$$
\begin{aligned}
& \text { Oxcanple in Antegral Celculus). } \\
& \text { Ao 6, Pag. } 31 \text {. Sobncoun. } \\
& \text { H S! }
\end{aligned}
$$

Leat if be the midide of ita ehored S un

Set A B2se be the disectrix. MA a diametes of the yenesati't in tis firss prisition.
The volume generatiel un passany frome \& tis \& $2 \pi a^{3}$
In vetoming is to prist poochioi it generntis alor $2 \pi h^{3}$
Inataing the entise volume., $V^{\prime}=4 \pi a^{\circ}$.
Bunt part of tivis voturne is repentid. We must thenifore
foind the common portion and swtract it fimm V'
Q Section of this fortion made by a laline $H 12$ pesp. to $B Q$ gries two equal sequents of cirelis havny a Cinmonor Gord SU. Hrone Byereys Difft Calanles woufind the area of one segment of a circh $=\frac{\pi a^{2}}{2}-x_{0} \sqrt{a^{2}-x_{0}^{2}}-a^{2} \sin ^{-1} \frac{x_{0}}{a}$ where $x_{0}=$ oistainer frome $b^{\prime} t=y$. Bunt-from hraingle b ' $b y$
$x_{v}=\sqrt{a^{2}-x^{2}}$ whare $x=b y$.
Hewer asea of segment $=\frac{\pi a^{2}}{2}-x \sqrt{a^{2}-x^{2}}-a^{2} \sin ^{-1} \frac{\sqrt{a^{2}-x^{2}}}{a}$

$$
\begin{aligned}
& \left.\therefore \frac{1}{4} \text { ver repiatial }=\frac{1}{4} f^{\prime \prime}=\int \frac{\pi a^{2}}{2}-x \sqrt{a^{2}-x^{2}}-a^{2} \sin ^{-1} \frac{\sqrt{a^{2}-x^{2}}}{a}\right]_{0}^{a} d x \\
& \frac{1}{4} V^{\prime \prime}=\frac{\pi a^{2} x}{2}+\frac{1}{3}\left(a^{2}-x^{2}\right)^{3 / 2}-a^{2} \int \sin ^{-1} \frac{\sqrt{a^{2}-x^{2}}}{a} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Intionating tha cast term by parts } \\
& \left.\frac{1}{4} U^{\prime \prime}=\frac{\pi a^{2} x}{2}+\frac{1}{3}\left(a^{2}-x^{2}\right)^{3 / 2}-a^{2} x \sin i^{-1} \frac{\sqrt{a^{2}-x^{2}}}{a}+a^{2}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{a} \\
& \frac{1}{4} b^{\prime \prime}=\frac{\pi a^{3}}{2}-\frac{4}{3} a^{3} \\
& b^{\prime \prime}=2 \pi a^{3}-\frac{16}{3} a^{3} \\
& t b^{\prime} \cdot b^{n}=2 \pi a^{3}+\frac{16}{3} a^{3}=\frac{2 a^{3}}{3}(3 \pi+8)
\end{aligned}
$$

