a given sequence.

The results in this section can be found in [1], although here we again use slightly
different notation. We also usually write proofs for these statements in ways that
differ from the source material, so as to keep the thesis as self contained as possible.

Definition 2.31. Consider a linear recurrence relation over a ring R with a char-
acteristic polynomial f(x) as in Equation 4. We define the companion matrix A of
f(x) as

A :=



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
a0 a1 a2 · · · ak−1


∈Mk(R) (9)

Going forward, we will use both row and column notations for state vectors
(Definition 2.1) in different contexts depending on which is most convenient.

Lemma 2.32. Let s be a linearly recurring sequence satisfying a recurrence relation
of degree k over a ring R with companion matrix A. Then for every integer i ≥ 0,
si = Ais0.

Proof. Let the linear recurrence relation and its companion matrix A be given by
Equations 1 and 9 respectively. One can then check that for each i ≥ 0, si+1 = Asi.
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Hence, by induction, we have that for each i ≥ 0, si = Ais0.

Proposition 2.33. Let A be the companion matrix of a linear recurrence relation
of degree k over a finite commutative ring R. If A is given by Equation 9 with a0
a unit, then A ∈ GLk(R). Furthermore, for every sequence s satisfying the linear
recurrence, we have that s is periodic with ρ(s)|ord(A).

Proof. Since a0 is a unit, we have that det(A) = (−1)k−1a0 is a unit, which implies
that A ∈ GLk(R). Now let n := ord(A), so that An = I, where I ∈ GLk(R) is the
identity matrix. Let s be a sequence in R that satisfies the linear recurrence relation,
given by Equation 1. Then from Lemma 2.32, we have that for every integer i ≥ 0,
si = Ais0. Thus, for every integer i ≥ 0:

si+n = Ai+ns0 = AiAns0 = AiIs0 = Ais0 = si.

Hence, s is periodic with period n. Therefore, by Lemma 1.1, ρ(s)|ord(A).

Definition 2.34. For a fixed k ∈ Z+, let 0 denote the zero vector of length k, and
let [0] denote the k × k zero matrix. For 1 ≤ i ≤ k, let ei := (e1, e2, . . . , ek) be the
ith standard basis vector, with ej = 1 for j = i and ej = 0 for every j 6= i.

Note that the space Rk of all tuples of k elements in a ring R is naturally
equipped with operations of component-wise addition and scalar multiplication. If
R is a field, then Rk is a vector space over R. More generally, Rk is an example of
an R-module. An R-module is a closed set of objects, sometimes called vectors, with
operations of addition and scalar multiplication over R. Modules are more compli-
cated to deal with than vector spaces since, for example, they do not necessarily
have a well-defined dimensionality, i.e. they may have vectors that form a spanning
set, but do not necessarily possess a basis. If an R-module does possess a basis,
then we call it free. Such is the case for the direct sum Rk, having the natural basis
{ei | i = 1, 2, . . . , k}. We will use this fact in the following lemma to prove that
substituting the companion matrix of a linear recurrence relation into its associated
characteristic polynomial (in the form of scalar and matrix multiplication) always
yields the zero matrix.

Lemma 2.35. Let f(x) and A be the associated characteristic polynomial and com-
panion matrix, respectively, of a linear recurrence relation of degree k over an integral
domain R. Then f(A) = [0].
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This is a consequence of the Cayley-Hamilton Theorem, which states that the
equation holds for square matrices over a general commutative ring, but we will give
a self-contained proof here.

Proof. Let f(x) and A be given by Equations 4 and 9 respectively. Let s be a
sequence that satisfies Equation 1 over R with an arbitrary initial state vector s0 =
(s0, s1, . . . , sk−1). Then for every integer i ≥ 0, we have:

a0si + a1si+1 + . . .+ ak−1si+k−1 = si+k

Thus, it follows that:

a0


s0
s1
...

sk−1

+ a1


s1
s2
...
sk

+ . . .+ ak−1


sk−1
sk
...

s2k−2

 =


sk
sk+1

...
s2k−1


a0s0 + a1s1 + . . .+ ak−1sk−1 = sk

Then by Lemma 2.32, we have that:

a0A
0s0 + a1A

1s0 + . . .+ ak−1A
k−1s0 = Aks0

Reorganizing the terms, we then have:

0 = Aks0 − ak−1Ak−1s0 − ak−2Ak−2s0 − . . .− a0Is0
= [Ak − ak−1Ak−1 − ak−2Ak−2 − . . .− a0I]s0

= f(A)s0

where f(A) = Ak − ak−1Ak−1 − ak−2Ak−2 − . . . − a0I ∈ Mk(R). Now observe that
for every integer 1 ≤ j ≤ k, f(A)ej = 0 denotes the jth column of f(A). Hence,
f(A) = [0].

We now have all the tools necessary to determine the maximum possible least
period of all sequences that satisfy a given linear recurrence relation, which we will
henceforth refer to as the “principal period” associated to the linear recurrence.
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Definition 2.36. Let f(x) ∈ R[x] be the characteristic polynomial of a linear re-
currence relation over a finite ring R. Then we define the principal period ρ(f(x))
of f(x) by ρ(f(x)) := max(ρ(s) | s ∈ A(f(x))). We will also extend this notation
and let ρ(k,R) denote the maximum of the least periods of all linearly recurring
sequences of degree k over R.

We shall see in Proposition 2.40 that over finite commutative rings, the princi-
pal period of a linear recurrence is always guaranteed to arise from a special kind of
sequence, called the ‘impulse response sequence.’

Definition 2.37. A sequence s satisfying a linear recurrence relation of degree k is
called the impulse response sequence if s0 = ek.

Lemma 2.38. Let s be the impulse response sequence satisfying a linear recurrence
relation of degree k over a finite commutative ring R . Then {si | i = 0, 1, . . . , k− 1}
forms a basis in Rk.

Proof. We consider the following matrix M :

M = (sk−1 | sk−2 | · · · | s0) =


sk−1 sk−2 · · · s0
sk sk−1 · · · s1
...

...
...

s2k−2 s2k−3 · · · sk−1


Note that for 0 ≤ i < k − 1, si = 0, and that sk−1 = 1. Therefore, we have:

M =



1 0 · · · 0 0
sk 1 · · · 0 0
sk+1 sk · · · 0 0

...
...

...
...

s2k−3 s2k−4 · · · 1 0
s2k−2 s2k−3 · · · sk 1


Observe that the columns of M span and form a linearly independent set in Rk.
That is, {si | i = 0, 1, . . . , k − 1} forms a basis for Rk.

Lemma 2.39. Let s be the impulse response sequence satisfying a linear recurrence
relation over a commutative ring R with companion matrix A. Then for any integers
i, j ≥ 0, si = sj if and only if Ai = Aj.
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Proof. It follows immediately from Lemma 2.32 that Ai = Aj implies si = sj. Con-
versely, suppose that si = sj. Then by Lemma 2.5, si+t = sj+t for every integer
t ≥ 0. By Lemma 2.32, we then get Aist = Ajst for every integer t ≥ 0. Since
{si | i = 0, 1, . . . , k − 1} forms a basis for Rk (via Lemma 2.38), we deduce that
for any vector v ∈ Rk, Aiv = Ajv. It follows that, by substituting the standard
basis vectors for v, every column in Ai matches with the corresponding column in
Aj. Hence, Ai = Aj.

Proposition 2.40. Let s and t be sequences satisfying the same linear recurrence
relation over a finite commutative ring R such that s is the impulse response sequence.
Then ρ(t)|ρ(s).

Proof. For every integer i ≥ η(s), si = si+ρ(s). Thus, by Lemma 2.39, Ai = Ai+ρ(s) for
every integer i ≥ η(s). By Lemma 2.32, we then have ti = Ait0 = Ai+ρ(s)t0 = ti+ρ(s).
Hence, ρ(s) is a period of t, and by Lemma 1.1, ρ(t)|ρ(s).

We then immediately obtain the following corollary:

Corollary 2.41. Let f(x) ∈ R[x] be the characteristic polynomial of a linear re-
currence relation over a finite commutative ring R. If s ∈ A(f(x)) is the impulse
response sequence, then ρ(f(x)) = ρ(s).

The next result relates the period of the impulse response sequence and the
order of the companion matrix A when A is invertible.

Proposition 2.42. Let s be the impulse response sequence satisfying a linear recur-
rence relation over a finite commutative ring R with characteristic polynomial f(x)
and companion matrix A such that f(0) := a0 is a unit. Then ρ(s) = ord(A)

Proof. First recall that by Proposition 2.33, A is invertible and hence ord(A) is
well defined. Now for every integer i ≥ 0, Ai = AiI = AiAord(A) = Ai+ord(A). By
Lemma 2.39, it follows that si = si+ord(A). Hence, ρ(s)|ord(A) by Lemma 1.1. On
the other hand, since a0 is a unit, we see that s is purely periodic by Lemma 2.4.
Hence, s0 = sρ(s), and so by Lemma 2.39, we deduce that A0 = I = Aρ(s). Thus,
ord(A)|ρ(s), which implies ord(A) = ρ(s).

The following lemma gives us a lower limit on the least period of the impulse
response sequence for a given linear recurrence relation. It will become useful in
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Chapter 4 when we analyze the principal period of a linear recurrence over a quo-
tient ring of a principal ideal domain.

Lemma 2.43. Let s be the impulse response sequence satisfying a linear recurrence
relation over a finite commutative ring R with characteristic polynomial f(x) such
that f(0) := a0 is a unit. Then ρ(s) ≥ k.

Proof. Let f(x) and A be the associated characteristic polynomial and companion
matrix, respectively, of the linear recurrence. Now suppose, by way of contradiction,
that ρ(s) < k, so that there exists j ∈ Z+ such that j < k and si = si+j for
all sufficiently large integers i. Then by Lemma 2.39, Ai = Ai+j = AiAj, so that
I = Aj, since A is invertible via Proposition 2.33. This implies that s0 = Ajs0 = sj.
But by Lemma 2.38, we know that {Ais0 = si | i = 0, 1, . . . , j, . . . k − 1} forms a
pairwise distinct set of vectors, and so s0 6= sj, a contradiction. Thus, ρ(s) ≥ k.

Recalling our results in the previous section, we therefore arrive at the following
proposition:

Proposition 2.44. Let f(x) be the characteristic polynomial of a recurrence relation
over a finite commutative ring, with f(0) a unit. Then the principal period ρ(f(x))
is the least n ∈ Z+ such that f(x)|xn − 1.

Proof. Let s ∈ A(f(x)) be the impulse response sequence. Then ρ(f(x)) = ρ(s)
by Corollary 2.41. Let n = ρ(s) and k = deg(f(x)). By Lemma 2.43, we have

n ≥ k and since s0 = ek we have S
(0)
f (x) = 1. Then bt Proposition 2.25(1), we have

f(x)|(xn − 1)(1) = xn − 1.

On the other hand, if f(x)|xn − 1 for some n ∈ Z+ then n ≥ deg(f(x)) = k
since f(x) is monic. By Proposition 2.25(1), we see that such an n is a period of s
and so n ≥ ρ(s). Thus, ρ(s) is the smallest n such that f(x)|xn − 1.
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CHAPTER 3. SEQUENCES OVER FINITE FIELDS

In this chapter, we will be working with R := Fq, and attempt to determine the
set of all least periods of sequences satisfying linear recurrence relations of a given de-
gree k. As we shall see in Theorem 3.10 (Section 3.2), there exists a close relationship
between the least period of a sequence and the order of the characteristic polynomial
of a linear recurrence which it satisfies. We will introduce the notion of the order of
a polynomial and describe some of its properties in Section 3.1 below.

Now recall from Proposition 2.8 that a linearly recurring sequence in fact satisfies
an infinite set of linear recurrences. Thus, the least period of the sequence is related to
the orders of the characteristic polynomials associated to all of these recurrences. The
order of one such polynomial, which we will later refer to as the minimal polynomial,
exactly determines the least period of the sequence. Section 3.3 will be devoted to
identifying the minimal polynomial. In Section 3.4, we will then apply the results
of the previous section on the order of the minimal polynomial, and finally arrive
at our goal of identifying the set of least periods that arise from families of linear
recurrences of degree k.

Much of the results in Sections 3.1, 3.2 and 3.3 can be found in [1] Chap-
ters 3 and 8.

3.1. Orders of Polynomials

Before defining the order of a particular polynomial f(x), we need the following
lemma.

Lemma 3.1. Let f(x) ∈ Fq[x], and suppose that deg(f(x)) ≥ 1 with f(0) 6= 0. Then
there exists e ∈ Z+ such that f(x)|(xe − 1).

Proof. This follows from Lemma 2.26.

Definition 3.2. Let f(x) ∈ Fq[x] with deg(f(x)) ≥ 1. If f(0) 6= 0, then we define
ord(f(x)) := min{e | f(x)|(xe − 1)}. If f(0) = 0, then f(x) = xhg(x), where h ∈ Z+

and g(x) ∈ Fq[x] such that g(0) 6= 0. We subsequently define ord(f(x)) := ord(g(x)).
Finally, if f(x) is a constant function, then we set ord(f(x)) = 1.

Lemma 3.3. Let f(x) ∈ Fq[x] be an irreducible polynomial of degree k. If f(0) 6= 0,
then ord(f(x)) = ord(α), where α is a root of f(x) and an element of the multi-
plicative group F∗

qk
. Consequently, for any irreducible polynomial f(x) of degree k,
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ord(f(x))|qk − 1.

Proof. Set e := ord(f(x)). If f(x) = x, then e = 1, which divides qk − 1.

Now suppose that f(0) 6= 0. Since f(x) is irreducible in Fq[x], for any root
α of f(x), Fq(α) ∼= Fq[x]

/
〈f(x)〉 , with Fq(α) ∼= Fqk . Since f(α) = 0 and f(x) +

〈f(x)〉 = 0 + 〈f(x)〉, we see that α corresponds to the coset x + 〈f(x)〉 in the
isomorphism Fqk ∼= Fq[x]

/
〈f(x)〉 . We then observe that f(x)|xe − 1 if and only if

(x + 〈f(x)〉)e − (1 + 〈f(x)〉) = 0 + 〈f(x)〉, i.e. (x + 〈f(x)〉)e = 1 + 〈f(x)〉, which
is then equivalent to αe = 1 in Fqk . Keeping in mind that e is by definition the
smallest positive integer n that satisfies f(x)|xn − 1, we conclude that e = ord(α).
Since |F∗

qk
| = qk − 1, it then immediately follows that e|qk − 1.

Lemma 3.4. Let g(x) ∈ Fq[x] and c ∈ Z+. If g(x)|xc − 1, then ord(g(x))|c

Proof. Let e := ord(g(x)). From the definition of the order of a polynomial, we
know that e ≤ c. Then by the division algorithm, we may express c = me + r, for
some unique integers m > 0 and 0 ≤ r < e. So xc − 1 = xmexr − 1 + xr − xr =
(xme − 1)xr + (xr − 1). Note that xe − 1|xme − 1, so that g(x) divides both xc − 1
and xme − 1. Hence g(x)|xr − 1. In order to not contradict the definition of e, since
r < e, we must have that r = 0. Therefore, e|c.

Lemma 3.5. Let f(x) :=
∏n

i=1 gi(x) ∈ Fq[x], and for every i, let ei := ord(gi(x)). If
{g1(x), g2(x), . . . , gn(x)} is a pairwise relatively prime set, then we have ord(f(x)) =
lcm(e1, e2, . . . , en).

Proof. Set ei := ord(gi(x)) for each gi(x), and set e := lcm(e1, e2, . . . , en).

First, suppose that f(0) 6= 0, so that for each i, gi(0) 6= 0. Then for every i,
gi(x)|xei − 1, and so gi(x)|xe− 1. Since g1(x), g2(x), . . . , gn(x) are pairwise relatively
prime, it follows that their product, f(x), divides xe − 1. Hence, ord(f(x)) ≤ e. On
the other hand, since each factor gi(x) of f(x) also divides xord(f(x))−1, we have that
for each i, ei|ord(f(x)) by Lemma 3.4. Thus, e|ord(f(x)), so that ord(f(x)) = e.

Now suppose that f(0) = 0. Then for some j, gj(x) = xhḡ(x), where h ∈ Z+,
ḡ(0) 6= 0 and for every i 6= j, gi(0) 6= 0. Let g(x) = ḡ(x) ·

∏n
i 6=j gi(x). Note

that by definition, ej = ord(gj(x)) = ord(ḡ(x)). Then from the first case, we have
ord(f(x)) = ord(g(x)) = e.
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Using Lemma 3.5, we can now determine the order of a polynomial in terms of
its prime power decomposition, since each prime power factor is relatively prime to
the other factors. We have thus reduced the problem from determining the order
of a general monic polynomial to that of a power of an irreducible. We address the
latter in the following lemma.

Lemma 3.6. Let f(x) := (g(x))b ∈ Fq[x], where b is a nonnegative integer and g(x)
is an irreducible polynomial with g(0) 6= 0. Let p ∈ Z+ be the characteristic of Fq,
and let t := min(t′ ∈ Z+ ∪ {0} | pt′ ≥ b). Then ord(f(x)) = ptord(g(x)).

Proof. Set c := ord(f(x)) and e := ord(g(x)). Since g(x)|f(x), we have g(x)|xc − 1.
By Lemma 3.4, we deduce that e|c. Note that g(x)|xe − 1 by definition, so that
f(x)|(xe − 1)b. Therefore, by Lemma 1.13, f(x)|(xe − 1)p

t
= xep

t − 1, since p is the
characteristic of Fq. Thus, by Lemma 1.13, we conclude that c|ept. Putting e|c and
c|ept together, we have that c = epu, where 0 ≤ u ≤ t is an integer.

From Lemma 3.3, we know that since g(x) is irreducible, e|qk − 1 where k =
deg(g(x)). Thus, since the characteristic p of Fq divides q, it follows that p - e.
From Lemma 1.14, we know that any polynomial h(x) ∈ Fq[x] has a multiple zero if
and only if h(x) and its derivative h′(x) have a common factor of positive degree in
Fq[x]. Now, since the characteristic p does not divide e, we see that the derivative
[xe − 1]′ = exe−1 6= 0. Since x and xe − 1 are relatively prime, and since Fq[x] is a
unique factorization domain, it follows that xe−1 and exe−1 are also relatively prime.
Hence, all the roots of xe − 1 must have multiplicity 1. Therefore, all the roots of
xep

u − 1 = (xe − 1)p
u

have multiplicity pu. Since (g(x))b|xepu − 1, the restriction on
the multiplicity of the roots necessitates that b ≤ pu. Thus, by definition, t ≤ u, and
so u = t. Therefore, c = ept.

From the above lemmas, we now have all the tools to derive the order of any
monic polynomial:

Corollary 3.7. Let f(x) :=
∏n

i=1(gi(x))bi be the prime power decomposition of
f(x) ∈ Fq[x], with Fq having characteristic p. Let ei := ord(gi(x)) and ti := min(t ∈
Z+ ∪ {0} | pt ≥ bi) for every i. Then ord(f(x)) = lcm(e1, e2, . . . , en) · pt, where
t := max(t1, t2, . . . , tn).

Proof. As noted in the proof of Lemma 3.6, gcd(ei, p) = 1 if gi(x) is irreducible and
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gi(0) 6= 0. By Lemmas 3.5 and 3.6, we thus have

ord(f(x)) = lcm(e1p
t1 , e2p

t2 , . . . , enp
tn)

= lcm(e1, e2, . . . , en) · lcm(pt1 , pt2 , . . . , ptn)

= lcm(e1, e2, . . . , en) · pt

as desired.

3.2. The Order of the Characteristic Polynomial

In Chapter 2 we were able to relate the least period of a linearly recurring
sequence s to the order of the companion matrix A associated to the linear recurrence.
We shall hence observe that, at least over finite fields, we can readily relate the least
period of s to the order of the associated characteristic polynomial f(x) as well, by
showing that ord(A) and ord(f(x)) are in fact equivalent. To prove this equivalence,
we will need the following lemma.
Lemma 3.8. Let f(x) and A be the associated characteristic polynomial and com-
panion matrix, respectively, of a linear recurrence relation of degree k over Fq. Then
{h(x) ∈ Fq[x] | h(A) = 0 ∈Mk(Fq)} = 〈f(x)〉.

Proof. Let D := {h(x) ∈ Fq[x] | h(A) = 0 ∈ Mk(Fq)}. It is straightforward to
verify that the set D is a nontrivial ideal. Since f(x) ∈ D by Lemma 2.35, we have
〈f(x)〉 ⊆ D. Since a nonzero ideal in Fq[x] is generated by an element of least degree
in the ideal (via Lemma 1.12), we can verify that 〈f(x)〉 = D by showing that every
nonzero element in D has degree at least k.

Suppose there exists a polynomial g(x) ∈ D with g(x) := bk−1x
k−1 + bk−2x

k−2 +
. . .+ b0, for some bk−1, bk−2, . . . , b0 ∈ Fq. Let s0 ∈ Fqk . Then we have

g(A) = bk−1A
k−1 + bk−2A

k−2 + . . .+ b0I

s0g(A) = s0[bk−1A
k−1 + bk−2A

k−2 + . . .+ b0I]

s0 · 0 = bk−1(s0A
k−1) + bk−2(s0A

k−2) + . . .+ b0(s0I)

0 = bk−1(s0A
k−1) + bk−2(s0A

k−2) + . . .+ b0(s0A
0)

0 = bk−1(sk−1) + bk−2(sk−2) + . . .+ b0(s0)

If we choose s0 = ek, then by Lemma 2.38, {si | i = 0, 1, . . . , k − 1} is a linearly
independent set. Therefore, bk−1 = bk−2 = . . . = b0 = 0. Thus, g(x) = 0, and so
we’re done.
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Proposition 3.9. Let f(x) and A be the associated characteristic polynomial and
companion matrix, respectively, of a linear recurrence relation of degree k ∈ Z+ over
Fq given by Equation 1, such that a0 6= 0. Then ord(f(x)) = ord(A).

The proposition does not take into account all possible linear recurrences. We
will address these exceptions later in the chapter, but as it turns out, determining
a relationship between the order of the associated characteristic polynomial and the
order of the companion matrix for the given subset of linear recurrences is sufficient
to determine the least periods of all linearly recurring sequences.

Proof. Let f(x) and A be given by Equations 4 and 9 respectively. Since deg(f(x)) =
k ≥ 1 and f(0) = a0 6= 0, we conclude from Lemma 3.1 that there exists e′ ∈ Z+

such that f(x)|(xe′ − 1). Let e = ord(f(x)), so that f(x)|xe− 1. Now, since A is the
companion matrix associated with f(x), it follows from Lemma 2.35 that f(A) = 0.
Therefore, Ae − I = 0, and so Ae = I. Thus, ord(A)|e.

Conversely, since Aord(A) = I, so that Aord(A)− I = 0, it follows from Lemma 3.8
that xord(A) − 1 ∈ 〈f(x)〉. Therefore, f(x)|(xord(A) − 1) which then implies that e ≤
ord(A). And so combining this with ord(A)|e, we see that ord(f(x)) = e = ord(A).

It is through the equivalence in Proposition 3.9 that we call ord(f(x)) in the pre-
ceding definition the ‘order’ of the polynomial f(x) in Fq[x]. This terminology also
arises naturally when we consider the order of a root of an irreducible polynomial,
which, as we shall see in Lemma 3.3, is equivalent to the order of the polynomial itself.

Theorem 3.10. Let s satisfy a linear recurrence relation over Fq with associated
characteristic polynomial f(x). Then ρ(s)|ord(f(x)).

Proof. If f(0) 6= 0, then the statement follows immediately by combining Propo-
sitions 2.33 and 3.9. More generally, suppose f(x) := xhg(x), where h ≥ 0 is an
integer and g(x) ∈ Fq[x] such that g(0) 6= 0. Then by Lemma 2.10, we have that
s(h) satisfies a linear recurrence relation with characteristic polynomial g(x). By
Lemma 2.5, ρ(s(h)) = ρ(s). By definition we also have that ord(f(x)) := ord(g(x)).
Therefore, ρ(s)|ord(f(x)) if and only if ρ(s(h))|ord(g(x)), which again follows from
Propositions 2.33 and 3.9.
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3.3. The Minimal Polynomial

As described in the introduction of this chapter, for every linearly recurring
sequence, there exists a unique associated characteristic polynomial, called the min-
imal polynomial, whose order determines the least period of the sequence. This
section discusses the derivation of the minimal polynomial. The key to the minimal
polynomial’s derivation lies in the construction of a mechanism for characteristic
polynomials to interact algebraically with linearly recurring sequences. We accom-
plish this goal by viewing the space of characteristic polynomials as residing in the
larger space of power series, and by expressing linearly recurring sequences as ele-
ments of this space via their corresponding generating function (Definition 2.21). In
the space of power series, a characteristic polynomial ‘acts on’ a linearly recurring
sequence through the standard multiplication of the sequence’s generating function
and the reciprocal of the characteristic polynomial. The generating function, the ring
of power series, and the reciprocal of a polynomial are all discussed in Section 1.3.

Lemma 3.11. Let a linear recurrence relation of degree k over Fq be given, with
characteristic polynomial f(x). Set ak = −1.

If s is a sequence that satisfies a linear recurrence relation, and if S(x) ∈ Fq[[x]]
is the generating function of s, then

S(x) =
g(x)

f ∗(x)
(10)

where

g(x) := −
k−1∑
j=0

(
j∑
i=0

ai+k−jsi

)
xj ∈ Fq[x]. (11)

Conversely, let k ∈ Z+. For all polynomials f(x), g(x) ∈ Fq[x] such that
deg(g(x)) < deg(f(x)) = k and f(x) is monic, the formal power series S(x) ∈ Fq[[x]]
defined by Equation 10 is the generating function of some sequence s ∈ Fq that sat-
isfies a linear recurrence relation with f(x) as the characteristic polynomial.

Proof. ( =⇒ ) Let s satisfy a linear recurrence relation over Fq with reciprocal
characteristic polynomial f ∗(x), so that

f ∗(x) := xkf(1/x) = 1− ak−1x− ak−2x2 − . . .− a0xk ∈ R[x]. (12)
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Let the generating function G(x) of s be given by Equation 5. Then setting ak = −1,
we have

f ∗(x)S(x) = −

(
k∑

n=0

ak−nx
n

)(
∞∑
i=0

six
i

)
= −

[
∞∑
j=0

(∑
n+i=j

ak−nsi

)
xj

]

Now for all integers j ≥ 0, we have

∑
n+i=j

ak−nsi =

j∑
i=0

ak−(j−i)si =

j∑
i=0

ai+k−jsi

where we define ai = 0 for all integers i < 0. If j < k, then
∑

n+i=j ak−nsi =∑j
i=0 ai+k−jsi as above. On the other hand, if j ≥ k, then

∑
n+i=j ak−nsi =

∑j
i=j−k ai+k−jsi,

since for any i < j − k, i+ k − j < j − k + k − j = 0, and so ai+k−j = 0. Therefore,

f ∗(x)S(x) =

[
−

k−1∑
j=0

(
j∑
i=0

ai+k−jsi

)
xj −

∞∑
j=k

(
j∑

i=j−k

ai+k−jsi

)
xj

]
= g(x)− z(x)

where g(x) is given by Equation 11 and z(x) :=
∑∞

j=k

(∑j
i=j−k ai+k−jsi

)
xj =∑∞

j=k

(∑k
i=0 aisj−k+i

)
xj. By Lemma 2.23, we then have that for any integer j ≥ k,∑k

i=0 aisj−k+i = 0. Hence, all coefficients of z(x) vanish. Therefore, f ∗(x)S(x) =
g(x). Now, since f ∗(x) ∈ Fq[[x]] and f ∗(0) = 1 6= 0 is a unit, by Lemma 1.24 it

follows that f ∗(x) has a multiplicative inverse. Therefore, S(x) = g(x)
f∗(x)

.

( ⇐= ) Now let k ∈ Z+, and let f(x), g0(x) ∈ Fq[x] such that deg(g0(x)) <
deg(f(x)) = k and f(x) is monic. Note then that f ∗(0) = 1 6= 0. Thus, by
Lemma 1.24, f ∗(x) has a multiplicative inverse 1

f∗(x)
∈ Fq[[x]]. Define the power

series S(x) := g0(x)
f∗(x)

. Then by construction, g0(x) = f ∗(x)S(x). By the calculation

in the first part of our proof, we then have g0(x) = g(x) − z(x), with g(x) and
z(x) as defined above. Since the degrees of g0(x) and g(x) are both less than k,
we observe that all coefficients of z(x) must be 0. That is, for all integers j ≥ k,∑j

i=j−k ai+k−jsi = 0, so that for all integers j ≥ 0,
∑k

i=0 aisi+j = 0. Hence, in light
of Lemma 2.23, the sequence s := (si)i≥0 formed by the coefficients of S(x) ∈ Fq[x]
satisfies te linear recurrence relation with characteristic polynomial f(x).
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Lemma 3.12. Let s be a periodic sequence that satisfies a linear recurrence relation
of degree k with characteristic polynomial f(x) ∈ Fq[x]. Let n ∈ Z+ be a period of s.
Then there exists h(x) ∈ Fq[x] such that:

f(x)S∗n(x) = (xn − 1)h(x) (13)

Proof. Let f(x) and its reciprocal f ∗(x) be given by Equations 4 and 12. Let S(x)
be the generating function of s := (si)i≥0. Since s is periodic with period n, S(x)
can be written in the following way:

S(x) = (s0 + s1x+ s2x
2 + . . .+ sn−1x

n−1)(1 + xn + x2n + . . .) =
Sn(x)

1− xn

From Lemma 3.11 we know that S(x) = g(x)
f∗(x)

, where g(x) is given by Equation 11.
Therefore,

Sn(x)

1− xn
=

g(x)

f ∗(x)
,

and so
f ∗(x)Sn(x) = g(x)(1− xn). (14)

Now, utilizing the derivation xcS∗n(x) = xn−1Sn(1/x) for c := n− 1− deg(Sn(x)) by
Equation 7 and the fact that f(x) = xkf ∗(1/x) by Equation 11, we have:

xcf(x)S∗n(x) = xkf ∗(1/x)xn−1Sn(1/x) = xk+n−1(f ∗(1/x)Sn(1/x)).

Thus, by Equation 14, we get:

xcf(x)S∗n(x) = xk+n−1g(1/x)

[
1−

(
1

x

)n]
= xk−1g(1/x)(xn − 1)

= (xn − 1)H(x)

where:
H(x) := g(1/x)xk−1 (15)

Recall that deg(g(x)) ≤ k− 1, and so we see that H(x) is indeed a polynomial, with
deg(H(x)) ≤ k − 1. Note that xc and xn − 1 are relatively prime, so that xc must
divide H(x). Hence, dividing xc from both sides, we have

f(x)S∗n(x) = (xn − 1)h(x)

40



where

h(x) :=
H(x)

xc
= g(1/x)xk−c−1 (16)

Therefore, there exists a polynomial h(x) ∈ Fq[x] such that f(x)S∗n(x) = (xn−1)h(x).

Remark 3.13. Lemma 3.12 states that if s is periodic, then there will exist a poly-
nomial, namely h(x), that satisfies Equation 13. We will hereafter use Equation 16
to define h(x) even when s is not periodic.

Note also that the definition of h(x) depends solely on g(x) and the degree k of
the recurrence. Hence, in the case that s is periodic, the same polynomial h(x) will
arise in the proof of Lemma 3.12 regardless of the period n used. Thus, for every
period n ∈ Z+ of a periodic sequence s, Equation 13 is satisfied by h(x) as defined
in Equation 16.

Finally, as it turns out, h(x) – whose definition is intimately related to s and
f(x) – holds the key to determining the minimal polynomial of s. Specifically, if
h(x) and f(x) are relatively prime, then f(x) is in fact the minimal polynomial of
s. More generally, the minimal polynomial m(x) of s is the greatest factor of f(x)
which is relatively prime to h(x), as we shall see in the following theorem.

Theorem 3.14. Let s ∈ Fq be a linearly recurring sequence. Then there exists a
uniquely determined monic polynomial m(x) ∈ Fq[x] such that for any f(x) ∈ Fq[x]
with f(x) monic, s satisfies a linear recurrence relation with characteristic polynomial
f(x) if and only if m(x)|f(x).

We shall refer to this uniquely determined monic polynomial m(x) as the mini-
mal polynomial of s.

Proof. If s is the zero sequence, then s satisfies any linear recurrence relation, and
we can take m(x) = 1 as the minimal polynomial of s.

Now suppose that s is not the zero sequence, and that it satisfies the linear
recurrence with characteristic polynomial f0(x) ∈ Fq[x] of degree k0. Let S(x) ∈
Fq[[x]] be the generating function of s. Then by Lemma 3.11, there exist g0(x) ∈
Fq[x] such that S(x) = g0(x)

f∗0 (x)
. Let h0(x) ∈ Fq[x] be the polynomial determined by

f0(x) and g0(x), as in Equation 16. Let d(x) := gcd(f0(x), h0(x)) such that d(x)
is monic. Then f0(x) = m(x)d(x) and h0(x) = b(x)d(x), where m(x), b(x) ∈ Fq[x]
and gcd(m(x), b(x)) = 1. It is this polynomial m(x) that is the desired minimal
polynomial of s.
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We will first prove that m(x) is monic. Note that since d(x) and f0(x) are monic
by definition, so is m(x).

We now want to show that m(x) indeed does satisfy the biconditional statement.
Going in the forward direction, we will verify that m(x) divides any characteristic
polynomial which s satisfies. Suppose s also satisfies the linear recurrence with
characteristic polynomial f(x) ∈ Fq[x]. Again by Lemma 3.11, there exist g(x) ∈
Fq[x] such that g(x)

f∗(x)
= S(x) = g0(x)

f∗0 (x)
. Thus,

g0(x)f ∗(x) = g(x)f ∗0 (x)

Let h(x) ∈ Fq[x] be the polynomial determined by f(x) and s, as in Equation 16.
Recall from Remark 3.13 that h(x) exists and is defined by the equation regardless
of whether s is periodic or not.

Then by the definitions of f0(x), f(x), h0(x) and h(x) as in Equations 16 and 3,
we have the following:

h(x)f0(x) = g

(
1

x

)
xk−c−1xk0f ∗0

(
1

x

)
= xk+k0−c−1g

(
1

x

)
f ∗0

(
1

x

)
= xk+k0−c−1g0

(
1

x

)
f ∗
(

1

x

)
= g0

(
1

x

)
xk0−c−1xkf ∗

(
1

x

)
= h0(x)f(x)

We have that h(x)m(x)d(x) = h(x)f0(x) = h0(x)f(x) = b(x)d(x)f(x), and
canceling d(x) gives:

h(x)m(x) = b(x)f(x)

.

Since m(x) and b(x) are relatively prime, it must therefore be that m(x)|f(x). Thus,
since f(x) is arbitrary, it follows that m(x) necessarily divides any characteristic
polynomial of s.

We will now show that every monic polynomial that is a multiple of m(x) is
necessarily a characteristic polynomial of s. We know by definition that h0(x)m(x) =
b(x)d(x)m(x) = b(x)f0(x), and from Equation 16, we have that h0(x) = g0(1/x)xk0−c−1,
so that g0(x) = xk0−c−1h0(1/x). Therefore, letting κ := deg(m(x)) , the following
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holds:

g0(x)m∗(x) = xk0−c−1h0

(
1

x

)
xκm

(
1

x

)
= xk0−c−1xκh0

(
1

x

)
m

(
1

x

)
= xκ−c−1xk0b

(
1

x

)
f0

(
1

x

)
= xκ−c−1b

(
1

x

)
xk0f0

(
1

x

)
= a(x)f ∗0 (x)

where a(x) := xκ−c−1b
(
1
x

)
. We check that a(x) is indeed a polynomial. Note that by

Equation 16, deg(h0(x)) ≤ k0− c−1. Since h0(x) = b(x)d(x) and f0(x) = m(x)d(x),
it follows that deg(b(x)) = deg(h0(x))−t ≤ k0−c−t−1 and κ = deg(m(x)) = k0−t,
where t := deg(d(x)). Therefore, deg(a(x)) = κ − c − 1 − deg(b(x)) ≥ (k0 − t) −
c − 1 − (k0 − c − t − 1) = 0. Hence, a(x) ∈ Fq[x]. Also note that since m(x) is
monic, m∗(0) = 1 6= 0, and so by Lemma 1.24, there exists a multiplicative inverse

1
m∗(x)

∈ Fq[[x]].

Now let f1(x) ∈ Fq[x] be such that f1(x) is monic and m(x)|f1(x). Then f1(x) :=
C(x)m(x), for some nonzero C(x) ∈ Fq[x]. We know by Lemma 1.26 that f ∗1 (x) =
C∗(x)m∗(x). We thus have:

g0(x)m∗(x) = a(x)f ∗0 (x)

S(x) =
g0(x)

f ∗0 (x)
=

a(x)

m∗(x)
=

a(x)C∗(x)

m∗(x)C∗(x)
=
g1(x)

f ∗1 (x)

where g1(x) := a(x)C∗(x) ∈ Fq[x]. Since deg(a(x)) ≤ κ − c − 1 < deg(m(x)) and
deg(C∗(x)) ≤ deg(C(x)), we have that deg(g1(x)) = deg(a(x)C∗(x)) = deg(a(x)) +
deg(C∗(x)) < deg(m(x)) + deg(C(x)) = deg(m(x)C(x)) = deg(f1(x)).

Therefore, by Lemma 3.11, the sequence s satisfies a linear recurrence relation
over Fq[x] with f1(x) as the associated characteristic polynomial. Thus, since f1(x) is
arbitrary, we have that every nonzero monic multiple of m(x) in Fq[x] is necessarily
a characteristic polynomial of s.

Finally, we shall prove that m(x) is uniquely determined by the biconditional
statement in the theorem. If m1(x) and m2(x) are two polynomials for which the
biconditional statement in the theorem holds, then both must be characteristic poly-
nomials for the sequence s and hence each must divide the other. Since they are
monic, this implies that m1(x) = m2(x).
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Remark 3.15. As mentioned in the proof of Theorem 3.14, the minimal polynomial
of a linearly recurring sequence is also the characteristic polynomial of some linear
recurrence relation satisfied by the sequence, since the minimal polynomial clearly
divides itself.

Remark 3.16. Also note that in the proof of Theorem 3.14, the minimal polynomial
m(x) of s must satisfy m(x) · gcd(f(x), h(x)) = f(x) for any arbitrary characteristic
polynomial f(x) of degree k ∈ Z+ of s and corresponding polynomial h(x) as provided
in Lemma 3.12.

Theorem 3.17. Let s ∈ Fq be a linearly recurring sequence, and let m(x) ∈ Fq[x] be
the minimal polynomial of s. Then ρ(s) = ord(m(x)).

Proof. Let ρ(s) and η(s) be the least period and preperiod of s, respectively. Then
for any integer i ≥ η(s), si = si+ρ(s), so that for any integer i ≥ 0, si+η(s) =
si+η(s)+ρ(s). Therefore, s satisfies the linear recurrence relation si+η(s) = si+η(s)+ρ(s),
with a corresponding characteristic polynomial f(x) := xη(s)+ρ(s)−xη(s) = xη(s)(xρ(s)−
1). Now let m(x) ∈ Fq[x] be the associated minimal polynomial of s. Then by
Theorem 3.14, m(x)|f(x), so that m(x) = xhg(x), where h ≤ η(s) and g(x) ∈ Fq[x]
such that g(0) 6= 0 and g(x)|xρ(s)− 1. By definition, we then have that ord(m(x)) =
ord(g(x)) ≤ ρ(s). On the other hand, we know from Theorem 3.14 that m(x) is
a characteristic polynomial of s. Then by Theorem 3.10, ρ(s)|ord(m(x)). Hence,
ρ(s) = ord(m(x)).

3.4. Periods of Families of Linear Recurrences

We will summarize all our findings about the sets of least periods for a given
linear recurrence relation, and then for a given class of degree-k linear recurrence
relations, in this section.

Proposition 3.18. For any given k ∈ Z+ and Fq, and for every integer l ≥ k,
P(k,Fq) ⊆ P(l,Fq).

This is a special case of Proposition 2.8. We give an alternative proof using the
minimal polynomial.

Proof. Let s be a sequence such that ρ(s) ∈ P(k,Fq). Then s satisfies a linear
recurrence relation with characteristic polynomial f(x) ∈ Fq[x] of degree k. Let
m(x) ∈ Fq[x] be the minimal polynomial of s. By Theorem 3.14, m(x)|f(x), so that
deg(m(x)) ≤ k ≤ l. Let g(x) ∈ Fq[x] be such that f(x)|g(x) and deg(g(x)) = l.
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Then by Theorem 3.14, s satisfies the linear recurrence relation with characteristic
polynomial g(x). Hence, ρ(s) ∈ P(l,Fq).

Lemma 3.19. Let f(x) ∈ Fq[x] be a monic polynomial of degree k. Then there exists
a linearly recurring sequence s ∈ Fq such that f(x) is the minimal polynomial of s.

Proof. If k = 0, then f(x) = 1, which is the minimal polynomial of the zero sequence.

If k ∈ Z+, then consider g(x) := xk−1. Then by Lemma 3.11, the formal power

series S(x) := g(x)
f∗(x)

is the generating function of some sequence s satisfying the

linear recurrence relation with f(x) as the associated characteristic polynomial. From
Equation 16, the polynomial determined by f(x) and s as in Lemma 3.12 is given by
h(x) := g(1/x)xk−c−1 = x−c. Since h(x) is guaranteed to be a polynomial, it follows
that c = 0 and that h(x) = 1. Letm(x) ∈ Fq[x] be the minimal polynomial of s. Then
from the proof of Theorem 3.14, we have that f(x) = m(x) gcd(f(x), h(x)) = m(x)·1.
Thus, f(x) is the minimal polynomial of s.

The polynomial g(x) := xk−1, k ∈ Z+, that we used in the Proof of Lemma 3.19
actually corresponds to the impulse response sequence. From Proposition 2.40, we see
that the impulse response sequence always yields the maximum possible least period
for any linear recurrence relation, which is given by the order of the characteristic
polynomial. However, the impulse response is not necessarily the only sequence that
may yield the maximum possible least period. For example, by Theorem 3.14, we
see that any nonzero sequence satisfying a linear recurrence with an irreducible char-
acteristic polynomial necessarily has the maximum possible least period. Generally,
for any sequence s satisfying a linear recurrence with characteristic polynomial f(x)
such that the associated polynomial h(x) := g(1/x)xk−1 is relatively prime to f(x),
we have that ρ(s) = ord(f(x)).

We now have all the tools necessary to determine the sets of least periods that
arise from linearly recurring sequences of small degree k over some finite field Fq. To
determine these sets of periods, we use the following facts: (1) that the least periods
of sequences are equal to the orders of their associated minimal polynomials (Theo-
rem 3.17), (2) that the minimal polynomial of a sequence divides every characteristic
polynomial it satisfies (Theorem 3.14), and (3) that for any characteristic polyno-
mial, there exists a linearly recurring sequence for which the polynomial is minimal.
Hence, the set of least periods that will arise from linear recurrences of a given degree
k over the finite field Fq is exactly the set of orders of all monic polynomials in Fq[x]
of up to degree k. Additionally, as we shall see from Lemma 3.21, the set of orders
of all monic polynomials of degree k completely accounts for the set of orders of all
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monic polynomials of degree less than k, and by extension accounts for the set of
least periods arising from linear recurrences of degree k. We state this conclusion in
Proposition 3.22.

Definition 3.20. Let k ∈ Z+. We let M(k,Fq) denote the set of monic polynomi-
als f(x) ∈ Fq[x] with deg(f(x)) = k, and we let O(k,Fq) := {ord(f(x)) | f(x) ∈
M(k,Fq)}.

Lemma 3.21. Let k ∈ Z+ and Fq be given. For any nonnegative integer j ≤ k,
O(j,Fq) ⊆ O(k,Fq).

Proof. Let n ∈ O(j,Fq). Then n = ord(g(x)) for some monic polynomial g(x) ∈ Fq
of degree j. Let f(x) := xhg(x), where h = k − j is a nonnegative integer, so that
deg(f(x)) = h + j = k. Then by definition, ord(f(x)) = ord(g(x)) = n, and so
n ∈ O(k,Fq).

Proposition 3.22. For any given k ∈ Z+ and Fq, P(k,Fq) = O(k,Fq).

Proof. First, we check that P(k,Fq) ⊆ O(k,Fq). Let n ∈ P(k,Fq). Then there exists
a linearly recurring sequence s with ρ(s) = n, and characteristic polynomial f(x) of
degree k. By Theorem 3.14, the minimal polynomial m(x) of s divides f(x), and
so j ≤ k, where j := deg(m(x)). m(x) is also monic by definition, so we have
that m(x) ∈ M(j,Fq). Then by Theorem 3.17, n = ρ(s) = ord(m(x)) ∈ O(j,Fq).
Consequently, since 0 ≤ j ≤ k, by Lemma 3.21, n ∈ O(k,Fq).

Now we check the reverse containment. Let n ∈ O(k,Fq). Then n = ord(m(x)),
for somem(x) ∈ M(k,Fq), so thatm(x) is monic and deg(m(x)) = k. By Lemma 3.19,
there exists a linearly recurring sequence s ∈ Fq such that m(x) is the minimal poly-
nomial of s. By Remark 3.15, m(x) is also a characteristic polynomial of degree k of
s. Thus, by Theorem 3.17 , n = ord(m(x)) = ρ(s) ∈ P(k,Fq).

Viewing the set of least periods as a set of orders of polynomials allows for us
to determine their least upper bound, as in the corollary below.

Corollary 3.23. For any k ∈ Z+ and finite field Fq, ρ(k,Fq) = qk − 1.

Proof. If s0 = 0, then s is the zero sequence and ρ(s) = 1. Now observe that there
exist at most qk − 1 possible distinct nonzero tuples of length k over Fq. Since s
repeats when two state vectors are equal, it follows that ρ(k,Fq) = ρ(s) ≤ qk − 1.
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We will now prove that there exists a polynomial of degree k over Fq whose
order is qk − 1, so that qk − 1 is indeed the largest principal period for all linear
recurrences of degree k. Take the generator of the cyclic group F∗

qk
and let m(x)

be its associated minimal polynomial. Note that m(x) is irreducible, so we have
by Lemma 3.3 that ord(m(x)) = qk − 1. We also have that Fqk is obtained by
adjoining a root of m(x) to Fq, so that deg(m(x)) = k. Hence, by Proposition 3.22,
qk − 1 = ord(m(x)) ∈ O(k,Fq) = P(k,Fq). Thus, ρ(k,Fq) = qk − 1.

Combining Proposition 3.22 and the lemmas on orders of polynomials in Sec-
tion 3.2, we now have all the tools to arrive at the following propositions. We can
theoretically calculate the set of least periods associated with any given positive in-
teger k and finite field Fq, but here we will only show how to derive sets of least
periods for small values of k.

Definition 3.24. Let n ∈ Z+ and let Z be an arbitrary set of positive inte-
gers. Then we use D(n) to denote the set of positive divisors of n, and we de-
fine n · Z := {nz | z ∈ Z}. Furthermore, for any two Z1, Z2 ⊂ Z+, we define
Z1 · Z2 := {z1 · z2 | z1 ∈ Z1, z2 ∈ Z2}.

Proposition 3.25. For any given k ∈ Z+ and Fq,
⋃k
i=1 D(qi − 1) ⊂ P(k,Fq).

Proof. Let n ∈ D(qi − 1) for some integer 1 ≤ i ≤ k. Consider the multiplicative
group F∗qi with order qi− 1. Since F∗qi is cyclic, there exists a subgroup generated by
some element α ∈ F∗qi of order n. Let m(x) ∈ Fq(x) be the unique monic irreducible
polynomial with α as a root and let j = deg(m(x)). Then 1 ≤ j ≤ i ≤ k, since
j = [Fq(α) : Fq] and Fq(α) ⊆ Fqi . By Lemma 3.6, Lemma 3.21 and Proposition 3.22,
n = ord(α) = ord(m(x)) ∈ O(j,Fq) ⊆ O(k,Fq) = P(k, Fq).

Definition 3.26. According to the division algorithm, for any two positive integers
a and b, there exist unique q, r ∈ Z with q ≥ 0 and 0 ≤ r < b such that a = qb + r.
The integer quotient of a by b is often denoted by a//b = q.

Proposition 3.27. Let k ∈ Z+ be given, and let Fq have characteristic p. For any
integer 1 ≤ i ≤ k, {pj | 0 ≤ j ≤ ti} · D(qi − 1) ⊆ P(k,Fq), where ti = min(t ∈
Z+ ∪ {0} | pt ≥ k//i).

This is a stronger statement than Proposition 3.25.
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Proof. Let n ∈
(⋃ti

j=0{pj}
)
· D(qi − 1). Then n = pjm for some integer 0 ≤ j ≤ ti

and m ∈ D(qi − 1). From the proof of Proposition 3.25, we can find a monic
irreducible polynomial g(x) ∈ Fq[x] with ord(g(x)) = m and deg(g(x)) ≤ i. Let
f(x) := (g(x))b, where b := pj−1 + 1. Then by Lemma 3.6, ord(f(x)) = pjm = n.
We also have deg(f(x)) = b deg(g(x)) ≤ bi ≤ (pj−1 + 1)i. Hence, deg(f(x)) ≤ k,
since j ≤ ti and pti−1 + 1 ≤ k//i. Thus, by Lemma 3.21 and Proposition 3.22,
n = ord(f(x)) ∈ O(k,Fq) = P(k,Fq).

Proposition 3.28. For any Fq,

P(1,Fq) = D(q − 1).

Proof. From Proposition 3.22 and Lemma 3.3, we infer that P(1,Fq) = O(1,Fq) =
{ord(x − a) | a ∈ Fq} ⊆ D(q − 1). The reverse containment is guaranteed by
Proposition 3.25.

Proposition 3.29. For any Fq with prime characteristic p,

P(2,Fq) = D(q2 − 1) ∪ p ·D(q − 1).

Proof. We know from Proposition 3.22 that P(2,Fq) = O(2,Fq).

We first prove that O(2,Fq) ⊆ RHS (the right hand side). We consider the
following cases for an arbitrary monic polynomial f(x) of degree 2.

• Case 1: f(x) is irreducible.

Then from Lemma 3.3, ord(f(x)) ∈ D(q2 − 1).

• Case 2: f(x) = m1(x)m2(x), where m1(x) and m2(x) are distinct monic irre-
ducible polynomials of degree 1.

Since m1(x) and m2(x) are distinct monic irreducibles, they are relatively
prime. Then by Lemma 3.5, ord(f(x)) = lcm(ord(m1(x)), ord(m2(x))). Not-
ing that deg(m1(x)) = deg(m2(x)) = 1, we have that ord(m1(x)), ord(m2(x)) ∈
D(q − 1). Note that the least common multiple of any two divisors of q − 1
must also divide q − 1. Hence, ord(f(x)) ∈ D(q − 1).

• Case 3: f(x) = (m(x))2, where m(x) is a monic irreducible polynomial of
degree 1.
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By Lemma 3.6, ord(f(x)) = ptord(m(x)), where p is the prime characteristic
of Fq, and t is the least nonnegative integer such that pt ≥ 2. Note that for
any prime p, we have t = 1. Since deg(m(x)) = 1, it follows that ord(m(x)) ∈
D(q − 1). Hence, ord(f(x)) = pn, where n ∈ D(q − 1).

Gathering all cases, we thus have that O(2,Fq) ⊆ D(q2−1)∪D(q−1)∪p ·D(q−1) =
D(q2 − 1) ∪ p ·D(q − 1), where p is the characteristic of Fq.

Now for the reverse containment. From Proposition 3.27, we determine that for
all p, we have that t1 = 1 and t2 = 0, so that O(2,Fq) = P(2,Fq) ⊇ {1, p} · D(q −
1) ∪D(q2 − 1) = D(q2 − 1) ∪ p ·D(q − 1).

Proposition 3.30. Let Fq have prime characteristic p. If p = 2, then

P(3,Fq) =
3⋃
i=1

D(qi − 1) ∪
2⋃
i=1

pi ·D(q − 1).

Otherwise,

P(3,Fq) =
3⋃
i=1

D(qi − 1) ∪ p ·D(q − 1).

Proof. We know from Proposition 3.22 that P(3,Fq) = O(3,Fq).

We consider the following cases for an arbitrary monic polynomial f(x) of degree
3.

• Case 1: f(x) is irreducible.

Then from Lemma 3.3, ord(f(x)) ∈ D(q3 − 1).

• Case 2: f(x) = m1(x)m2(x), where m1(x) and m2(x) are distinct monic irre-
ducible polynomials of degrees 1 and 2, respectively.

Since m1(x) and m2(x) are distinct monic irreducibles, they are relatively
prime. Then by Lemma 3.5, ord(f(x)) = lcm(ord(m1(x)), ord(m2(x))). Not-
ing that deg(m1(x)) = 1 and deg(m2(x)) = 2, we have that ord(m1(x)) ∈
D(q−1) ⊆ D(q2−1) and ord(m2(x)) ∈ D(q2−1). Hence, ord(f(x)) ∈ D(q2−1).

• Case 3: f(x) = m1(x)(m2(x))2, where m1(x) and m2(x) are distinct monic
irreducible polynomials of degree 1.
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Since m1(x) and m2(x) are distinct monic irreducibles, they are relatively
prime. Then by Lemma 3.5, ord(f(x)) = lcm(ord(m1(x)), ord((m2(x))2)). Not-
ing that deg(m1(x)) = deg(m2(x)) = 1, we have that ord(m1(x)), ord(m2(x)) ∈
D(q−1). Using the same reasoning as in Case 3 of the proof of Proposition 3.29
that ord((m2(x))2) = pn, where n ∈ D(q− 1). Hence, ord(f(x)) ∈ p ·D(q− 1).

• Case 4: f(x) = m1(x)m2(x)m3(x), where m1(x), m2(x), m3(x) are distinct
monic irreducible polynomials of degree 1.

Since m1(x), m2(x), m3(x) are distinct monic irreducibles, they are pairwise rel-
atively prime. Then by Lemma 3.5, ord(f(x)) = lcm(ord(mi(x)) | i = 1, 2, 3).
Noting that deg(mi(x)) = 1 ∀i, we have that ord(m1(x)), ord(m2(x)), ord(m3(x)) ∈
D(q − 1). Hence, ord(f(x)) ∈ D(q − 1).

• Case 5: f(x) = (m(x))3, where m(x) is a monic irreducible polynomial of
degree 1.

By Lemma 3.6, ord(f(x)) = ptord(m(x)), where p is the prime characteristic of
Fq, and t is the least nonnegative integer such that pt ≥ 3. If p = 2, then t = 2.
Otherwise, t = 1. Since deg(m(x)) = 1, it follows that ord(m(x)) ∈ D(q − 1).
Hence, if p = 2, then ord(f(x)) = p2n, where n ∈ D(q − 1). Otherwise,
ord(f(x)) = pn with n ∈ D(q − 1).

Gathering all cases, we therefore have the following for Fq with characteristic p:

When p = 2, P(3,Fq) ⊆ D(q3−1)∪D(q2−1)∪p·D(q−1)∪D(q−1)∪p2D(q−1) =⋃3
i=1 D(qi − 1) ∪

⋃2
i=1 p

i ·D(q − 1).

Otherwise, P(3,Fq) ⊆
⋃3
i=1 D(qi − 1) ∪ p ·D(q − 1).

One can check that the reverse-containment for both cases holds by Proposi-
tion 3.27.

Proposition 3.31. Let Fq have prime characteristic p. If p = 2, 3, then

P(4,Fq) =
4⋃
i=1

D(qi − 1) ∪
2⋃
i=1

pi ·D(q3−i − 1).

Otherwise,

P(4,Fq) =
4⋃
i=1

D(qi − 1) ∪ p ·D(q2 − 1).
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Proof. We know from Proposition 3.22 that P(4,Fq) = O(4,Fq).

We consider the following cases for an arbitrary monic polynomial f(x) of degree
4.

• Case 1: f(x) is irreducible.

Then from Lemma 3.3, ord(f(x)) ∈ D(q4 − 1).

• Case 2: f(x) = m1(x)m2(x), where m1(x) is a degree-1 monic irreducible
polynomial m2(x) is a degree-3 monic polynomial that is relatively prime to
m1(x).

Then by Lemma 3.5, ord(f(x)) = lcm(ord(m1(x)), ord(m2(x))). Since deg(m1(x)) =
1, we have that ord(m1(x)) ∈ D(q − 1). Since deg(m2(x)) = 3, we infer
from Cases 1 through 5 of the proof of Proposition 3.30 that ord(m2(x)) ∈⋃3
i=1 D(qi − 1) ∪

⋃2
i=1 p

i · D(q − 1) if the field characteristic p = 2, and that
ord(m2(x)) ∈

⋃3
i=1 D(qi − 1) ∪ p · D(q − 1) otherwise. Hence, ord(f(x)) ∈⋃3

i=1 D(qi− 1)∪
⋃2
i=1 p

i ·D(q− 1) if p = 2 and ord(f(x)) ∈
⋃3
i=1 D(qi− 1)∪ p ·

D(q − 1) otherwise.

• Case 3: f(x) = m1(x)m2(x), where m1(x) and m2(x) are relatively prime
degree-2 monic polynomials.

Since m1(x) and m2(x) are relatively prime, by Lemma 3.5, ord(f(x)) =
lcm(ord(m1(x)), ord(m2(x))). Since deg(m1(x)) = deg(m2(x)) = 2, we infer
from Proposition 3.29 that ord(m1(x)), ord(m2(x)) ∈ D(q2 − 1) ∪ p · D(q − 1),
where p is the characteristic of Fq. Hence, ord(f(x)) ∈ D(q2− 1)∪ p ·D(q− 1).

• Case 4: f(x) = (m(x))2, where m(x) is a degree-2 monic irreducible polyno-
mial.

By Lemma 3.6, ord(f(x)) = ptord(m(x)), where p is the prime characteristic
of Fq, and t is the least nonnegative integer such that pt ≥ 2. Note that for any
prime p, t = 1. Since deg(m(x)) = 2, it follows that ord(m(x)) ∈ D(q2 − 1).
Hence, ord(f(x)) ∈ p ·D(q2 − 1).

• Case 5: f(x) = (m(x))4

By Lemma 3.6, ord(f(x)) = ptord(m(x)), where p is the prime characteristic of
Fq, and t is the least nonnegative integer such that pt ≥ 4. If p ≤ 3, then t = 2.
Otherwise, t = 1. Since deg(m(x)) = 1, it follows that ord(m(x)) ∈ D(q − 1).
Hence, if p ≤ 3, then ord(f(x)) = p2n, where n ∈ D(q − 1). Otherwise,
ord(f(x)) = pn.
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Gathering all cases, we therefore have the following for Fq with characteristic p:

When p ≤ 3, P(4,Fq) ⊆
⋃4
i=1 D(qi − 1) ∪

⋃2
i=1 p

i ·D(q3−i − 1).

Otherwise, P(4,Fq) ⊆
⋃4
i=1 D(qi − 1) ∪ p ·D(q2 − 1).

One can check that the reverse-containment for both cases holds by Proposi-
tion 3.27.

At this point, the propositions regarding least periods for small values of k
seem to suggest that the reverse containment to the relation in Proposition 3.27 also
holds for all values of k. This is not true. Consider, for example, the case where
k = 5 and q = p = 2. Let f(x) = m1(x)m2(x), where m1(x) and m2(x) are monic
irreducibles with ord(m1(x)) = 22 − 1 = 3 and ord(m2(x)) = 23 − 1 = 7. Then
ord(f(x)) = lcm(3, 7) = 21. Notice that 21 is odd (not divisible by 2), and that 21
does not divide 2i − 1 for all integers i = 1, 2, 3, 4, 5. Thus, ord(f(x)) cannot be in
the set of periods specified by Proposition 3.27.
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CHAPTER 4. SEQUENCES OVER FINITE QUOTIENTS
OF PRINCIPAL IDEAL DOMAINS

In this chapter, we will primarily work with sequences defined over finite quo-
tients of principal ideal domains. Our goal in this chapter is to determine the set of
all least periods of sequences satisfying linear recurrence relations of a given degree
k over R, when R is of the form Fq[x]

/
〈f(x)〉 .

4.1. Periods of Direct Sums

This section is devoted to determining the least periods of sequences when the
ring over which the sequences are defined decomposes into a direct sum. To describe
such sequences and their projections over the ring decomposition, we first introduce
some new notation.

Definition 4.1. Let R and R′ be rings, and let φ : R→ R′ be a mapping. Then for
any sequence s := (si)i≥0 over R, we define φ(s) := (φ(si))i≥0.

Definition 4.2. Let R be a commutative ring with an associated ring decomposition
R ∼= R1 ⊕ R2 ⊕ · · · ⊕ Rr, and let Φ : R → R1 ⊕ R2 ⊕ · · · ⊕ Rr be the associated
isomorphism. Then for every i, we let φi : R → Ri denote the surjective homomor-
phism such that the map Φ is given by x 7→ (φ1(x), φ2(x), . . . , φr(x)).

Lemma 4.3. Let s be a linearly recurring sequence over a finite commutative ring R,
and let Φ : R→ R1 ⊕R2 ⊕ · · · ⊕Rr be an isomorphism. Then ρ(s) = lcm(ρ(φi(s)) |
i = 1, 2, . . . , r).

Proof. Note that since Φ is a bijection, ρ(s) = ρ(Φ(s)). It then follows from Corol-
lary 1.4 that ρ(s) = lcm(ρ(φi(s)) | i = 1, 2, . . . , r).

From this lemma, we immediately see that since the least period of every se-
quence satisfying a linear recurrence of degree k over R decomposes as a least
common multiple of the least periods of sequences satisfying linear recurrences of
degree k over the component rings Ri under the isomorphism Φ, it follows that
P(k,R) ⊆ {lcm(n1, n2, . . . , nr) | ni ∈ P(k,Ri)}.

As it turns out, the reverse containment also holds. To prove this, we will re-
quire the following proposition:
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Proposition 4.4. Let R be a commutative ring which decomposes according to an
isomorphism Φ : R → R1 ⊕ R2 ⊕ · · · ⊕ Rr, and let f(x) ∈ R[x] be monic. Then
Θ : A(f(x)) → A(φ1(f(x))) ⊕ A(φ2(f(x))) ⊕ · · · ⊕ A(φr(f(x))) given by Θ(s) =
(φ1(s), φ2(s), . . . , φr(s)) is a bijection.

Proof. First note that if s ∈ A(f(x)) then φi(s) ∈ A(φi(f(x))). Hence, Θ(s) =
(φ1(s), φ2(s), . . . , φr(s)) ∈ A(φ1(f(x))) ⊕ A(φ2(f(x))) ⊕ · · · ⊕ A(φr(f(x))). Since
Φ : R → R1 ⊕ R2 ⊕ · · ·Rr is a bijection, it is straightforward to show that Θ is
injective. We now show that Θ is surjective.

Let (s1, s2, . . . , sr) ∈ A(φ1(f(x)))⊕A(φ2(f(x)))⊕ · · · ⊕ A(φr(f(x))), where for
each j, sj = (sji)i≥0 (not to be confused with state vector notation). Note that for
every i and j, sji ∈ Rj. Thus, since Φ is a bijection, for every i there exists si ∈ R
such that for every j, φj(si) = sji. Let s := (si)i≥0.

Since sj ∈ A(φj(f(x))) for every j, we then have that Φ(s) satisfies the following
recurrence:

Φ(si+k) = Φ(a0)Φ(si) + Φ(a1)Φ(si+1) + . . .+ Φ(ak−1)Φ(si+k−1)

By the homomorphic property of Φ, it follows that

Φ(si+k) = Φ(a0si + a1si+1 + . . .+ ak−1si+k−1).

Since Φ is a bijection we have si+k = a0si + . . . ak−1si+k−1 for all integers i ≥ 0.
Hence, s ∈ A(f(x)). By construction, Θ(s) = (s1, s2, . . . sr). So we have shown that
Θ is surjective.

Proposition 4.5. Let k ∈ Z+ and let R be a finite commutative ring with an associ-
ated ring decomposition R ∼= R1⊕R2⊕· · ·⊕Rr. Then P(k,R) = {lcm(n1, n2, . . . , nr) |
ni ∈ P(k,Ri).}

Proof. We already know as a consequence of Lemma 4.3 that P(k,R) ⊆ RHS.

Now for the reverse containment. Let n ∈ lcm(n1, n2, . . . , nr) with ni ∈ P(k,Ri).
Then for each j, nj = ρ((sji)i≥0) for some (sji)i≥0 ∈ A(fj(x)) where fj(x) ∈ Rj[x] is
a monic polynomial of degree k. Since Φ induces the isomorphism R[x] ∼= R1[x] ⊕
R2[x] ⊕ · · · ⊕ Rr[x], there exists f(x) ∈ R[x] monic of degree at most k such that
φj(f(x)) = fj(x) for every j. By Proposition 4.4, there exists s ∈ A(f(x)) such that
φj(s) = (sji)i≥0 for every j, and by Lemma 4.3 we have ρ(s) = lcm(ρ((sji)i≥0) | j =
1, 2, . . . r) = n. Thus, n ∈ P(k,R).
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Therefore, P(k,R) = {lcm(n1, n2, . . . , nr) | ni ∈ P(k,Ri).}

We can specifically apply our result in Proposition 4.5 to the finite quotient of
a principal ideal domain, as in Corollary 4.7 below.

Definition 4.6. If a ring R has the property in which R
/
〈m〉 is finite for every

nonzero m ∈ R, then we will call R a ring with finite quotients.

We can utilize Lemma 1.22 as a means of checking whether a given principal ideal
domain has finite quotients. Examples of PIDs with finite quotients include R := Z
and R := Fq[x]. For any prime p ∈ Z+, Zp ∼= Fp. Likewise, for any irreducible (and
hence prime) polynomial of p(x) ∈ Fq[x] of degree d, we have Fq[x]

/
〈p(x)〉 ∼= Fqd .

Corollary 4.7. Let k ∈ Z+ and let R be a principal ideal domain with finite
quotients. Let m :=

∏r
i=1 p

ei
i be the prime power factorization of m ∈ R. Then

P(k,R
/
〈m〉) = {lcm(n1, n2, . . . , nr) | ni ∈ P(k,R

/
〈peii 〉)}.

Proof. By the Chinese Remainder Theorem (Lemma 1.20), R
/
〈m〉 has the ring

decomposition R
/
〈m〉 ∼= R

/
〈pe11 〉 ⊕ R

/
〈pe22 〉 ⊕ · · · ⊕ R

/
〈perr 〉 . The statement then

follows from Proposition 4.5.

In [2], M. Ward analyzes the least periods that will arise over R := Z. In the
following section, we will discuss the least periods for the case when R := Fq[x].

4.2. Periods of Quotients of Polynomial Rings over Finite Fields

Since Fq[x] is a PID with finite quotients (see Lemma 1.15). We thus have:

Proposition 4.8. Let k ∈ Z+ and let Fq be a finite field. Let f(y) :=
∏r

i=1(pi(y))ei be
the prime power factorization of f(y) ∈ Fq[y]. Then P(k,Fq[y]

/
〈f(y)〉) = {lcm(n1, n2, . . . , nr) |

ni ∈ P(k,Fq[y]
/
〈(pi(y))ei〉)}.

If f(y) factors into distinct irreducible polynomials of multiplicity 1, then we
can use Corollary 1.17 to obtain:

Corollary 4.9. Let k ∈ Z+ and let Fq be a finite field. Let f(y) :=
∏r

i=1 pi(y) be
the prime power factorization of f(y) ∈ Fq[y], where the irreducible factors are all dis-
tinct. Define di := deg(pi(y)) for each i. Then P(k,Fq[y]

/
〈f(x)〉) = {lcm(n1, n2, . . . , nr) |

ni ∈ P(k,Fqdi )}.
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Definition 4.10. The group algebra K[G] of a group G over a field K is the set of
all possible finite sums of the form

∑n
i=0 αigi, where for every i, αi ∈ K and gi ∈ G.

If K := Fq and G := Cr is a cyclic group of order r, then the cyclic group algebra
Fq[Cr] is described by Fq[Cr] = {

∑r−1
i=0 αig

i | αi ∈ Fq, 〈g〉 = G}.

Lemma 4.11. Let Fq be a finite field, and let Cm be a cyclic group of order m. Then

Fq[Cm] ∼= Fq[y]
/
〈ym − 1〉

Proof. Observe that the map Fq[y] → Fq[Cm] which sends y 7→ g is a surjective
homomorphism. It is then easy to check that the kernel is 〈ym − 1〉. Hence, the
statement follows by the First Isomorphism Theorem.

Corollary 4.12. Let Fq be a finite field, and let Cm be a cyclic group of order m.
Let ym − 1 =

∏r
i=1 fi(y) be a decomposition of ym − 1 ∈ Fq[y] such that {fi(y) | i =

1, 2, . . . r} is a set of pairwise relatively prime polynomials. Then

Fq[Cm] ∼= Fq[y]
/
〈f1(y)〉 ⊕ Fq[y]

/
〈f2(y)〉 ⊕ · · · ⊕ Fq[y]

/
〈fr(y)〉

Proof. This follows immediately from applying the Chinese Remainder Theorem
(Lemma 1.19) and Lemma 4.11.

Lemma 4.13. Let Fq be a finite field with characteristic p, and let m ∈ Z+ be such
that gcd(m, p) = 1. Then ym−1 ∈ Fq[y] decomposes into ym−1 =

∏r
i=1 fi(y), where

each fi(y) is a distinct irreducible polynomial of some degree di.

Proof. Let f(y) := ym − 1 ∈ Fq[x]. Then f ′(y) = mym−1, which does not van-
ish since m is relatively prime to the characteristic p of Fq. Now −1(ym − 1) +
ym−1(mym−1) = −ym + 1 + ym = 1. Thus, f(y) and f ′(y) are relatively prime, so
that gcd(f(y), f ′(y)) = 1. It follows that f(y) does not have any multiple roots in its
splitting field over Fq, and thus, f(y) factors into distinct irreducible polynomials.

Combining Lemmas 4.11 and 4.13, we obtain the following:

Proposition 4.14. Let Fq be a finite field with characteristic p, and let Cm be a
cyclic group of order m. If gcd(m, p) = 1, then

Fq[Cm] ∼= Fqd1 ⊕ Fqd2 ⊕ · · · ⊕ Fqdm (17)
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where d1, d2, . . . , dm are defined in Lemma 4.13, and for all k ∈ Z+,

P(k,Fq[Cm]) = {lcm(n1, n2, . . . , nr) | ni ∈ P(k,Fqdi ). (18)

Proof. According to Lemma 4.13, ym−1 decomposes into ym−1 =
∏r

i=1 fi(y), where
each fi(y) is a distinct irreducible polynomial of some degree di. By Corollary 4.12,
we have that

Fq[Cm] ∼= Fq[y]
/
〈f1(y)〉 ⊕ Fq[y]

/
〈f2(y)〉 ⊕ · · · ⊕ Fq[y]

/
〈fr(y)〉

Also, by Corollary 1.17, for every i,

Fq[y]
/
〈fi(y)〉 ∼= Fqdi

Hence, we arrive at Equation 17. Equation 18 follows from Corollary 4.9 and
Lemma 4.13.

To fully grasp the meaning of Proposition 4.14, let us look at the following ex-
amples.

Example 4.15. Consider the ring F2[C3]. Since 2 and 3 are relatively prime, and
since y3− 1 has the prime factorization y3− 1 = (y− 1)(y2 + y+ 1) over F2, we have
F2[C3] ∼= F2 ⊕ F22 by Proposition 4.14.

We thus calculate the following sets of periods for linear recurrences of degrees
2 and 3:

• P(2,F2[C3]) = {lcm(n1, n2) | n1 ∈ P(2,F2), n2 ∈ P(2,F4)}

By Proposition 3.29, we have:

P(2,F2) = D(22 − 1) ∪ 2 ·D(2− 1) = {1, 2, 3}
P(2,F4) = D(42 − 1) ∪ 2 ·D(4− 1) = {1, 3, 5, 15} ∪ {2, 6} = {1, 2, 3, 5, 6, 15}

Hence,

P(2,F2[C3]) = {lcm(n1, n2) | n1 ∈ {1, 2, 3}, n2 ∈ {1, 2, 3, 5, 6, 15}}
= {1, 2, 3, 5, 6, 10, 15, 30}

• P(3,F2[C3]) = {lcm(n1, n2) | n1 ∈ P(3,F2), n2 ∈ P(3,F4)}
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By Proposition 3.30, we have:

P(3,F2) =
3⋃
i=1

D(2i − 1) ∪
2⋃
i=1

2i ·D(2− 1) = {1, 3, 7} ∪ {2, 4}

= {1, 2, 3, 4, 7}

P(3,F4) =
3⋃
i=1

D(4i − 1) ∪
2⋃
i=1

2i ·D(4− 1) = {1, 3, 5, 7, 9, 15, 21, 63} ∪ {2, 4, 6, 12}

= {1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 21, 63}

Hence,

P(3,F2[C3]) = {lcm(n1, n2) | n1 ∈ {1, 2, 3, 4, 7}, n2 ∈ {1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 21, 63}}
= {1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 60,

63, 84, 105, 126, 252}

We have verified all of the sets of periods above by generating them empirically
though a computational algebra program.

Example 4.16. Consider the rings F2[C5] and F5[C2]. Since 2 and 5 are relatively
prime, we have the following through Proposition 4.14:

• y5 − 1 has the prime factorization y5 − 1 = (y − 1)(y4 + y3 + y2 + y + 1) over
F2, and so F2[C5] ∼= F2 ⊕ F24 .

• y2 − 1 has the prime factorization y2 − 1 = (y − 1)(y + 1) over F5, and so
F5[C2] ∼= F5 ⊕ F5.

We thus obtain the following sets of periods for linear recurrences of degree 2:

• P(2,F2[C5]) = {lcm(n1, n2) | n1 ∈ P(2,F2), n2 ∈ P(2,F16)}

By Proposition 3.29, we have:

P(2,F2) = {1, 2, 3}
P(2,F16) = D(162 − 1) ∪ 2 ·D(16− 1) = {1, 3, 5, 15, 17, 51, 85, 255} ∪ {2, 6, 10, 30}

= {1, 2, 3, 5, 6, 10, 15, 17, 30, 51, 85, 255}

Hence,

P(2,F2[C5]) = {lcm(n1, n2) | n1 ∈ {1, 2, 3}, n2 ∈ {1, 2, 3, 5, 6, 10, 15, 17, 30, 51, 85, 255}}
= {1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510}
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• P(2,F5[C2]) = {lcm(n1, n2) | n1, n2 ∈ P(2,F5)}

By Proposition 3.29, we have:

P(2,F5) = D(52 − 1) ∪ 5 ·D(5− 1) = {1, 2, 3, 4, 6, 8, 12, 24} ∪ {5, 10, 20}
= {1, 2, 3, 4, 5, 6, 8, 10, 12, 20, 24}

Hence,

P(2,F5[C2]) = {lcm(n1, n2) | n1, n2 ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 20, 24}}
= {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}

We have verified all of the sets of periods above by generating them empirically
though a computational algebra program.

Example 4.17. Consider the rings F2[C6]. Since 2 and 6 are not relatively prime,
we cannot apply Proposition 4.14 to calculate its set of least periods. Indeed, y6− 1
factors into y6 − 1 = (y − 1)(y + 1)(y2 − y + 1)(y2 + y + 1) = (y + 1)2(y2 + y + 1)2,
and so y6 − 1 does not decompose into distinct irreducible polynomials, which is
necessary for the group algebra to decompose into the direct sum of finite fields.
Through our computational algebra program, we determine that P(2,F2[C6]) =
{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}. A natural open question to explore when follow-
ing up on this thesis would be whether or not there exists a method of determining
the sets of least periods arising from sequences over cyclic group algebras of the form
Fq[Cm] where m is not relatively prime to the characteristic p of Fq, so as to make
sense out of the numbers generated through our algebra program.

We now provide bounds on the principal period in the simplest situation where
ym − 1 has only two irreducible factors.

Theorem 4.18. Let Fq be a finite field, and let m and k be arbitrary positive integers.
If ym − 1 = (y − 1)(ym−1 + ym−2 + . . . + 1) cannot be factored any further over Fq,
then the principal period ρ(k,Fq[Cm]) is bounded by:

(qm−1)k − 1 ≤ ρ(k,Fq[Cm]) ≤ (qk − 1)((qm−1)k − 1). (19)

Moreover, for k = 2 and q = 2, we have:

2[(2m−1)2 − 1] ≤ ρ(2,F2[Cm]) ≤ 3[(2m−1)2 − 1]. (20)
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Proof. By Proposition 4.14, since ym − 1 only factors into two distinct irreducible
polynomials as described in the statement’s assumption, we have P(k,Fq[Cm]) = S,
where we define

S := {lcm(n1, n2) | n1 ∈ P(k,Fq), n2 ∈ P(k,Fqm−1)}.

Let n ∈ P(k,Fq[Cm]). Since lcm(n1, n2) ≤ n1n2, by Corollary 3.23 we have

n ≤ ρ(k,Fq) · ρ(k,Fqm−1) = (qk − 1)(qk(m−1) − 1)

Hence, ρ(k,Fq[Cm]) ≤ (qk − 1)(qk(m−1) − 1).

Now, since qk − 1|qk(m−1) − 1, we have lcm(qk − 1, qk(m−1) − 1) = qk(m−1) − 1 ∈
S = P(k,Fq[Cm]), and so ρ(k,Fq[Cm]) ≥ qk(m−1) − 1 = (qm−1)k − 1. We thus arrive
at Inequality 19.

If k = 2 and q = 2, then Inequality 19 simplifies to:

(2m−1)2 − 1 ≤ ρ(2,F2[Cm]) ≤ (22 − 1)(22(m−1) − 1) = 3[(2m−1)2 − 1].

However, we can place even further restrictions on these bounds. Note that by
Proposition 3.29, P(2,F2) = {1, 2, 3}. Thus, in our special case, lcm(2, (2m−1)2−1) =
2[(2m−1)2 − 1] ∈ S = P(2,F2[Cm]), and so ρ(2,F2[Cm]) ≥ 2[(2m−1)2 − 1]. We then
arrive at Inequality 20, and we are done.

As an aside, we observe that ρ(k,Fq[Cm]) is strictly less than (qm)k−1 = ρ(Fqm),
and so the principal period over a cyclic group algebra is always less the principal
period over a finite field of the same size.

We return to our earlier examples to show that the principal period does indeed
fall between the bounds prescribed by Theorem 4.18. In practice, the principal pe-
riod for the general case lies strictly between the bounds of Inequality 19, while the
principal period for the special case where k = q = 2 seems to consistently fall on
the lower bound of Inequality 20.

Example 4.19. From Example 4.15, we know that y3− 1 = (y− 1)(y2 + y+ 1) over
F2 so that F2[C3] ∼= F2 ⊕ F4.

We also have ρ(2,F2[C3]) = max(P(2,F2[C3])) = 30 = 2[(22)2− 1], in agreement
with Inequality 20. On the other hand, ρ(3,F2[C3]) = max(P(3,F2[C3])) = 252.
We see that (22)3 − 1 = 65 < 252 and (23 − 1)((22)3 − 1) = 441 > 252, and so
ρ(2,F2[C3]) = 252 agrees with Inequality 19.
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Example 4.20. From Example 4.16, we know that y5−1 = (y−1)(y4+y3+y2+y+1)
over F2 and that y2 − 1 = (y − 1)(y + 1) over F5, so that F2[C5] ∼= F2 ⊕ F16 and
F5[C2] ∼= F5 ⊕ F5.

We also have ρ(2,F2[C5]) = max(P(2,F2[C5])) = 510 = 2[(24)2−1], in agreement
with Inequality 20. On the other hand, ρ(2,F5[C2]) = max(P(2,F5[C2])) = 120.
We see that (51)2 − 1 = 24 < 120 and (52 − 1)((51)2 − 1) = 576 > 120, and so
ρ(2,F5[C2]) = 120 agrees with Inequality 19.
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