(1) lexington, aa,

Prop. Lo determine the Equation of the langent-plane it a given surface at a quin point P. $\left(x_{1}, z_{1}, z_{1}\right)$. The general equation of a blair is

$$
A x+13 y+b z+D=0
$$

If it pass through the point $P(x, y, z)$ we have

$$
\begin{equation*}
A\left(x-x_{1}\right)+\sqrt{3}\left(y-y_{1}\right)+b\left(z-z_{1}\right)=0 \tag{1}
\end{equation*}
$$

We tray determine the value of A is \& b imposing ooubitions of tfingenay.
 'recant planes passing through 9 K pasaelec respeotivity ti the planes of $x \geq$ \& $z z$. The equations of the line ant from the tangent plane in the pom portaled to $x z$ wile be

$$
\begin{equation*}
x-x_{2}=t\left(z-z_{1}\right) \quad(2) \quad x \quad y=y \tag{3}
\end{equation*}
$$

anis those of the line cut in the pane parable ti $\}<$

$$
y-z_{1}=s\left(z-z_{1}\right) \quad(4) \times \quad x=x
$$

The tangent plane will contain these lives. The race (I) on $x z$ is

$$
\begin{equation*}
A\left(x-x_{1}\right)-93 z_{1}+b\left(z-z_{1}\right)=0 \tag{6}
\end{equation*}
$$

and that on $\eta 2$

$$
-A x_{1}+B\left(y-y_{1}\right)+b\left(z-z_{1}\right)=0
$$

Washington \& Lee University.
(2) lexington, aa,

But (6) is parallel it (2) $x>$ it (4)

$$
\begin{align*}
\therefore \quad f & =-\frac{b}{7} \quad \times s=-\frac{b}{13} \quad \&(1) \text { becomes } \\
z-z_{1} & =\frac{1}{t}\left(x-x_{1}\right)+\frac{1}{s}\left(y-y_{1}\right) \tag{8}
\end{align*}
$$

Since (2) (3) X (4) (5) are reopeotivehy lenient it fo the corresponding curve cuthfom the surface we must have $\quad t=\frac{d x_{1}}{i_{1}}$ i $s=\frac{d y_{1}}{\partial z_{1}}$
or $\frac{1}{t}=\frac{0 z_{1}}{\partial_{1}} \quad+\frac{1}{s}=\frac{0 z_{1}}{b_{1}} \quad \&(8)^{z_{1}}$ becomes $z-z_{1}=\frac{d z_{1}}{x_{1}}\left(x-x_{1}\right)+\frac{d z_{1}}{z_{1}}\left(y-z_{1}\right)$
Whence $\frac{\partial z_{1}}{\partial x_{1}} \times \frac{\partial z_{1}}{\partial y_{1}}$ are the partial differential vorfficiens derives prom the equation of the surface, and than wise ham the Same values at the pout ϕ. so the similar coefficients derives from the equation of the plane tangent at that point.

If the equation of the surface be $u=\varphi(x, 3, z)=0$

$$
\begin{gathered}
{\left[\frac{d u}{\partial x}\right]=\frac{\partial_{u}}{\partial x}+\frac{\partial_{u}}{\partial z} \frac{\partial z}{\partial x}=0 \quad \times\left[\frac{d u}{\partial y}\right]=\frac{d u}{\partial y}+\frac{\partial_{n}}{\partial z_{1}} \frac{\partial z}{\partial y}=0 \quad \text { and }} \\
\frac{d z_{1}}{\partial x_{1}}=-\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial z_{1}}{\partial z_{1}}}, \quad \frac{\frac{d z_{1}}{\partial z_{1}}=-\frac{\frac{n_{1}}{\partial u}}{\frac{\partial z_{1}}{\partial z_{1}}}}{}
\end{gathered}
$$

Sinbstititing in (9) x we have

$$
\left(x-x_{1}\right) \frac{d u}{d x_{1}}+\left(y-y_{1}\right) \frac{d m_{1}}{d y_{1}}+\left(z-z_{1}\right) \frac{d n}{\partial z_{1}}=0
$$

on as mi rozerh bot II page 161.
(3) lexington, aa,

Aline normal to the surface at P. will have for to equations $x-x_{1}=t^{\prime}\left(z-z_{1}\right) \quad y_{1} \quad y-y_{1}=s^{\prime}\left(z-z_{1}\right)$

And since the projections of the nomad are bespesoriontas to the traces of the tangent plane

$$
\begin{aligned}
& A=b t^{\prime} \quad A \quad 13=b s^{\prime} \\
\therefore & t^{\prime}=\frac{A}{b}=-\frac{d z_{1}}{q_{1}} \quad, s^{\prime}=\frac{B}{6}=-\frac{d z_{1}}{b_{1}}
\end{aligned}
$$

If a bine be drawn through the origin perpenoionlas to the tangent plane making the anglo α of with the axes of $x>y z$, it will be parakeet to the nomad at?
In hots on Analytical Seomethy in space, we have

$$
\cos X=\frac{a}{\sqrt{1+a^{2}+b^{2}}}, \cos I=\frac{6}{\sqrt{1+a^{2}+b^{2}}}, \cos Z_{1}=\frac{1}{\sqrt{1+a^{2}+b^{2}}}
$$

Exchanging y_{2} for α, I for β, z_{1} for γ a for $t^{\prime \prime}+b$ for s^{\prime} her have.
as in Byarly.

