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ABSTRACT 
This thesis presents an algorithm for spike detection designed to analyze data from induced ischemia 

experiments.  Algorithm design and validation are discussed in detail. Other topics addressed include:  

electrical activity in the small intestine, electro-mechanical coupling in the intestine, observations during 

intestinal ischemia, previous spike detection methods, induced ischemia experimental details, signal 

contamination, need for automated method, algorithm performance analysis, and possible applications of 

the algorithm for future research.  
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Chapter 1  

Introduction 

1.1 The Digestive System and the Small Intestine 
 

The human digestive system processes food into components useful for the body.  Digestion is 

extremely important as it provides the nutrients and energy required for proper cell functioning. 

The digestive tract is composed of the: mouth, pharynx, esophagus, stomach, small intestine, 

large intestine, rectum and anus (figure 1.1). Disease affecting any of these regions in the 

digestive tract will have negative effects on digestion. It is important for scientists and health 

professionals to understand the functions of the digestive tract and how disease disrupts these 

functions. This study focuses on the small intestine and investigates its myoelectrical activity as 

a possible indicator of disease. 

 

 

Figure 1.1. Digestive System [Source: Encyclopedia Britannica] 

http://www.britannica.com/EBchecked/media/1087/The-human-digestive-system-as-seen-from-the-front 

http://www.britannica.com/EBchecked/media/1087/The-human-digestive-system-as-seen-from-the-front
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The small intestine is part of the gastrointestinal (GI) tract and it is divided into three segments: 

the duodenum, jejunum and ileum (figure 1.2). The majority of chemical digestion and nutrient 

absorption take place in the small intestine. The duodenum carries on the food break down 

process while the jejunum and ileum are responsible for mechanical mixing, nutrient diffusion 

into the bloodstream and waste motility in the anal direction. Mechanical mixing and waste 

motility are accomplished through waves of muscular contraction and relaxation; a process 

called peristalsis. 

 

 

Figure 1.2. The three segments in the small intestine. [Source: Mayo Foundation] 

http://www.mayoclinic.com/health/medical/IM00140  

 

The small intestine tube is composed of several layers: the peritoneum or serosal surface, smooth 

muscle, Nerve plexi, the submucosa and the mucosa (figure 1.3). The serosa is composed of 

veins, nerves and arteries which link the intestine to other organs. The outer smooth muscle layer 

has longitudinal fibers while the inner layer has circular fibers. These muscles carry peristalsis 

by contracting and relaxing and as such they are responsible for the mechanical mixing and the 

transport of the chyme. The myenteric plexus and the submucosal plexus make up the rich and 

complex nervous system of the GI tract. See figure 1.4 for a photograph of a small intestine 

taken during surgery; note the complex and dense blood network. 

 

http://www.mayoclinic.com/health/medical/IM00140
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Figure 1.3 Structure of the digestive tube. [Modified from Encyclopedia Britannica] 

http://kids.britannica.com/comptons/art-53188 

 

 

Figure 1.4 Photograph of segment from a pig’s small intestine. Complex and dense blood network visible at serosal 

surface. [Source: Auckland Bioengineering Institute]  

http://sites.google.com/site/gimappingsuite/research-projects  

 

http://kids.britannica.com/comptons/art-53188
http://sites.google.com/site/gimappingsuite/research-projects
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1.2 Interstitial Cells of Cajal 
The electrically active cells in the intestine nervous system transmit electrical impulses 

continuously. This electrical activity has been observed for many years through extracellular 

recordings (Serosal Electrode Recordings: SERs). Recent findings suggest that this continuous 

electrical activity, referred to as the slow wave, is originated by Interstitial Cells of Cajal (ICC):  

“ICC in the myenteric region play a pacemaker role in gastrointestinal motility by giving origin 

to continuous electrical activity” (Farrugia 2008).   

ICC are found throughout the intestine. These neuron-like cells form extensive networks through 

gap junctions. Their filaments spread across the thin gastric wall; facilitating extracellular 

recording of electrical activity (figure 1.5 and 1.6). Three types of ICC have been identified by 

electron microscopy; structural differences are thought to reflect cell specialization. (Farrugia 

2008). While some ICC specialize in generation and propagation of slow waves, others 

participate in neurotransmission (Farrugia 2008). 

The slow wave is generated at a pacemaker ICC cell and spreads through other ICC across the 

intestine (figure 1.7) eventually reaching the intestinal smooth muscle. Previous research links 

the slow wave to muscle contraction (Lammers 2001). Thus, ICC have gained a lot of interest as 

pacemakers for the slow wave and key players in muscle contraction. In fact, recent research 

shows that “abnormalities in ICC numbers are associated with several gastrointestinal motility 

disorders” (Farrugia 2008). As such, “ICC are now recognized as another cell type that are 

required for the normal functioning of the gastrointestinal tract” (Farrugia 2008). 

 

 

Figure 1.5 Micrograph. Golgi Staining Method. Guinea pig ICC (Taxi 1952). Note cell filaments. Other staining 

techniques yield different results [Source: Thuneberg 1999]. 
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Figure 1.6 Cross section of GI wall. Note that in reality ICC filaments spread across the thin intestinal wall. For a well 

distended lumen, the small bowel wall is only 1-2mm thick. (Macari 2001). [Source: GIST Support Int.] 

 http://www.gistsupport.org/for-new-gist-patients/understanding-your-pathology-report-for-gist/diagnosing-gist.php 

 

Figure 1.7 Diagram of normal slow wave propagation. Wavefronts are emphasized. Activity generated at pacemaker ICC 

(green star) and spreads in aboral direction (duodenum to ileum) [From Lammers 2007]. 

http://www.youtube.com/watch?v=PH6zkPoEOc4 

http://www.gistsupport.org/for-new-gist-patients/understanding-your-pathology-report-for-gist/diagnosing-gist.php
http://www.youtube.com/watch?v=PH6zkPoEOc4
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1.3 Electrical Activity in the Small Intestine 
Electrical activity in the small intestine has been reported for many years. The two types of 

waves observed in this region of the GI tract are referred to as slow waves and spikes. See table 

1.1 for a summary of current understanding regarding these two waveforms.  Slow waves and 

spikes are often linked to muscle contraction: “intestinal motility is initiated by slow waves and 

by action potentials (spikes) that may or may not occur in the wake of the slow wave” (Lammers 

2003).  It is of interest to investigate and model the temporal relationship between slow waves, 

spikes and contractions.   

Slow Waves 

Slow waves in animal duodenum and jejunum have been studied extensively since the 1960s 

(Bortoff 1966, Szurszewski 1968, Lammers 1997-2001-2003-2005-2008,).  In a healthy 

intestine, the slow wave is continuous and periodic with a frequency close to 12-15 cycles per 

minute (cpm) in humans; characteristics depend on the species.  Figure 1.8 provides an example 

of an extracellular recording showing slow wave spread. The extracellular recording is the raw 

signal and important information such as the wave’s spatial propagation can be derived from it.  

Falling-Edge Variable Threshold (FEVT) is a validated automated method to detect activation 

times (ATs) of slow waves (Erickson 2009). ATs are then synchronized with electrode 

placement information in order to generate spatial propagation maps (See figure 1.9). Several 

studies have focused on the spatial mapping of slow wave propagation in the small intestine 

(Lammers 1997-2005-2008-2008) and in the stomach (Erickson 2010).Extensive understanding 

regarding slow wave propagation patterns has been attained in the recent years, however, slow 

wave origin mechanisms are still debated and several hypotheses have been proposed (Farrugia 

2008).  
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Figure 1.8 Slow wave extracellular electrical activity. Pig SER (Serosal Electrode Recording). Diagram on the left 

suggests electrode placement on an intestinal segment. 

 

Figure 1.9 Example of spatial propagation map of a slow wave.  Different colors indicate time delay in aboral direction 

[Source: Lammers 2003] 
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Spike Bursts 

Spikes are fast downward and upward deflections which tend to happen in clusters (figure 1.10 

and 1.11). In contrast to slow waves, spike activity remains largely unexplored; little literature 

investigating spikes has been published in contrast to the one addressing slow waves. Spike 

origin and propagation patterns are still subject of discussion. Unlike slow waves, spikes are not 

believed to be originated at ICC; they are often associated with smooth muscle cell.“The 

mechanisms responsible for determining the origin of spikes are also not known, but their spatial 

relationship to slow waves implies a causal relationship” (Lammers 2001). It is believed that 

slow waves always precede spikes. However, not all slow waves are followed by spikes. 

Furthermore, previous research on feline tissue (duodenum in vitro tissue) reported that “each 

spike propagated over small, self-limiting areas before terminating spontaneously” (Lammers 

2001). Similar results were observed in a canine model (in vivo) “at every level in the small 

intestine spikes propagated in all directions before stopping abruptly, thereby activating a 

circumscribed area termed a patch”(Lammers 2003).  

 

 

Figure 1.10. Example of a single spike cluster. Pig SERs, one channel. Note time scale and amplitude of waveforms. Very 

fast deflections reaching large amplitudes.  
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Figure 1.11 Spike extracellular electrical activity. Pig SER. Diagram on the left suggests 

electrode placement on an intestinal segment 

Summary of current understanding of the small intestine electrical activity: 

Table 1.1 Summary of small intestine electrical activity 

Two waveforms observed: Slow wave Spikes 

Activity Continuous, periodic Irregular 

Frequency Slow 10-12cpm Fast  

Observed in cell tissue ICC Smooth muscle  

Origin mechanism Not fully understood Not fully understood 

Spatial propagation  

(experiments on feline and 

canine models) 

Uniform 

Longitudinal 

Typically aborally, also orally 

Peripheral pacemakers 

(Lammers 2005) 

Small areas called “patches” 

End abruptly 

Observed propagation in all 

directions 

(Lammers 2001, 2003) 

Automated Detection Methods 

(non-extensive).  

See section 1.10 for more details. 

 Erickson 2009 Summers 1982 

Groh 1984 

Lammers 2008 
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1.4 Electro-Mechanical Coupling 
The relation between small intestine electrical activity and muscle contraction has been studied 

for many years. Lammers has observed results (Lammers 2001) that seem to confirm an early 

model: “the slow wave is an advancing zone of excited excitability which, when further 

enhanced by local factors, leads to actions potentials and contractions” (Daniel and Chapman 

1963). It suggested that the slow wave depolarizes membrane potentials during its propagation. 

Whenever a certain depolarization threshold is met, spikes are observed. “Smooth muscle spikes, 

initiated in response to the slow wave, appear to propagate through the smooth muscle layer and 

are often the first step in the excitation coupling mechanism leading to contraction” (Lammers 

2001). 

Figure 1.12 demonstrates the relation between the intracellular electrical activity and the 

contractile reaction of the muscle (Mintchev 1995). In this diagram the slow wave is observed as 

a rapid depolarization. When a certain threshold is met, spikes succeed the initial depolarization. 

Based on this model, a weak contraction occurs when the slow wave is energetic enough to go 

over a plateau. In turn, a stronger contraction is expected when the slow wave goes over the 

plateau and is accompanied by spikes.  It is important to be aware that there is controversy in the 

field regarding what spikes represent. While we present spikes as an electrical activity preceding 

muscular activity, others suggest that spikes are the result of the physical motion. Nevertheless, 

slow waves and spikes are drastically different waveforms; fact which encourages the study and 

characterization of both. 

 

Figure 1.12 Illustration of electro-mechanical coupling in small bowel smooth muscle cell. [Modified from: Mintchev 1995 

for gastric electrical activity] 

http://www.enel.ucalgary.ca/People/Mintchev/stomach.htm 

 

http://www.enel.ucalgary.ca/People/Mintchev/stomach.htm
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1.5 Driving Force:  Medical Application 
As mentioned previously, the slow wave has been investigated to a larger extent than spikes.  The benefits 

of studying spike activity are immense. Greater understanding of spike activity would help clarify the 

temporal relationship between slow waves, spikes and muscle contraction. More importantly, the medical 

necessity to conduct further studies is large: in 2009, between 60 and 70 million Americans were affected 

by digestive diseases such as Crohn's disease, Celiac disease, slow transit constipation, diabetes, etc. 

(National Institute of Diabetes and Digestive and Kidney Diseases). Knowledge about electrical activity 

in a healthy small intestine could help understand what is observed in diseased organs. As such, we 

envision the monitoring of the intestine’s electrical activity as a diagnostic tool. This new technique 

would be non invasive, possibly using cutaneous electrodes, and more informative than current methods 

like enteroscopy.  

1.6 Intestinal Ischemia 
This study focuses on small intestine spike activity and investigates the extent to which it is affected by 

ischemia. Intestinal ischemia is severe condition whereby the intestine suffers diminished blood supply 

and receives insufficient oxygen and nutrients essential for normal functioning. According to Mayo Clinic 

experts, intestinal ischemia has many causes. Acute mesenteric ischemia may be due to blood clots, fatty 

deposits built up on the wall of the artery (atherosclerosis) and low blood pressure (Mayo Clinic 2010).  

Chronic mesenteric ischemia also results from atherosclerosis. Another type of ischemia takes place when 

outward blood flow is obstructed; condition known as mesenteric venous thrombosis. Causes for this type 

of intestinal ischemia are: pancreatitis, abdominal infection, bowel diseases like Crohn’s disease or 

diverticulis,etc. (Mayo Clinic 2010). 

1.7 Previous Observations: Induced Ischemia and Electrical Activity 
It is reasonable to suggest that ischemia could disrupt electrical activity in the small intestine given that 

ICC (the pacemakers for slow waves) appear to be very sensitive to damage by hypoxia (Farrugia 2008). 

Several studies have investigated the effects of induced ischemia on the activities of the small intestine. 

Ischemia is induced by either occluding an artery or an artery and a vein; each technique possibly yielding 

different results. 

Szurszweski reported the effects of temporary (4 hours) hypoxia on dog jejunum (Szurszweski 1968). He 

observed that hypoxic perfusion lowered the frequency of slow waves and affected slow wave 

propagation direction. The usual direction of slow wave propagation is caudad. However, hypoxic areas 

showed propagation in orad, caudad, or both directions. Szurszweski suggested that whenever the upper 

jejunum is affected by hypoxia, transitional pacemakers are unmasked in the lower regions. These 

transitional pacemakers give rise to the unusual propagation of slow wave. 

Cabot studied the effects of ischemia induced by arterial occlusion on the electrical and contractile 

activities of canine small intestine (Cabot 1978). Like Szurszweski, he reported a decrease in slow wave 

frequency, irregular slow wave rhythm and the cessation of contractile activity upon occlusion.  

Interestingly, revascularization upon 3 hours of ischemia restored the contractile activity and regular slow 

wave rhythm. However, revascularization after prolonged periods of ischemia did not restore the normal 

functions. This suggests that prolonged exposure to ischemia has irreversible effects on pacemaker cells. 
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Lammers reported that acute (5-10 minutes) local ischemia in a feline small intestine induced major 

disturbances in the propagation of the slow wave (Lammers 1997).  Local areas of inexcitability 

developed within minutes, often merging to form lines of conduction block. Similarly to Szurszweski, 

Lammers observed the appearance of subsidiary pacemakers.  

Perhaps the most relevant resource for our study is a review paper written by Chou in 1982 “Relationship 

between Intestinal Blood Flow and Motility”. Chou referenced Cabot 1978, Chou 1981, Guisan 1975, 

Meissner 1976, Kyi 1970 to argue that: “intestinal ischemia and hypoxia can alter electrical contractile 

activities of the stomach and intestine depending on the duration and severity of the ischemia and 

hypoxia. Ischemia and hypoxia produced a biphasic change in motility-i.e., an initial transient increase 

followed by a prolonged paralysis. Thus occlusion of the artery perfusing a gut segment, thrombin-

induced mesenteric arterial and venous thrombosis or a 75% reduction in inhaled oxygen produced an 

immediate but transient increase in spike potentials and contractions lasting for 1-5min.  The increased 

contractions appeared to be mediated by intrinsic nerves since local administration of tetrodotoxin 

abolished this response. This increase in motility progressively diminished and the gut became quiescent 

1-15min after ischemia and hypoxia with the disappearance of spike potentials”.   

Furthermore, “the duration of ischemia determines whether or not the normal motor activity recovers after 

revascularization. When the circulation is restored within 1-3hr, the slow waves, spike potentials and 

spontaneous contractions returned to normal within 1-13min following revascularization. When 

completed ischemia persisted for more than 4 hr, revascularization did not restore the spontaneous 

contractions and spike potentials” (Chou 1982). 

These studies suggest that ischemia has profound effects on the electrophysiology of the small intestine. 

Ischemia disrupts slow wave origin and propagation. Moreover, it produces an immediate increase in 

spike activity after which spike activity diminished progressively.   

1.8 Induced Ischemia on Porcine Model Experiments 
Several induced ischemia experiments were performed using a porcine model at the University of 

Auckland and Vanderbilt University. See Chapter 2, section _ for more details.A porcine model is 

employed because the GI system and abdominal wall architecture closely resemble that of a human. Note 

that the majority of previous experiments, such as those conducted by W.J.E.P Lammers, were conducted 

on canine or felines models. We were provided with the data along with the surgical and recording 

methodology for these experiments. Our initial interest focused on using the data from these experiments 

to investigate the effects of induced ischemia in small intestine spike activity. However, this type of 

analysis required us to first develop an automated detection method to process the extensive data sets and 

detect the spikes.  Given the time constrain and in order to generate preliminary results we ran our 

algorithm on 5 experiments: 3 from Vanderbilt and 2 from Auckland 

1.9 Need for Automated Detection Method 
Data collected from induced ischemia experiments is extensive; particularly data generated with high 

resolution electrodes.  For example, a 10-minute high resolution SER would produce 42 hours of data for 

analysis: 
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High resolution experiments are desirable because they allow the generation of detailed spatial 

propagation maps. With these detailed maps it is possible to analyze extensively the patterns of spike 

propagation. Nevertheless, visual-manual techniques for marking spikes in extensive data sets is time 

consuming and burdensome.  An automated method detection method could process a data set as such in 

a few minutes.  

Furthermore, the complexity of gastroelectrical signals may give rise to disagreement about the 

legitimacy of a spike cluster. As mentioned above, spike clusters consist of fast upward/downward 

deflections easily distinguished from slow waves.  However, small intestine SERs present signal 

contamination which makes spike clusters less obvious and gives rise to discrepancies amongst human 

markers. See Chapter 2, section _ for more details. Signal contaminants include respiration, cardiac 

frequency, etc. Hence, an automated spike detection method will not only reduce processing time, but it 

will mark clusters in a consistent and reproducible manner.  

Initial Considerations for Automated Spike Detection Method 

 A satisfactory algorithm should specific, sensitive, and robust. The algorithm needs to be sensitive in 

order detect the majority of spikes in a data set. After all, we seek to measure possible changes on spike 

rates when ischemia is present. Moreover, the algorithm must be specific to only detect spike clusters. In 

other words, the method should distinguish amongst spikes, slow waves and signal contamination.  

Finally, the algorithm should be robust and not oversensitive to detection parameters. 

1.10 Previous Spike Detection Methods  

SUMMERS 1982 

Summers reported a software to detect spike bursts (Summers 1982) which consisted of data digitizing, 

digital filtering and burst detection based on user-defined parameters.  Seven channels of myoelectrical 

data were recorded with sampling frequency <50Hz. Digital filtering involved a second-order infinite 

impulse response filter.  Data was bandpass filterered with cutoff frequencies 10 and 30 Hz. Burst 

detection was based on a peak detecting algorithm (Yakovle 1977) whereby discrete sample values are 

used to determine the beginning and end of a spike burst.   The algorithm computes the ratio “localized 

signal intensity”/ “background intensity” by using average power (P). The localized signal is 

approximated by a constant length sliding window. The background signal is computed by the summation 

of all data samples preceding a spike burst, known as a “growing window”.  As explained by Summers: 
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The ratio 
   
   

 has a user-defined threshold which determines the beginning or end of spike burst. 

In contrast to high resolution experiments with 257 channels and 512 Hz sampling rate, Summers only 

processed 7 channels of data at 50 Hz sampling rate.  His method utilized the rate of change of data as a 

means of detection and yielded a machine-observer inter-rater k value of 88.16 (k indicates strength of 

agreement).  However, Summer’s method does not address the possibility of signal contaminants being 

erroneously marked a spike clusters. Moreover, Summer’s background signal or “growing window” is 

reset every time a signal with sufficiently high power is detected.  This suggests that the method would be 

very sensitive to high amplitude artifacts. In contrast, our algorithm obtains the background signal by 

estimating the noise level for an entire channel’s data.  

Nevertheless, Summers discusses two important issues: the spike algorithm should avoid detecting 

isolated spikes and should provide the user the ability to fine-tune detection parameters.  Isolated spikes, 

which do not show a propagation pattern, are not likely to reflect legitimate electrical activity. Allowing 

the user to fine-tune detection parameters will contribute towards the algorithm’s robustness. Given the 

complexity of small intestine SERs, fine-tuning detection parameters for a given data set could yield 

slightly better results.   

GROH 1984 

Groh’s method consisted of: bandpass filtering, slope averaging, threshold detection and statistical 

analysis. Initial stage used second-order Butterworth filter with bandpass frequency 10-20 Hz; attenuating 

the slow wave and other low frequency forms. The slope was averaged for a 0.2 second interval by using 

a modified moving average technique.  Detected waves were separated through statistical analysis based 

on amplitude on duration. Perfect agreement between automated results and observer was reached for 78-

89% of the 2-minute samples. 

Groh’s method, like Summer’s, focused on the rate at which signal changes. A possibly pitfall of this 

method is that any waveform with similar amplitude and duration to spikes will be erroneously detected. 

Given the contaminants observed in our data, this method could yield many false positives. Our algorithm 

classifies waveforms by focusing on more features; for example, the signal’s energy and signal to noise 

ratio. See Chapter 2, section _ for more details. 

LAMMERS 2008 

Lammers designed an on-line electrogram analysis for processing myoeletric readings from canine 

duodenum and antrum (Lammers 2008). 24 channels of data were recorded at 200 Hz and 1000 Hz 

sampling frequency. Signals were initially smoothed with a running average to remove 50 Hz noise. His 

method consisted of a slow wave/spike discriminator followed by specialized detection modules.  Spikes 

were separated from slow waves by normalization of the signal and high-pass filtering set at 30 Hz. A 

series of steps were conducted to optimize the signal and reduce the noise. The signal was required to 

meet a threshold before into the spike detection module. The spike detection module consisted on: signal 

differentiation, inversion, conversion to absolute values, running median subtraction and finally, peak 

detection. Lammers argued these series of processing steps as a means to shift noise away. 

In contrast to Summers and Groh, Lammers subjected signals to extensive processing. In particular, we 

question the initial signal smoothing and its effect on spike waveforms. Our algorithm attempts to 
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preserve spikes fine details by having a moving median filter with large window size and a high 

frequency filter set well above the expected for spikes. See chapter 2 section _ for more details.  In 

addition, Lammers method is designed to detect single spikes while we are interested in detecting spike 

clusters. We expect our algorithm to have advantage in processing contaminated signals over the 

aforementioned methods. 

This chapter has addressed several topics concerning the small intestine: intestinal wall structure, ICC, 

electrical activity, electro-mechanical coupling, ischemia, induced ischemia experiments, need for 

automated spike detection and previous attempts at automated spike detection. We are ready to move into 

chapter 2 where we will discuss the details specific to the induced ischemia experiments and fully 

describe our algorithm.  
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Chapter 2  

Induced Ischemia Experiments: 
Methods and Data 

2.1 Experimental Details 
Our collaborators at Vanderbilt University and The University of Auckland conducted several induced 

ischemia experiments between 2008 and 2011. Both laboratories used a porcine model given the 

resemblance of the GI system and abdominal wall architecture to those of a human (Erickson 

2009).Typically the animals were fasted during the 24 hours previous to the surgical procedures. All 

animal surgeries were carried out under strict Institutional Animal Care and Use Committee guidelines 

(IACUC). 

Serosal Electrode Recordings (SERs) 

SERs were made in vivo. The pig was anesthetized and place in supine position. A midline supra-

umbilical incision was made. Once access to peritoneal cavity was gained, a segment of the small 

intestine was identified. The intestinal segment was placed on wet cotton gauze and an electrode array 

was attached to its serosal surface. Figure 2.1, illustrates this process with the use of a rigid electrode.  

 

Figure 2.1. Example of a serosal  electrode recording using a rigid electrode.  A. Exposed segment of the small intestine.    

B. Rigid electrode.  C. Electrode in contact with serosal surface. [Source: Lammers 2003] 

Similarly to the experiment in figure 2.1, the Vanderbilt experiments utilized rigid electrodes. More 

specifically, 49 Ag/AgCl electrodes in various arrangements. Figure 2.2 illustrates the dimensions of an 

electrode and its placement on an intestinal segment. While this electrode was not used in our 

experiments, it is important to realize the relative size of this apparatus. The example shown in figure 2.2 

has an area of 1.656 cm
2 
and a 10 x 24 electrode array resulting in 240 channels of data. 
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.  

Figure 2.2. Sample diagram to illustrate an electrode’s dimensions and placement on intestine. [Modified from: Lammers 

2003] 

The Auckland experiments relied on customized flexible printed circuit board electrodes (Peng Du 2009). 

See figure 2.3. These electrodes allowed high resolution mapping as they covered the entire intestinal 

circumference at a 512 Hz sampling rate and with 249 channels of data. The electrodes were held in place 

with warm gauze pads. Once electrode setup finished, the intestine was reintroduced into the abdominal 

cavity to avoid changes in the tissue’s temperature and humidity.  

 

Figure 2.3. Flexible printed circuit board electrodes used by the researchers at University of Auckland. On the right, 

zoom showing actual electrode which folds 360o around the intestinal serosal surface. [Source: Auckland Bioengineering 

Institute] 

Baseline recordings were taken for all the experiments lasting approximately 30 minutes for Vanderbilt 

experiments and 8-15 minutes for Auckland experiments. The baseline recording intends to show the 

electrical activity of the intestine in a healthy state. However, it is important to acknowledge several 

experimental factors that could give rise to abnormal activity. Firstly, the animals had been fasted for an 

extended period. Hence, there was little or no food circulating in the animal’s intestine. Next, the animals 

were treated with anesthetics which impact nerve functions. Moreover, the recordings were made 

following a very invasive surgical procedure, the midline incision.  These factors might have an effect on 

what we observe on the baseline recordings. Thus, the presumed baseline recordings might differ to an 

extent from the electrical activity in a true healthy intestine. 

Induced Ischemia 

Following the baseline recordings, ischemia was induced by occluding local arteries near the intestinal 

loop. Two types of ischemia experiments were conducted: segmental and partial ischemia. For the 

segmental experiments, full ischemia was induced by simply tying a surgical string around the local 
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arteries (figure 2.4).  Data was collected for the particular ischemic segment.  Thereafter, blood flow was 

restored and ischemia was induced on a different intestinal segment.  

For the partial experiments, ischemia was induced progressively by using inflatable occlusion cuffs 

(figure 2.5). The intervals at which data was recorded were 50%, 75%, 90% and 100% ischemia. 

 

 

Figure 2.4. Inducing local full ischemia by tying a string around 3 arteries.[Source:Lammers 1997]. 

 

Figure 2.5.  Occlusion cuff or vascular occluder. On the left, cuff allows unobstructed blood flow. On the right, inflated 

cuff obstructs blood flow and induces ischemia. [Modified from: Kent Scientific] 

https://www.kentscientific.com/products/ 

2.2 Data Collected 
The experimental details relevant for our analysis are: recording time, sampling rate, number of channels, 

and type of experiment: segmental or partial. The amount of data collected varies from experiment to 

experiment. See Table 2.1 for details. These differences arise primarily from the different recording 

technologies at the each laboratory and differences in recording time. Recording length ranged from 8 to 

69 minutes.  
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Table 2.1. Summary of data collected from induced ischemia experiments and relevant information for signal processing  

 

 

 Date Experiment type: 

Induced ischemia 

Number of 

Channels 

Sampling 

frequency 

(Hz) 

Rec. 

Time 

(s) 

Rec. 

Time 

(min) 

 Auckland      

 2011      

1 06.01.11 Pig 34 exp 10 baseline + full ischemia 
Pig 35 exp 12 baseline + segmental 

Pig 35 exp 13 baseline + segmental 

257 512 2009  
1828 

1980 

34 
31 

33 

2 05.03.11 Pig 33 exp 9   baseline 

Pig 33 exp 10  full ischemia 

257 

 

512  

 

478 

587 

8 

10 

 Vanderbilt      

 2010      

3 01.22.10 Baseline  

Segmental ischemia 

49 256  

 

1972 

3781 

33 

63 

 2009      

4 06.09.09 Baseline 

Segmental  
 

49 256 1585 

3820 

27 

64 

5 05.29.09 Baseline 

Segmental  

49 256 1870 

3505 

32 

58 

6 05.28.09 Baseline 

Segmental  

49 256 1780 

3626 

30 

60 

7 05.22.09 Baseline 
Segmental  

49 256 1801 
3992 

30 
67 

8 04.17.09 Partial  

a. baseline  

b. 50%  ischemia 
c.75%   ischemia 

d.90%   ischemia 
e.100%  ischemia 

49 256  

1490 

1711 
1710 

1614 
3527 

 

25 

29 
29 

27 
59 

9 04.16.09   Partial 

a. baseline  

b. 50%  ischemia 
c.75%   ischemia 

d.90%   ischemia 

e.100%  ischemia 

49 256  

1720 

1660 
1415 

1637 

2965 

 

29 

28 
24 

27 

50 

10 04.15.09   Partial 

a. baseline  

b. 50%  ischemia 
c.75%   ischemia 

d.90%   ischemia 

e.100%  ischemia 

49 256  

1725 

1485 
1390 

1618 

2460 

 

29 

25 
23 

27 

41 

11 04.14.09   Partial  
a. baseline  

b. 50%  ischemia 

c.75%   ischemia 
d.90%   ischemia 

e.100%  ischemia 

49 256 1914 
1873 

1799 

1801 
3547 

32 
31 

30 

30 
59 

 2008 Additional experiments.     
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2.3 Need for Automated Spike Detection Method 

Large Data Sets 

As we mentioned in chapter 1 section _, these data sets are extensive. For example, a segment of an 

Auckland experiment which recorded during 9.8 minutes results in 70 million samples and 42 hours of 

data to analyze. This is because these experiments were performed with high resolution electrodes. 

                  
        

       
    

        

      
                     

                  
        

       
 

 

  

       

       
 

 

  

     

       
              

A segment of a Vanderbilt experiment which recorded for 30 minutes results in 23 million 

samples and 24.5 hours of data to analyze. The Vanderbilt experiments used lower resolution 

electrodes in comparison to the Auckland experiments. 

                  
        

       
    

        

      
                     

                  
        

       
 

 

  

       

       
 

 

  

     

       
              

If the experiment mentioned above was a partial ischemia experiment it would have had 5 

segments: baseline, 50%, 75%, 90%, and 100% ischemia. The result is an overwhelming 122.5 

hours of data to analyze. 

      
     

                     
                                                               

An automated method will greatly reduce analysis time. Visual inspection is time consuming and 

surveying large data sets such as those mentioned above would be a laborious task for the human 

observer.   

Signal Contamination  

In signals like figure 2.6, spikes are easily identified through visual inspection.  However, serosal 

recordings of the small intestine often present signal contamination. Some common contaminants are: 

cardiac waveform, respiration, artifacts, and baseline wander. The presence of these waveforms makes 

visual spike classification a complex task. Sometimes it is hard to confirm the presence of a spike due to 

the superimposed contaminants.  
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Figure 2.6. Easily recognizable spike clusters.  Small data set, little noise, no signal contaminants. 

The initial stage of signal processing was focused on becoming familiarized with the data from the small 

intestine recordings. We visually inspected the recordings and were surprised to observe a wide range of 

waveforms. The electrical activity observed originates from the subject’s physiological activity but is also 

affected by the experimental conditions. Some factors that could influence the resulting data are:  type of 

electrode, sampling frequency, surface contact between the tissue and the electrodes, electrical activity in 

other organs of the body like the cardiac waveform, respiration, body movement, etc. 

We have observed signal contamination in the recordings from both of our sources: experiments carried 

in Vanderbilt University and the University of Auckland.  In addition to the expected slow waves and 

spike clusters, it is possible to encounter: cardiac signals, respiration, several types of artifacts and a 

wandering baseline. The presence of these contaminants makes spike detection more challenging and 

demands an algorithm which can discriminate effectively amongst waveforms. 

The cardiac signal is a small amplitude- high frequency waveform which occurs repetitively throughout a 

data channel (figure 2.7). If we look closely at figure 2.8, we observe an overlay of the cardiac signal over 

a larger amplitude-low frequency waveform. This low frequency waveform is respiration and it occurs 

approximately every 2.5s. In figure 2.9, we can observe a data section contaminated by respiration. 

 

Figure 2.7.Cardiac waveform. Period approximately 0.5-0.6s. 
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Figure 2.8. Cardiac signal overlay with respiration. 

 

 
Figure 2.9. Contamination of signal by respiration with period approx. 2.5s. 

 

Artifacts are large amplitude-medium frequency forms which occur once or twice in a data channel 

(figure 2.10 and 2.11). Typically, their frequency is lower than spike frequency but higher than respiration 

frequency. There is potential for confusing artifacts with slow waves or spikes. However, artifacts would 

seem isolated events with no clear spatial propagation unlike slow waves. 

Moreover, high frequency artifacts can be distinguished from spikes given their unusually high amplitude.  

In figure 2.11, the artifact reaches 5,000µV as opposed to the physiologically-expected 400-1000 µV.  

Artifacts can be further distinguished from spikes because they do not happen in clusters.  In artifacts we 

observe a single “spike-like” upward-downward deflection, however, we do not observe the clustering of 

deflections as we expect from small intestine spikes. 

 
Figure 2.10. Smaller amplitude-low frequency artifact. 
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Figure 2.11. Large amplitude artifact. 

 

It is common to observe baseline wander (figure 2.12) and noise (figure 2.13). Baseline wander in raw 

data can be addressed during the pre-processing filtering stage. However, channels with high levels of 

noise can pose a challenge for spike detection particularly if the spike clusters do not have high 

amplitudes.  

 

Figure 2.12. Baseline Wander. Red line is a zero potential to emphasize signal baseline wander. 

 

Figure 2.13. High levels of noise in channel.  
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Oftentimes, channels have very low average amplitudes of 0-5µV (figure) which could be due to poor 

contact between an electrode and the intestinal tissue. These channels are considered defective and 

ignored during spike detection.  

 
Figure 2.14. Defective channel 

2.4 Examples: Increased Difficulty in Visual Spike Classification 

 The following are examples showing how contaminants and noise increase the difficulty of visually 

recognizing spike clusters. 

A. 

 

B. 

 

Figure 2.15. A: signal contaminated with cardiac waveform. B: two possible spike clusters found. Second cluster is 

questionable.  
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A. 

 

B. 

 

Figure 2.16. A: signal contaminated by baseline wonder and noise. B: three possible spike clusters.  Middle cluster is 

questionable. 

A. 

 

B. 

 

Figure 2.17. A: signal contaminated by heart waveform and respiration. B: Possible spike. 

In chapter 2 we have discussed the experimental details of the induced ischemia experiments and become 

familiar with the obtained data. We have stated why it is necessary to have an automated method and 

what factors make spike detection challenging. We are ready to proceed into a detailed description of our 

algorithm.  
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Chapter 3  

Spike Detection Algorithm Design 

3.1 Analytical Method: Binary Classification  
The algorithm was designed to classify waveforms into two categories: either a spike or not a spike. This 

procedure is called a binary classification and aligns perfectly with our interests.  We do not need the 

algorithm to separate the other waveforms into individual classes like cardiac, respiration, artifact, etc. 

Hence, we created a fictitious class which comprises all the waveforms which are not spikes. 

There are four possible outcomes for a binary classification (see table 2.2). A true positive (TP): if the 

sample is a spike and the method detected it. A false negative (FN): if the sample is a spike and the 

method missed it. A false positive (FP): if the sample is not a spike but the method detected it. A true 

negative (TN): if the sample is not a spike and the method did not detect it. The outcomes are summarized 

in the chart below.  

 
Table 3.1. Possible Test Outcomes . 

 
 

Thus, the outcomes that are sources of error are the FPs and FNs. We must keep in mind these sources of 

errors as we validate the algorithm and evaluate its performance. 

3.2 Measures of Performance 
Traditionally the two indicators of the performance of a test are sensitivity (SN) and positive prediction 

value (PPV) (or “specificity”). Sensitivity is referred to as the true positive rate and is defined as: 

   
  

     
 

A low number of TP or large number of FN will result in low sensitivity. In order to have perfect 

sensitivity the test must detect ALL the existent spikes. Perfect sensitivity is unlikely; however, we could 

achieve high sensitivity by detecting a large portion of the existing spikes. 

The positive prediction value is referred to as the precision rate and is defined as: 
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A low number of TP or a large number of FP will result in low PPV or specificity. In order to 

have perfect PPV the test must detect ONLY spikes and no other waveforms. If other waveforms 

are detected they will become FPs and decrease PPV. Like we mentioned previously, it is 

unlikely to have perfect specificity.  However, a high PPV could be achieved by having a low 

number of FP.  

AROC: Area under the Receiving Operating Curve 

For our analysis we employed a third performance metric termed AROC (Area under the Receiving 

Operating Curve) (Erickson 2009). AROC is defined as:  

             

AROC is a measure of the algorithm’s performance for a given set of parameters. Three parameters we 

are interested in analyzing are k, DT and windowL. A perfect AROC will have a value of 1. It is 

important to point out that acceptable values of SN and SPC might result in a smaller AROC given the 

multiplication operation. For example, 95% SN and 95% SPC will result in AROC = 0.9025.   AROC 

will help us to understand how the algorithm performance is changing as parameters change and will also 

help us predict the best parameter values to optimize performance.  For these we will generate plot such 

as the one showed in figure 1.18. 

 

Figure 3.1. Plot to be constructed: AROC vs. detection parameter. Measuring algorithm performance. 

3.3  “Gold” Standard Set: Compare Manual vs. Automated marks  
In order to measure the algorithm performance we generated 5 sets of standard marks; each with 40 

channels of data and 60 seconds long. The sets were selected from different experiments. Moreover, each 

set was analyzed separately by 3 observers. The observers agreed upon the general criteria to mark a 

spike. Then, each observer marked the spikes he observed in each data set.  Some spike clusters are easier 

to identify than others which gives rises to disagreement between the 3 sets of manual marks. Also, it is 

difficult to determine precisely the start and end point of a spike cluster given the very small amplitudes 

present at the edges of a spike cluster and personal judgment. Thus, manual marks differ in start and end 

points by fractions of a second. 
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The marks of the 3 observers were pooled together; only those clusters marked by the 3 observers 

(regardless of small timing differences) were determined to be the standard marks. This set of standard 

marks was used for the algorithm validation discussed in chapter 4. The automated marks were compared 

to the standards and performance metrics were calculated.  

3.4 The Spike Burst Detection Algorithm 
The algorithm consists of four steps executed in the following manner: preprocessing, candidate 

detection, machine classification, and additional discrimination. Figure 3.1 illustrates the algorithm flow 

and provides more details regarding each step. The next section provides a thorough explanation for every 

step in the algorithm accompanied by illustrations of each method.  

 

Figure 3.2. Flow chart of spike detection algorithm. See text for description of each stage. 

3.5 Preprocessing 
In chapter 2, section 2.3.2; we discussed the severity of signal contamination in SERs of the small 

intestine. It is possible to target contaminants by digitally filtering the signal. Filtering is a common initial 

step in many signal processing applications. We chose to filter low frequencies using a moving median 

(MM) filter and high frequencies using a Savitzky-Golay (SG) filter. By using the MM filter we aimed to 

reduce the wandering baseline and by using the SG filter we aimed to eliminate high frequency noise 

arising from electrical equipments.  Figure 3.3 and 3.4 illustrate the MM filter: the raw signal is depicted 

in blue and the filtered signal in red. The removal of wandering baseline is evident. Figure 3.5 illustrates 

SG’s ability to remove high frequency noise (likely originated in electrical equipment). Note the time 

scale difference between figures 3.3, 3.4 and 3.5. In order to observe SG filter effects had to zoom into a 3 

second window. MM effects are observed in the larger 15 second data segment. 

The specific details are described here. Raw data in the.bdf format is loaded into GEMS (v1.6) and 

filtered before being export into a .mat file. We used the MM filter with windows size 0.5 or 1 and the SG 

Preprocessing: 

Filtering 

Candidate Detection: 

SNEO-based  
(smoothed nonlinear 

energy operator) 

Classification: 

 SVM-based (Support 
Vector Machine) 

Additional 
Discrimination:  

User-defined limits to 
decrease FP 

Final Output: 

Cluster start and end 
times  
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filter with polynomial 9 and windows size between 0.08 and 0.1. These values were derived from trial and 

error observations and previous work done by GEMS developers with slow waves. 

These filter settings do not affect artifacts or the cardiac waveform. Thus, these contaminants will be 

carried forward and should be addressed in the later stages of the algorithm.   Moreover, the high 

frequency filter should be set carefully so as to avoid any possible distortion of true spikes. That is, the 

low pass filter should be set at a frequency much higher than the typical frequency for spikes. 

3.5.1 Preprocessing examples 

 

Figure 3.3. Moving median filter.  Raw signal is depicted in blue and filtered signal in red. The removal of wandering 

baseline is evident. Filter executed with window size 1. 

 

Figure 3.4. Moving median filter .  Raw signal is depicted in blue and filtered signal in red. The removal of wandering 

baseline is evident. Filter executed with window size 1. 

 

Figure 3.5.Savitzky-Golay Filter. In blue raw signal and in red filtered signal.  Removal of high frequency noise is evident. 

Executed with polynomial 9 and windows size 0.1.   

 



Chapter 3 Spike Detection Algorithm Design 

32 

 

3.6 Candidate Detection 
As mentioned in chapter 2 section 2.31, the data sets generated by the induced ischemia experiments are 

extensive; in particular those generated with high resolution electrodes.  During the detection step we 

focused on small regions of interest called candidates.   

Energy Operator 

Prof. Erickson suggested the use of a technique employed in neural spike detection: the Smoothed Non 

Linear Energy Operator (SNEO), which is equivalent to the Teager Energy Operator (Teager 1980, 

Jabloun 1999).  SNEO has two great benefits:  it is really fast to compute and it is computationally 

“inexpensive”.  

For a continuous signal     , the SNEO operator    is:                                

For a discrete signal     , the SNEO operator    is:                                

Moreover it has been shown that the energy E of a sine wave with amplitude A and frequency f is 

proportional to:            .  

Spike waveforms have large amplitudes and high frequencies (figure 3.6). Given the proportional relation 

between  SNEO and these two variables it is expected to see spikes having large SNEO values (figure 

3.7). However, large SNEO values are not always indicative of spikes.  Artifacts also have large 

amplitudes and high frequencies which will result in large SNEO values. We will refer to the SNEO as 

    . 

 

Figure 3.6.Filtered signal. Three evident spike clusters. See figure 3.7 for SNEO of this signal. 

 

Figure 3.7. SNEO of signal in figure 3.6. Note high energy regions and energy scale. 
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Noise 

We estimated the RMS noise        in the energy signal     .    was obtained by computing the median 

of the absolute deviation of      (Nenadic 2005, Erickson 2009). For a signal S(N),     is defined as: 

                                                      

 Where            is the sample mean of       and       denotes the sample median. This is a robust 

estimate of noise because it is not sensitive to outliers (Erickson 2009). 

Detection Threshold 

A detection threshold is set by the product of the estimated noise        and parameter k.     

                    

Data samples with E(n) above            are selected to move forward in the process.  

 

Figure 3.8. Detection threshold based on noise and parameter k.   Contrast high detection threshold in this figure to 

threshold in figure 3.9.  Different detection thresholds yield different candidates. 

 

Figure 3.9. Detection threshold based on noise and parameter k. Low detection threshold captures a larger number of 

candidates 
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Grouping Samples into Clusters  

The next step is to group the selected data samples into clusters. Samples separated by less than a preset 

threshold will be grouped together; else they will be separated into different clusters. The sample 

separation threshold is calculated based on the product of sampling frequency fs and the parameter DT.  

For example, samples S(N)  and  S(N + x) will  be grouped together if:  

                    

These clusters are known as the spike candidates.  The information regarding the first and last data 

samples in a cluster is passed forward. These are treated as the beginning and ending of a spike burst. 

 

Figure 3.10. Clustering based on threshold. In this example large DT results in 3 spike clusters. Contrast to figure 3.11.  

 

Figure 3.11. Clustering based on threshold. In this example small DTresults in 4 spike clusters. 

Parameters 

It is important to acknowledge the role played by the two detection parameters k and DT. As seen in 

figure 3.8, 3.9, 3.10 and 3.11, different parameter values often yield different results. We will analyze 

parameters effects on the algorithm’s performance (AROC) in chapter 4 and suggest optimal values for 

these. 

Initial Classification:  Cluster Length 

An initial classification step is candidate discrimination by cluster length. We compute the cluster length 

(in seconds) based on the start and end times. The clusters determined to be too short or too long 

according to user-defined limits are eliminated.  We chose these restrictions: 

 0.02 sec ≤ Cluster length < 3.5 sec 

These limits are set according to physiological or waveform observations. For example, it is 

physiologically unlikely to observe a spike cluster which lasts 3 seconds. Clusters are usually shorter than 

that. Similarly, given that spikes occur in clusters it is unlikely to have a cluster which consists of two 
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data samples. For a 256 Hz sampling rate, the time between two samples is 0.0039 seconds; far too short 

to be a spike cluster.  

3.7 Machine Classification:  
The result of SNEO detection is a large number of candidates including spikes and non spikes. It is 

essential to classify these waveforms and select only spikes to move forward in the process. As we 

discussed in section _, the first step is simple cluster length discrimination. Next, we needed a more 

powerful method to classify waveforms based on their characteristics. Preliminary observations guided us 

toward choosing Support Vector Machines (SVM). 

Machine learning is a powerful tool which relies on a computer’s ability to recognize patterns in data and 

make intelligent decisions. As humans, we are always classifying objects in our minds based on their 

characteristics. Machine learning follows the same principle, but takes advantage of the computer’s 

computational ability. A computer carries out complex mathematical operations and processes large 

quantities of information in a very short time.  In chapter 2 section _, we discussed the difficulties that 

arise in the visual analysis of small intestine SERs. In comparison to the human eye, the machine is far 

better equipped to recognize underlying patterns in data; particularly for complex waveforms such as 

those in SERs.  

Next, we will introduce the concept lying at the core of machine learning with a straightforward example. 

This example is intended particularly for the reader with no previous knowledge regarding machine 

learning.   

Figure 3.12 shows fictitious data for the height and weight of children between the ages 3-5 and adults 18 

and older. It is easy to see a pattern in the distribution of the data points. The majority of adults are 

clustered in the upper right corner; at higher weights and heights. On the other hand, children are 

clustered in the lower left corner; at lower weights and heights. 

In SVM theory, weight and height are called feature vectors as they describe a particular characteristic of 

a data piece. The set of data containing feature vectors and their classification (child or adult) is referred 

to as the training set in SVM theory.  The user must provide a training set to the SVM algorithm from 

which it will attempt to recognize any underlying patterns.  

Training set = [weight, height, child or adult?] 

Training set = [vector A, vector B, classification] 

 

By modifying figure 3.12  it is easier to observe the data distribution. See figure 3.13.  

However, the overlap between children and adults at the boundaries of the quadrants also becomes 

noticeable (figure 3.14). In figure 3.14, the green rectangle indicates the area where overlap is observed. 

The SVM algorithm also notices the overlap and more importantly it draws a separating plane between 

the two objects (figure 3.15). 
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Figure 3.12. Fictitious data for height and weight of children and adults. Note evident data distribution. 

 

 

Figure 3.13. Fictitious data for height and weight of children and adults Plot area has been divided into four quadrants. 

Note that data distribution becomes more evident. Adults are clustered in upper right quadrant while children are 

clustered in lower left quadrant.  
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Figure 3.14. Fictitious data for height and weight of children and adults. Note overlap area emphasized by green 

rectangle.  

 

Figure 3.15. Fictitious data for height and weight of children and adults. Pink and blue regions indicate areas separated 

by the SVM-generated plane. 
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Figure 3.15 is an example of a separating plane that could be generated by an SVM algorithm on a 2 

dimensional space (based on 2 feature vectors). The separating plane is calculated based on the training 

set characteristics. The pink region in the plot is the region suggested for adults and the blue region is 

suggested for children. New data will be classified either into a child or an adult based on its location in 

the relative to the separating plane (figure 3.16). Note that some adults fall into the light blue child region 

and some children fall into the pink adult region.  Classification at the boundaries is complex due to the 

overlap but SVM produces a separating plane which will minimize errors. Following this stage we say 

that SVM has been “trained” and it is ready to classify new data.  

Let’s test the SVM classification with an example. We have two data points with the following 

characteristics:   height 169 cm and weight 70 kg, height 100 cm and weight 35kg. If this information is 

passed onto a trained SVM, what will they be classified as? See figure 3.16. 

 

Figure 3.16. SVM test classification outcome. 

According to figure 3.16, the test case [70,169] was classified as and adult. The test case [35, 100] was 

classified as a child. Once SVM is trained, the user only needs to provide information regarding the 

feature vectors. SVM will make a decision and return a classification. 

Test Case = [weight, height] or   Test Case = [feature vectors] 

Returned by SVM = [feature vectors, classification] 

Even though this example is very simple, it exposes an important point:  real data overlaps and as such 

classification at the boundaries is difficult. Thus, SVM provides a powerful and consistent method for 

classifying data and optimizing classification at the boundaries. 
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Considerations about SVM  
In the previous example we saw how SVM generated a separating plane between the data sets based on 

the feature vectors height and weight. As explained by Prof. Erickson: SVM tries to optimize the 

hyperplane such that it maximizes the minimum distance from any of the feature points. Refer back to 

figure 3.13. SVM “wants” to find the plane that separates children from adults, but stay as far away from 

both children and adults as possible. The points that are closest to the plane (figure 3.15) are actually 

called the “support vectors”, because they “support” the drawing of the hyperplane. 

The mathematics concerning SVM are complex and more detail is available in Lutz 2009: We 

implemented Matlab’s SVM function from its Bioinformatics Toolbox. We used the Gaussian Radial 

Basis Function (RBF) to train SVM. In this approach, data is separated on radial symmetry.  The 

influence of a data point falls off like a Gaussian curve in the radial direction. Prof. Erickson suggested 

RBF because it allows the generation of non-linear hyperplanes. A non-linear hyperplane is more flexible 

and could model our data more appropriately. 

Moreover, it is important to acknowledge that SVM classification will not be perfect. The planes are 

drawn so as to optimize results, but some samples will be misclassified. Data overlap, even at a small 

extent, is always likely to occur. 

3.8 Candidate Windows  
In order to carry out classification, we need to provide SVM with the features vector describing a 

waveform. We computed four features for every candidate cluster:  signal to noise ratio (SNR), integrated 

energy per unit time (IEpsec), mean-crossing points (MCPpsec) and median time between mean-crossing 

points (MTimeMCP).However, there is an intermediate step previous to feature computation: the 

conversion of candidate clusters into candidate windows of a given length. 

From SNEO detection we are provided with the alleged start and end coordinates of candidate clusters. 

However, it is possible that these start and end points do not coincide with the actual start and end 

coordinates of the clusters.  This arises from the fact that the initial and final spikes in a cluster are 

smaller than those in the middle section.  Thus, it is possible that SNEO detects a cluster shorter than the 

actual one.  See figure 3.17 and 3.18. 

 

Figure 3.17. Raw signal. Two evident spike clusters. 
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Figure 3.18. First cluster is detected by SNEO. However, starting  point is shifted to the right. Detected cluster is shorter 

than actual cluster. 

In figure 3.15 we observe that the detected cluster is shorter than the actual; the start point is shifted 

rightwards. In order to minimize cluster limits inaccuracies and for ease of data processing we decided to 

expand the clusters into data windows of a given length. Window length is equal to twice the parameter 

windowL. 

A data window is obtained by: computing the midpoint of the spike cluster and centering the window on 

this midpoint. Figures 3.19 and 3.20 show the effect of generating a larger window around a short 

cluster. 

 

Figure 3.19. Cluster detected by SNEO is shown by black rectangle. Candidate window is shown by red rectangle. Note 

that window encompasses a larger area than cluster. 

 

Figure 3.20. Candidate Window. Note that the entire cluster is found within the window. Arrow indicates window length  

(2 x windowL). 
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3.9 Feature Vectors 

Signal to Noise Ratio (SNR) 

This feature calculates the ratio between the signal in the candidate window and noise. The signal is 

estimated by calculating the standard deviation   for the samples S(n) in the small candidate window. 

   
       
    

 
   

      
    

 
 

 

 

Where   is the total number of samples in the window. 

Noise is estimated by computing the median of the absolute deviation. See section 3.5 for more 

details. Importantly, noise is computed over the entire data length for the channel, not just within the 

small window.  

We expect spike windows to have high SNR. However, a high SNR is not always indicative of a 

spike cluster.  Artifacts and the fast component of the slow wave could also yield high SNR. 

Integrated  Energy per Unit of Time (IEpsec) 

We saw the energy operator SNEO is utilized previously in candidate detection. The energy operator 

is utilized again for calculating this feature. The IEpsec; as the name indicates; is the integration of       

for the whole candidate window divided by the window length.  (Remember that E(n) refers to the 

SNEO). See below for illustration. 

 

Figure 3.21. Illustration of SNEO signal or E(n). 
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We expect spike windows to have large values of IEpsec.  

Mean-Crossing Points per Unit of Time (MCPpsec): 

The feature called “mean-crossing” aims to trace how many times the signal goes above and below a 

certain value.  The threshold value chosen is the mean for all the data points in the candidate window. 

The “mean-crossing” feature is based on the idea that if you draw a horizontal line through a typical 

spike you will observe the signal going up and down through it several times. Thus, we say that a 

spike has a large number of mean-crossings in a small amount of time.  On the other hand, if we draw 

the same horizontal line across a slow wave we will observe that the signal crosses once, twice or at 

most thrice through the line. The mean-crossing feature attempts to quantify the fast upward and 

downward deflections of typical of spikes. It is a simplified approach of the one presented by Liang et 

al. (1997) where they focus on: amplitude spectrum and maximum derivative. MM filtering is 

extremely important for this feature because it removes the wandering baseline and allows capturing 

the deflections crossing through a straight horizontal line. 

 

Figure 3.22. Example showing candidate window with spike cluster 

 

Figure 3.23 Example showing that a spike cluster generally has a high number of MCPpsec. In this example, number of 

mean crossing points is 26.  In reality, steps are taken to discriminate crossings that have low amplitudes; i.e. points that 

to cross the mean but do not go far up.  
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Figure 3.24. Slow frequency waveform. These waveforms usually very low MCPpsec. For this case number of mean 

crossing points is 3. In reality, steps are taken to discriminate crossings that do not reach far up like the ones observed 

here. The number of mean crossing points could be reduced to 1 or 2. 

While it is expected that spike clusters will have a larger number of MCPpsec; a large number of 

MCPpsec is not always indicative of a spike. The example in figures 3.25- 3.27 illustrates this claim. 

 

Figure 3.25. Selected candidate window shown by red square. It is evident that candidate is not a spike cluster. 

Furthermore, data in channel does not reach amplitudes higher than 100 uV.  

 

Figure 3.26. Zoomed in view of candidate window reveals it is a noisy signal with very small amplitude (30uV) 
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Figure 3.27. This candidate results in a high number of MCPpsec in spite of not being a spike cluster. Number of mean 

crossings is 23; comparable to spike cluster in figure 3.23. 

The MCPpsec computation includes small modifications to eliminate crossing points that are too 

close to each other or points located on peaks which do not go up to high amplitudes.   

Median Time between Mean-Crossing Points (MTimeMCP) 

The fourth and final feature computes the times between mean-crossings points in a window, sorts 

them out and selects the median value. We expect spike clusters with large number of MCPpsec to 

have a short MTimeMCP. 

The final features vector is summarized below: 

 Feature vector for signal s(t) = [SNR,  IEpsec, MCPpsec, MTimeMCP] 

While SNR and IEpsec are more widely used in signal processing, MCPpsec and MTimeMCP are 

based on initial empirical observations and serve a trial-and-error purpose.  The usefulness of each 

feature in the vector will be evaluated during the cross validation in chapter 4. If results indicate that 

MCPpsec and MTimeMCP do not provide benefits they will be removed and new features could be 

investigated if necessary 

3.10 Training Set for SVM classification 

Training Samples Classification 

In order to train SVM we generated a large number of training samples. We ran SNEO threshold 

detection on several data segments and obtained 1-second long candidate windows. SNEO detection was 

performed with a low k parameter (k=5) to detect spikes as well non spikes (See figures 3.28 and 3.29). 

Candidates were analyzed within a 30 second display of channel data. An observer classified each sample 

through visual inspection. Classification of each sample was done conservatively. Classification was 

stored in the following format: 1 for spikes and 0 for non spikes. 
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Figure 3.28. Training samples passed onto SVM. All of the samples here were classified as spikes given their waveform 

characteristics: amplitude, frequency. 

 

Figure 3.29. Training samples passed onto SVM. All of the samples here were classified as non spikes given their 

waveform characteristics: amplitude, frequency 
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Training Set 

Consisted of approximately 2300 training samples of which 80% are non spikes and 20% are spikes. 

Training samples were selected from following data sets: 

Table 3.2. Information of data sources used to generate the training samples set. 

 Data set Experiment Time  Filter General Observations 

   (40 channels) SG Mov. 

Median 

 

1 01.22.10 01b 415_445s   Cardiac + few spikes 

  01b 365_395s   Cardiac + few spikes 

2 04.14.09 c 60_90s   Few spikes 

  c 960_990s    

  a 1110_1170s   baseline 

3 04.15.09 c 1090_1120s    

       

4 04.16.09 d 130_160s    

       

5 04.17.09 c 500_530s 0.09 0.5 Strong cardiac/ no clear spikes 

       

6 05.03.11 

Auckland 

Pig 33 exp 9 260_280s 0.1 0.5 Baseline +slow wave 

  Pig 33 exp10 210_230s   Long spike clusters, spread 

through channels 

  Pig33exp10 270_290s 0.1 0.5  

7 05.22.09 b 25_85s   Few spikes 

  a 600_660s   Baseline 

8 05.28.09 01b 2700_2730 0.09 0.5 Noisy data, artifacts, cardiac , 

baseline wander 

       

9 05.29.09 b 31_61s 0.09 0.5 Nice spikes, can see spread 

through channels 

  b 151_181s 0.09 0.5 Lots of spikes,  spread through 

channels 

  a 200_230s 0.09 0.1 Baseline, Slow wave 

10 06.01.11 

Auckland 

Pig 34 exp 

10 

   Baseline 

  Pig 35 exp 

12 

300_330s    

  Pig 35 exp 

13 

1210_1240s    

 

3.11 Final Algorithm Step: Additional Discrimination: 
This is the final step in the algorithm and it consists of several user-defined restrictions on the signal 

features. This final step aims to reduce the number of FPs; signals misclassified by SVM. These 

restrictions are set to be lenient, only targeting candidates with features which are evidently uncommon 

for spikes. For example, MPCpsec is required to be greater or equal to 1. A signal having MCPpsec=0 

could have been classified erroneously by SVM given its other features (SNR, IEpsec, etc). However, we 

will argue that a candidate with MCPpsec= 0 is unlikely to be a spike and should be eliminated. 

Furthermore, we expect spikes to have MPCpsec much larger than 1, between 15 and 30.  However, the 

restriction is set to 1 because we only want to eliminate candidates which have evident non spikes 
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features. Otherwise, if we set strict restrictions based on observed values we would be undermining 

SVM’s classification power. 

The values for the restrictions were obtained from analyzing the training samples. See chapter 4 for more 

details. Typical values for spikes were compared to values for non spikes and these limits were chosen. 

This is an additional step and the restrictions can be modified by the user. 

The conditions were the following: 

 0.5 < SNR <  15 

 0 < IEpsec < 30,000 

 1 ≤ MCPpsec 

 MTimeMCP < 0.15 seconds  

3.12 Algorithm Design Summary 
In chapter 3 we introduced the metrics used to measure the algorithm’s performance and described in 

detail each step in the algorithm. Moreover, we saw examples for every processing step and gained 

understanding about how spikes are detected and classified. Figure 3.30 provides a detailed summary of 

the algorithm; this is an expanded version of the diagram presented at the beginning of this chapter (figure 

3.2). Chapter 4 will present the results obtained from algorithm validation and discuss the algorithm’s 

performance. 



Chapter 3 Spike Detection Algorithm Design 

48 

 

Figure 3.30. Diagram: Summarize Algorithm Flow. See text under each heading for details regarding each step. 

 

 

Initial Setup 

•Crop File 

•Open in GEMS 

•Export variables to workspace: 

•bdfdat : data for every channel 

•bdf_fs: sampling frequency (Hz) 

•bdf_ts : absolute start time 

•bdf_twindow : length (seconds) 
of data  

•Save as a .mat file 
 

 

 

Preprocessing 

•Filter 

•Moving median: target 
wandering baseline 

• Savitzky-Golay: target high 
frequencies (significantly 
higher than spike frequency) 

Spike Cluster Candidate 
Detection 

•SNEO-based  (smoothed 
nonlinear energy operator) 

•User-defined treshold based 
on parameters k, DT 

•Output: start and end points 
of cluster 

Cluster Length 
Discrimination 

•Compute cluster length 

•Discriminate by cluster 
length: user-defined treshold 
for too short / too long 

Expand Candidate 
Cluster into  Candidate 
Window 

•Compute midpoint of spike 
cluster  

•Center candidate window  at 
midpoint of cluster  

•User-defined windowL 
(window length) 
 

Compute Features of 
Candidate Window 

1.SNR  (signal to noise ratio) window 
signal to channel noise ratio 

2. Integrated energy per second 

3.  Number of signal mean-crossing 
points per second 

4. Median time between mean-
crossing points  

 

 

 

 

 
 

 

 

SVM  Classification 
(Support Vector Machine) 

•  Training database of manually 
classified samples 

•Previously generated SVM 
structure (based on training 
samples) 

•Pass on candidate features 

•Output SVM classification: 
whether candidate is a spike or 
not 

 

 

 

 

Additional Discrimination 
(decrease false positives) 

Several user-defined limits 

1.Number of signal mean-crossing 
points per second: too few? 

2.Median time between mean-
crossing points : too long? 

3.Average SNEO per second: too high 
or too low? 

4. SNR: too high or too low? 

5. Cluster length:   possibility to 
redefine limits set early in the process. 
too short or too long? 

 

 

 

 

 

 

 

 

 

 

 

 

Absolute Time 

•For cropped file determine 
absolute start and end 
times of spike cluster  

FINAL OUTPUT 

•Channel  in which cluster occurs 

•Cluster absolute start and end times  

•Cluster length 

•Window features 
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Chapter 4  

Results: Tendencies in Data and 
Algorithm Validation  

4.1 Training Samples: Tendencies in Data 
As mentioned in chapter 3 we generated 2300 samples for SVM training. Samples were classified by an 

observer as spikes or non spikes. In this section we analyze the data tendencies observed in these samples. 

We will focus on three features computed for the training samples: SNR, IEpsec, MCPpsec (introduced in 

chapter 2).  See figures 4.1 through 4.7 for illustrations of observations. 

Summary of observations: 

  Low levels of SNR: overlap amongst spikes and nonspikes. (figure 4.1) 

 Low levels of IEpsec: overlap amongst spikes and nonspikes.  (figure 4.2) 

 Non spikes are clustered at very low levels of IEpsec. (figure 4.2) 

 Extensive overlap amongst spikes and nonspikes for all levels of MCPsec. (figure 4.3) 

 3D: Spikes and non spikes seem are clustered in the low SNR, low-medium MCPsec area. (figure 

4.5) 

 3D:Data separation between spikes and non spikes becomes evident at high levels of MCPsec. At 

high levels of MCPpsec spikes have higher SNR than non spikes. This could arise from non 

spikes which have high levels of noise and thus high MCPpsec but low SNR. Spikes with high 

MCPpsec tend to have high SNR. (figure 4.6) 

 3D: It is possible to observe data separation between spikes and non spikes along the vertical 

IEpsec axis. Spikes extend into regions of higher IEpsec. (figure 4.7) 
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Figure 4.1.Red:spikes. Black: non spikes. For low levels of SNR there is overlap amongst spikes and nonspikes. 

Separation between waveforms starts close to 0.5 SNR. 
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Figure 4.2. Red:spikes. Black: non spikes. For low levels of IEpsec there is overlap amongst spikes and nonspikes. 

Separation amongst waveforms starts at higher levels of IEpsec. Non spikes are clustered at very low levels of IEpsec. 
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Figure 4.3. Red:spikes. Black: non spikes. There is extensive overlap amongst spikes and nonspikes for all levels of 

MCPsec. Slightly more spikes at levels of 15 MCPsec and higher. 
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Three-dimensional Space: SNR ,.IEpsec , MCPpsec  

 

Figure 4.4. Red:spikes. Black: non spikes. Both spikes and non spikes seem are clustered in the low SNR, low-medium 

MCPsec area.  
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Figure 4.5. Red:spikes. Black: non spikes. Start to see some data separation in the plane MCPpsec vs. SNR. 
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Figure 4.6. Red:spikes. Black: non spikes. Data separation between spikes and non spikes becomes evident at high levels 

of MCPsec. At high levels of MCPpsec spikes have higher SNR than non spikes. This could arise from non spikes which 

have high levels of noise and thus high MCPpsec but low SNR. Spikes with high MCPpsec tend to have high SNR. 
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Figure 4.7. Red:spikes. Black: non spikes. It is possible to observe data separation between spikes and non spikes along 

the vertical IEpsec axis. Spikes extend into regions of larger IEpsec.  

4.2 Algorithm Validation  
Validation of the algorithm was two-folded: the first part tested the ability of SVM to classify data into 

spikes and non spikes, the second part tested the ability of the algorithm to detect spikes in comparison to 

human markers.  

SVM 10-Fold Cross Validation 

As mentioned in chapter 3, the SVM algorithm was trained with 2300 training samples of which 80% 

were non spikes and 20% were spikes. These samples were selected using SNEO threshold detection and 

classified as spikes or non spikes by a single observer. Classification made by SVM is compared to the 

manual classification.  The 10-fold cross validation measures the ability of SVM to classify the data 

available. More importantly, cross validation also reveals whether data is separable/ classifiable given the 

chosen features; this is not always the case. The example provided in chapter 3 figures 3.12-3.15 showed 

data which could be separated into children and adults given height and weight values. However, if we 
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had data about children between the ages 2-4 and children between the ages 4-6, it would be harder to 

separate. These two age groups are likely to overlap on height and weight and could not be easily 

separated.Each training sample consists of:  

Training Sample= [Feature Vector, Manual Classification]   which expanded is  

Training Sample= [SNR, IEpsec, MCPpsec, MTimeMCP, Manual Classification] 

We executed SVM in Matlab and we ran a 10-fold cross validation.  The 2300 samples were distributed 

randomly into 10 groups of approximate equal size.The steps are the following:  

1. 9 groups are chosen as a TRAINING SET while the remaining group is determined to be a 

TESTING SET.  

2. SVM is trained with the training set feature vector and manual classification. Once training is 

finalized, a SVM structure is generated and SVM is ready to classify new data.  

3.  Only the testing set feature vector is passed onto SVM for classification.  

4.  Then, the testing set manual classification is compared to the output produced by SVM. Several 

metrics are calculated to measure the performance of the automated classification.  See table 4.1 

for detail on cross-validation metrics.  

5. This entire sequence is repeated 10 times; every time having a different group as a testing set. 

6. Finally, the average metrics for the 10 combinations is computed and reported. 

Table 4.1.Cross validation statistics: definitions and abbreviations. 

Abbreviation Definition Formula 

Absolute values 

TP Number of true positives  

FP Number of false positives  

FN Number of false negatives  

TN Number of true positives  

Nmarks Number of marks                    

Metrics. Value ranges 0-1.   

TPR True positive rate 
    

  

      
 

FPR False positive rate 
    

  

      
 

FNR False negative rate 
    

  

      
 

SPC Specificity 
    

  

      
 

SN Sensitivity 
   

  

     
 

PPV Positive prediction value 
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While all the metrics mentioned in table 4.1 provide important information, we will focus on PPV and SN 

as discussed in chapter 3. The product of these two yields AROC; a measure of the test’s performance. 

Results: 10-fold Cross-Validation  

10-fold cross validation was done with the four features SNR, IEpsec, MCPpsec, and MTimeMCP (see 

table 4.2 for explanation of abbreviations). These features were defined and illustrated in chapter 3. 

Average PPV was 0.9567 ± 0.0118 and average SN was 0.9795 ±0.0088. Remember that perfect PPV and 

SN are equal to 1. These results yielded AROC = 0.9371. Table 4.3 provides detailed results of cross 

validation. 

Table 4.2.Candidate feature names and abbreviations 

Abbreviation Definition 

SNR Signal to noise ratio 

IEpsec Integrated candidate energy per unit time 

MCPpsec Number of mean-crossing points per unit time 

MTimeMCP Median time between mean-crossing points (seconds) 

 

Table 4.3. Average metrics for cross-validation with 4 features: SNR, IEpsec, MCPpsec, MTimeMCP. 

Metric Average Standard deviation (STDV) 

 Nmarks  223.4 11.4426 

TP   209.5 10.4376 

FP  9.5 2.7183 

 FN  4.4 1.9551 

TPR  0.9380 0.0157 

 FPR  0.0424 0.0115 

FNR 0.0196 0.0083 

PPV 0.9567 0.0118 

SN 0.9795 0.0088 

SPC 0.9576 0.0115 

 

The repetition of 10-fold cross validation (trial 1- trial 5) yielded different numerical results. See table 

4.4. This is because early in the validation stage samples are assigned randomly to groups.  So for every 

repetition, samples are distributed differently amongst groups. However, the numerical difference does 

not indicate a real difference.  The mean SPC and mean SN vary within the standard deviation window. 

Table 4.4.  Five trials of 10-fold cross validation. 

 TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4 TRIAL 5 

< PPV >  ± STDV 95.89  ± 1.35 95.64  ± 1.75 95.70 ±1.88 95.74 ± 1.13  95.67 ± 1.18 

< SN >   ±  STDV 98.00  ±  0.97 97.92 ± 0.99 97.90  ± 0.47 97.99 ± 1.34  97.95 ± 0.88 
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We can report that SVM classification with the four aforementioned features yields: average PPV= 95 ± 1 

% and average SN= 98 ± 1 %. Then, average AROC= 0.93 ± 0.02 . 

Table 4.5. Performance summary 4-feature SVM classification 

Performance Summary  

PPV= 95 ± 1% 

SN= 98 ± 1 %. 

AROC= 0.93 ± 0.02  

 

 These results are satisfactory and provide support for the use of SVM in classification of new data. High 

PPV and SN indicate that the SVM structure has an adequate distribution of training samples and is able 

to generate an appropriate separating hyperplane.   

Results in table 4.5 show a slightly lower PPV compared to SN.  This arises from a relatively larger 

number of FPs. SVM is able to detect the majority of spikes present (high SN). However, it also classified 

erroneously some non spikes giving rise to FPs (lower PPV). These are likely to be artifacts and 

contaminants with features (SNR, IEpsec, MCPpsec, and MTimeMCP) similar to spikes. 

4.3 Feature Vector Assessment 
Results for 10-fold cross validation of SVM with the four features SNR, IEpsec, MCPpsec, MTimeMCP 

were: average PPV= 95 ± 1 %, average SN= 98 ± 1 % and AROC= 0.93 ± 0.02. 

These results were deemed satisfactory. Nevertheless, before proceeding into SVM classification of new 

data we assessed the legitimacy of every feature in the feature vector. In other words, we investigated 

whether a feature improved SVM performance by providing useful information. 

For this purpose we conducted a series of cross validations using different feature vectors. See table 4.6 

for results summary.  Figure 4.8 and 4.9 illustrate the results. Figure 4.8 suggests that several 

combinations of features have comparable performance. Lowest performance when only used MCPpsec 

or MTimeMCP .Combinations of two or more features yields 90% or higher AROC. Figure 4.9 shows 

that for the majority of feature combinations SN is always higher than PPV.  This observation suggests 

that SVM is able to detect the majority of spikes. However, it also marks non spikes erroneously; thus, 

SVM has lower ability to distinct between spikes and non spikes. As we mentioned in chapter 3, we do 

not expect perfect performance from SVM.  Thus, the presence of a few FPs is expected. 
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Figure 4.8. Changes in SVM performance for different combinations of feature vectors. 
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Figure 4.9. Changes in PPV and SN  for different combinations of feature vectors. Note interrelation between PPV and 

SN. Also, for the majority of cases SN is always higher than PPV. 
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Table 4.6. Summary of Cross validation for different feature vectors. 

Feature vector = [ SNR] 

Cross-validation TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4 TRIAL 5 

< PPV >  ± STDV 91.84 ± 2.87 91.12 ±  2.17 91.65 ± 1.88 91.22 ± 2.48 91.43 ± 3.30 

< SN >   ±  STDV 91.70 ± 3.87 93.46 ±  2.36 92.80 ± 3.44 92.87 ± 2.57 91.78 ±  4.12 

Feature vector = [ IEpsec ] 

< PPV >  ± STDV 94.49±  1.89 94.43 ± 1.27 94.36±  2.37 94.51 ± 1.88 94.16 ± 1.69 

< SN >   ±  STDV 93.43±  2.33 93.41 ± 3.29 93.31±  3.41 92.59±  2.76 93.79±  2.40 

Feature vector = [ SNR, IEpsec ] 

< PPV >  ± STDV 93.50 ± 1.29 93.44 ±1.31 93.52 ± 2.32 93.52 ± 1.97 93.52 ± 1.25 

< SN >   ±  STDV 96.46 ± 1.35 96.39 ± 0.99 96.48 ± 1.36 96.45 ± 1.16 96.54 ± 1.38 

Feature vector = [ SNR, IEpsec , MCPpsec ] 

< PPV >  ± STDV 95.45 ± 1.16 95.41±  2.14 95.51 ± 1.32 95.50 ± 1.23 95.38±  1.41 

< SN >   ±  STDV 97.91±  1.00 97.91±  0.80 97.95±  0.80 98.05 ± 1.23 97.96±  1.16 

Feature vector =[ SNR, IEpsec, MCPpsec, MTimeMCP] 

< PPV >  ± STDV 95.89  ± 1.35 95.64  ± 1.75 95.70 ±1.88 95.74 ± 1.13  95.67 ± 1.18 

< SN >   ±  STDV 98.00  ±  0.97 97.92 ± 0.99 97.90  ± 0.47 97.99 ± 1.34  97.95 ± 0.88 

Feature vector =[ SNR, IEpsec, MTimeMCP] 

< PPV >  ± STDV 95.24±  0.46 95.26± 1.87 95.22± 1.22 95.34± 0.86 95.28± 1.76 

< SN >   ±  STDV 97.52±0.90 97.43 ± 1.19 97.51± 0.98 97.45±1.44 97.54 ±1.39 

Feature vector =[ MCPpsec] 

< PPV >  ± STDV 83.32 ±2.48 83.31 ±1.92 83.26 ± 2.33 83.28 ±1.63 83.27± 1.88 

< SN >   ±  STDV 95.82 ±1.96 95.80± 1.26 95.82 ±1.36 95.82 ±1.12 95.87 ±1.60 

Feature vector =[ MTimeMCP] 

< PPV >  ± STDV 73.89± 3.45 73.87 ±2.67 73.64± 3.31 73.94± 3.26 73.97± 3.55 

< SN >   ±  STDV 98.93 ±1.18 98.87± 0.95 98.86± 0.77 98.95± 1.09 98.88± 1.12 

Feature vector = [ SNR, MCPpsec ] 

< PPV >  ± STDV 95.16 ±1.29 95.15± 2.29 95.13 ±1.25 95.28± 1.88 95.06 ±1.11 

< SN >   ±  STDV 97.72 ±0.84 97.68 ±0.96 97.68 ±0.80 97.65± 0.82 97.85± 1.23 



Chapter 4 Results: Tendencies in Data and Algorithm Validation  

63 

 

4.4 Additional Discrimination 
The final step in the algorithm (post SVM classification) consisted of an additional discrimination step. 

As discussed in chapter 3, this additional discrimination was designed to possibly reduce the number of 

FPs.  We tested the impact of this final step by running it following SVM classification. Table 4.6 

contrasts the 10-fold cross validation results for SVM classification only against SVM classification plus 

additional step. The final discrimination step does not affect significantly the results. We observe a small 

numerical difference for metrics like PPV (0.9567 vs. 0.9676). However, a numerical difference does not 

indicate a real difference.  The metrics vary within the standard deviation window.  

Table 4.7. Cross validation results comparison. SVM classification vs. SVM classification + add. discrimination 

SVM classification    SVM classification +  add. discrimination 

Metric Mean Standard deviation 

(STDV) 

 Mean Standard deviation  

(STDV) 

 Nmarks  223.4 11.4426  223.4 11.4426 

TP   209.5 10.4376  211.4 10.88 

FP  9.5 2.7183  7.1 2.2336 

 FN  4.4 1.9551  4.9 1.9692 

TPR  0.9380 0.0157  0.9464 0.0126 

 FPR  0.0424 0.0115  0.0317 0.0097 

FNR 0.0196 0.0083  0.0219 0.0086 

PPV 0.9567 0.0118  0.9676 0.0099 

SN 0.9795 0.0088  0.9773 0.0089 

SPC 0.9576 0.0115  0.9683 0.0097 

 

4.5 Algorithm Validation: Automated Results vs. Standard and Parameter 

Analysis 
As mentioned in chapter 3, several segments of data were marked manually by three observers 

experienced in recognizing spikes. The manual marks were pooled in together and the spike clusters 

marked by the three observers regardless of any small time difference were selected. Then, the manual 

marks were compared to automated marks generated by the algorithm.  This is a validation of the 

algorithm in its entirety; in contrast to the 10-fold cross validation which only investigated SVM 

performance. 

The algorithm was run for 840 combinations of parameters in order to determine the optimal combination.   

Parameters used: 

k= { 3 , 6 , 9 , 12 , 15 , 18} 

DT= {0.3 , 0.5 , 0.7, 0.9 , 1.1, 1.3 , 1.5} 

windowL= {0.25 , 0.5, 0.75, 1} (window length=2 x windowL ) 

 

Next, AROC (PPV x SN) was calculated and plotted against k and DT. In this case, AROC is a measure 

of the algorithm’s performance for a set of parameters. AROC 0.8 or higher is regarded as a good 

performance, which results from 0.9% SN and 0.9% PPV. 

  

Figures 4.10 through 4.13 illustrate the relation between AROC and the parameters. From these we can 

observe that AROC is dependent on k, DT. The maximum AROC values observed were in the range 0.7-
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0.76 for k=5 and DT=1.5. These were deemed satisfactory. This is the performance one could expect 

when running a new data set on the algorithm with those parameters.  

 

Furthermore, figure 4.11 reveals important information regarding the robustness of the algorithm The 

AROC surface plot is nearly flat near high DT and low k. This allows the user to select parameter values 

within this region and get good algorithm performance. The algorithm is not oversensitive to these 

parameters. Table 4.8 summarizes the optimal algorithm performance for each data set.  

 
 

Table 4.8. Optimal performance for each set of standards  

File  

k DT (s) 

windowL 

(s) Aroc Sens PPV TP FP FN Ncands Nspks 

05.22.09b 18 0.9-1.5 0.5 0.89470 0.91764 0.975 78 2 7 355 80 

05.03.11 3 1.5 0.75 0.88506 0.92968 0.952 238 12 18 276 250 

05.29.09 3 1.3 0.5 0.85388 0.89843 0.95041 115 6 13 258 121 

04.14.09 3,15 1.3 1 0.84424 0.97647 0.86458 83 13 2 265 96 

06.01.11 15 1.5 1 0.69879 0.89024 0.78494 73 20 9 122 93 

 

 

 

 
Figure 4.10. AROC surface for parameters DT, k. 
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Figure 4.11. AROC is directly proportional to DT.  Future work should be carried with DT=1.5 

 

 
Figure 4.12. Not a clear relationship between AROC and k. However, highest AROC at small k. Future work could be 

carried with k=5. 
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Figure 4.13. Highest algorithm performance at low k, high DT (observe maroon blocks in plot) 

Validation Overview 
As we discussed in chapter 3 the algorithm consisted of the following processes: 

Filtered Signal →SNEO threshold detection + SVM + additional discrimination = Spike cluster 

information 

Now, the algorithm is validated and can be used to analyze spike activity in ischemic intestines. 
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Chapter 5  

Preliminary Results: Induced 
Ischemia and Spike Activity  

5.1 Ischemic Intestine Data Analysis 
 

Table 5.1.Details Regarding Preliminary spike detection with algorithm. 

 
Channels FILE 5min  5min  5min  5min  TOTAL 

  
PIG 1 

    

 

baseline 49chan 04.14.09_a 60-360s 360-660s 1000-1300s 1300-1600s  

  
# of spikes detected 9 2 14 21 46 

75%ischemia 49chan 04.14.09_d 60-360s 360-660s 700-100s 1000-1300s  

  
# of spikes detected 364 22 11 93 490 

  
PIG 2 

    

 

baseline 49chan 05.29.09a 60-360s 500-800s 1000-1300s 1400-1700s  

  
# of spikes detected 0 1 0 0 1 

segmental 49chan 05.29.09b 60-360s 500-800s 1000-1300s 1800-2100s  

  
# of spikes detected 512 544 135 18 1209 

 

Spike Activity: Ischemic Intestine vs. Baseline 
 (Figures 5.1 and 5.2).  Number of spike clusters per minute per channel. For 20-minute long experiments. 

Compared to spike rate in baseline recordings. Vanderbilt experiments 04.14.09 and 05.29.09. 

 

Figure 5.1. Number of spike clusters per minute per channel. For 20-minute long experiment.  
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Figure 5.2. Number of spike clusters per minute per channel. For 20-minute long experiment. 

Spike Rate in Ischemic Intestine 
 (Figure 5.3 and 5.4) Average number of spikes per channel during partial ischemia experiment (75%). 

Spike rate changes throughout experiment. (x axis is the time coordinate during the experiment). 

Vanderbilt experiments 04.14.09 and 05.29.09. 

 

Figure 5.3. Average number of spikes per channel during partial ischemia experiment (75%). 
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Figure 5.4. Average number of spikes per channel during partial ischemia experiment (75%). 

5.2 Spatial Spike Propagation Analysis  
Once spike detection has been conducted it is possible to analyze the wave’s spatial propagation. A 

preliminary attempt to model spike spatial propagation was performed by using the cycle partitioning 

algorithm REGROUPS (Erickson 2010).  This algorithm was designed for gastric slow wave activity but 

could be appropriate for spike analysis; testing to be conducted in the future. Figure 5.5 provides an 

example of how REGROUPS can partition spike wave fronts. Figure 5.6 illustrates the spatial 

propagation of the 3 wavefronts detected by REGROUPS. 
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Figure 5.5. Cycle Partitioning analysis conducted with REGROUPS. Electrode placement information is necessary. 

 

Figure 5.6. Spatial propagation of spike wave fronts detected by REGROUPS in figure 5.5. Scale red to blue indicates 

time delay. Red: first. Blue: last. 

020406080100120

0

10

20

30

1
2

3
4

5
6 78 910 1112 1314 1516 1718 1920

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48 49

50
51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72 7374 7576 7778 7980 8182 8384 8586

87
88

89
90

91
92

93
94

95
96

97
98

99
100

101
102

103
104

105
106

107
108

109
110

111
112 113

114
115
116

117
118

119
120

121
122

123
124

125
126

127
128

129
130

131
132

133
134

135
136

137
138

139
140

141
142

143
144 145

146
147
148

149
150

151
152

153
154

155
156

157
158

159
160

161
162

163
164

165
166

167
168

169
170 171172 173174 175176 177178 179180 181182 183184

185
186

187
188

189
190

191
192

193
194

195
196

197
198

199
200

201
202

203
204

205
206

207
208 209

210
211
212

213
214

215
216

217
218

219
220

221
222

223
224

225
226

227
228

229
230

231
232

233
234

235
236 237238 239240 241242 243244 245246 247248 249250

251
252

253
254

255
256

Y (mm)
X (mm)

020406080100120

0
10

20
30

15

20

25

30

35

ti
m

e
 (

s
e
c
)



Chapter 5 Preliminary Results: Induced Ischemia and Spike Activity 

71 

 

5.3 Results Overview  
The design and validation of the spike detection algorithm presented in this thesis was the first step in the 

process to investigate the effects of intestinal ischemia on spike activity. Based on AROC analysis we 

deemed the algorithm satisfactory it is current state. Detailed discussion of the algorithm validation will 

be published shortly. Moreover, the spike detection algorithm has been incorporated to the GEMS v1.6 

software (GastroIntestinal Mapping Suite) for additional testing. Figure 5.7 shows data display in GEMS. 

The ischemia analysis results presented here are preliminary and are intended to show possible 

applications of the algorithm. Future research will involve the use of the algorithm for spike rate analysis 

and spike spatial propagation analysis.  

 

 

Figure 5.7 
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	ABSTRACT 
	This thesis presents an algorithm for spike detection designed to analyze data from induced ischemia experiments.  Algorithm design and validation are discussed in detail. Other topics addressed include:  electrical activity in the small intestine, electro-mechanical coupling in the intestine, observations during intestinal ischemia, previous spike detection methods, induced ischemia experimental details, signal contamination, need for automated method, algorithm performance analysis, and possible applicati
	 
	Chapter 1  
	Introduction 
	1.1 The Digestive System and the Small Intestine 
	 
	The human digestive system processes food into components useful for the body.  Digestion is extremely important as it provides the nutrients and energy required for proper cell functioning. The digestive tract is composed of the: mouth, pharynx, esophagus, stomach, small intestine, large intestine, rectum and anus (figure 1.1). Disease affecting any of these regions in the digestive tract will have negative effects on digestion. It is important for scientists and health professionals to understand the func
	 
	 
	Figure 1.1. Digestive System [Source: Encyclopedia Britannica] 
	http://www.britannica.com/EBchecked/media/1087/The-human-digestive-system-as-seen-from-the-front
	http://www.britannica.com/EBchecked/media/1087/The-human-digestive-system-as-seen-from-the-front
	http://www.britannica.com/EBchecked/media/1087/The-human-digestive-system-as-seen-from-the-front

	 

	 
	The small intestine is part of the gastrointestinal (GI) tract and it is divided into three segments: the duodenum, jejunum and ileum (figure 1.2). The majority of chemical digestion and nutrient absorption take place in the small intestine. The duodenum carries on the food break down process while the jejunum and ileum are responsible for mechanical mixing, nutrient diffusion into the bloodstream and waste motility in the anal direction. Mechanical mixing and waste motility are accomplished through waves o
	 
	 
	Figure 1.2. The three segments in the small intestine. [Source: Mayo Foundation] 
	http://www.mayoclinic.com/health/medical/IM00140
	http://www.mayoclinic.com/health/medical/IM00140
	http://www.mayoclinic.com/health/medical/IM00140

	  

	 
	The small intestine tube is composed of several layers: the peritoneum or serosal surface, smooth muscle, Nerve plexi, the submucosa and the mucosa (figure 1.3). The serosa is composed of veins, nerves and arteries which link the intestine to other organs. The outer smooth muscle layer has longitudinal fibers while the inner layer has circular fibers. These muscles carry peristalsis by contracting and relaxing and as such they are responsible for the mechanical mixing and the transport of the chyme. The mye
	 
	 
	Figure 1.3 Structure of the digestive tube. [Modified from Encyclopedia Britannica] 
	http://kids.britannica.com/comptons/art-53188
	http://kids.britannica.com/comptons/art-53188
	http://kids.britannica.com/comptons/art-53188

	 

	 
	 
	Figure 1.4 Photograph of segment from a pig’s small intestine. Complex and dense blood network visible at serosal surface. [Source: Auckland Bioengineering Institute]  
	http://sites.google.com/site/gimappingsuite/research-projects
	http://sites.google.com/site/gimappingsuite/research-projects
	http://sites.google.com/site/gimappingsuite/research-projects

	  

	 
	1.2 Interstitial Cells of Cajal 
	The electrically active cells in the intestine nervous system transmit electrical impulses continuously. This electrical activity has been observed for many years through extracellular recordings (Serosal Electrode Recordings: SERs). Recent findings suggest that this continuous electrical activity, referred to as the slow wave, is originated by Interstitial Cells of Cajal (ICC):  “ICC in the myenteric region play a pacemaker role in gastrointestinal motility by giving origin to continuous electrical activit
	ICC are found throughout the intestine. These neuron-like cells form extensive networks through gap junctions. Their filaments spread across the thin gastric wall; facilitating extracellular recording of electrical activity (figure 1.5 and 1.6). Three types of ICC have been identified by electron microscopy; structural differences are thought to reflect cell specialization. (Farrugia 2008). While some ICC specialize in generation and propagation of slow waves, others participate in neurotransmission (Farrug
	The slow wave is generated at a pacemaker ICC cell and spreads through other ICC across the intestine (figure 1.7) eventually reaching the intestinal smooth muscle. Previous research links the slow wave to muscle contraction (Lammers 2001). Thus, ICC have gained a lot of interest as pacemakers for the slow wave and key players in muscle contraction. In fact, recent research shows that “abnormalities in ICC numbers are associated with several gastrointestinal motility disorders” (Farrugia 2008). As such, “IC
	 
	 
	Figure 1.5 Micrograph. Golgi Staining Method. Guinea pig ICC (Taxi 1952). Note cell filaments. Other staining techniques yield different results [Source: Thuneberg 1999]. 
	 
	 
	Figure 1.6 Cross section of GI wall. Note that in reality ICC filaments spread across the thin intestinal wall. For a well distended lumen, the small bowel wall is only 1-2mm thick. (Macari 2001). [Source: GIST Support Int.] 
	 
	 
	http://www.gistsupport.org/for-new-gist-patients/understanding-your-pathology-report-for-gist/diagnosing-gist.php
	http://www.gistsupport.org/for-new-gist-patients/understanding-your-pathology-report-for-gist/diagnosing-gist.php

	 

	 
	Figure 1.7 Diagram of normal slow wave propagation. Wavefronts are emphasized. Activity generated at pacemaker ICC (green star) and spreads in aboral direction (duodenum to ileum) [From Lammers 2007]. 
	http://www.youtube.com/watch?v=PH6zkPoEOc4
	http://www.youtube.com/watch?v=PH6zkPoEOc4
	http://www.youtube.com/watch?v=PH6zkPoEOc4

	 

	1.3 Electrical Activity in the Small Intestine 
	Electrical activity in the small intestine has been reported for many years. The two types of waves observed in this region of the GI tract are referred to as slow waves and spikes. See table 1.1 for a summary of current understanding regarding these two waveforms.  Slow waves and spikes are often linked to muscle contraction: “intestinal motility is initiated by slow waves and by action potentials (spikes) that may or may not occur in the wake of the slow wave” (Lammers 2003).  It is of interest to investi
	Slow Waves 
	Slow waves in animal duodenum and jejunum have been studied extensively since the 1960s (Bortoff 1966, Szurszewski 1968, Lammers 1997-2001-2003-2005-2008,).  In a healthy intestine, the slow wave is continuous and periodic with a frequency close to 12-15 cycles per minute (cpm) in humans; characteristics depend on the species.  Figure 1.8 provides an example of an extracellular recording showing slow wave spread. The extracellular recording is the raw signal and important information such as the wave’s spat
	 
	 
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure 1.8 Slow wave extracellular electrical activity. Pig SER (Serosal Electrode Recording). Diagram on the left suggests electrode placement on an intestinal segment. 
	 
	Figure 1.9 Example of spatial propagation map of a slow wave.  Different colors indicate time delay in aboral direction [Source: Lammers 2003] 
	Spike Bursts 
	Spikes are fast downward and upward deflections which tend to happen in clusters (figure 1.10 and 1.11). In contrast to slow waves, spike activity remains largely unexplored; little literature investigating spikes has been published in contrast to the one addressing slow waves. Spike origin and propagation patterns are still subject of discussion. Unlike slow waves, spikes are not believed to be originated at ICC; they are often associated with smooth muscle cell.“The mechanisms responsible for determining 
	 
	 
	Figure 1.10. Example of a single spike cluster. Pig SERs, one channel. Note time scale and amplitude of waveforms. Very fast deflections reaching large amplitudes.  
	 
	Figure 1.11 Spike extracellular electrical activity. Pig SER. Diagram on the left suggests electrode placement on an intestinal segment 
	Summary of current understanding of the small intestine electrical activity: 
	Table 1.1 Summary of small intestine electrical activity 
	Two waveforms observed: 
	Two waveforms observed: 
	Two waveforms observed: 
	Two waveforms observed: 

	Slow wave 
	Slow wave 

	Spikes 
	Spikes 

	Span

	Activity 
	Activity 
	Activity 

	Continuous, periodic 
	Continuous, periodic 

	Irregular 
	Irregular 

	Span

	Frequency 
	Frequency 
	Frequency 

	Slow 10-12cpm 
	Slow 10-12cpm 

	Fast  
	Fast  

	Span

	Observed in cell tissue 
	Observed in cell tissue 
	Observed in cell tissue 

	ICC 
	ICC 

	Smooth muscle  
	Smooth muscle  

	Span

	Origin mechanism 
	Origin mechanism 
	Origin mechanism 

	Not fully understood 
	Not fully understood 

	Not fully understood 
	Not fully understood 

	Span

	Spatial propagation  
	Spatial propagation  
	Spatial propagation  
	(experiments on feline and canine models) 

	Uniform 
	Uniform 
	Longitudinal 
	Typically aborally, also orally 
	Peripheral pacemakers 
	(Lammers 2005) 

	Small areas called “patches” 
	Small areas called “patches” 
	End abruptly 
	Observed propagation in all directions 
	(Lammers 2001, 2003) 

	Span

	Automated Detection Methods 
	Automated Detection Methods 
	Automated Detection Methods 
	(non-extensive).  
	See section 1.10 for more details. 

	 Erickson 2009 
	 Erickson 2009 

	Summers 1982 
	Summers 1982 
	Groh 1984 
	Lammers 2008 

	Span


	1.4 Electro-Mechanical Coupling 
	The relation between small intestine electrical activity and muscle contraction has been studied for many years. Lammers has observed results (Lammers 2001) that seem to confirm an early model: “the slow wave is an advancing zone of excited excitability which, when further enhanced by local factors, leads to actions potentials and contractions” (Daniel and Chapman 1963). It suggested that the slow wave depolarizes membrane potentials during its propagation. Whenever a certain depolarization threshold is met
	Figure 1.12 demonstrates the relation between the intracellular electrical activity and the contractile reaction of the muscle (Mintchev 1995). In this diagram the slow wave is observed as a rapid depolarization. When a certain threshold is met, spikes succeed the initial depolarization. Based on this model, a weak contraction occurs when the slow wave is energetic enough to go over a plateau. In turn, a stronger contraction is expected when the slow wave goes over the plateau and is accompanied by spikes. 
	 
	Figure 1.12 Illustration of electro-mechanical coupling in small bowel smooth muscle cell. [Modified from: Mintchev 1995 for gastric electrical activity] 
	http://www.enel.ucalgary.ca/People/Mintchev/stomach.htm
	http://www.enel.ucalgary.ca/People/Mintchev/stomach.htm
	http://www.enel.ucalgary.ca/People/Mintchev/stomach.htm

	 

	 
	1.5 Driving Force:  Medical Application 
	As mentioned previously, the slow wave has been investigated to a larger extent than spikes.  The benefits of studying spike activity are immense. Greater understanding of spike activity would help clarify the temporal relationship between slow waves, spikes and muscle contraction. More importantly, the medical necessity to conduct further studies is large: in 2009, between 60 and 70 million Americans were affected by digestive diseases such as Crohn's disease, Celiac disease, slow transit constipation, dia
	1.6 Intestinal Ischemia 
	This study focuses on small intestine spike activity and investigates the extent to which it is affected by ischemia. Intestinal ischemia is severe condition whereby the intestine suffers diminished blood supply and receives insufficient oxygen and nutrients essential for normal functioning. According to Mayo Clinic experts, intestinal ischemia has many causes. Acute mesenteric ischemia may be due to blood clots, fatty deposits built up on the wall of the artery (atherosclerosis) and low blood pressure (May
	1.7 Previous Observations: Induced Ischemia and Electrical Activity 
	It is reasonable to suggest that ischemia could disrupt electrical activity in the small intestine given that ICC (the pacemakers for slow waves) appear to be very sensitive to damage by hypoxia (Farrugia 2008). Several studies have investigated the effects of induced ischemia on the activities of the small intestine. Ischemia is induced by either occluding an artery or an artery and a vein; each technique possibly yielding different results. 
	Szurszweski reported the effects of temporary (4 hours) hypoxia on dog jejunum (Szurszweski 1968). He observed that hypoxic perfusion lowered the frequency of slow waves and affected slow wave propagation direction. The usual direction of slow wave propagation is caudad. However, hypoxic areas showed propagation in orad, caudad, or both directions. Szurszweski suggested that whenever the upper jejunum is affected by hypoxia, transitional pacemakers are unmasked in the lower regions. These transitional pacem
	Cabot studied the effects of ischemia induced by arterial occlusion on the electrical and contractile activities of canine small intestine (Cabot 1978). Like Szurszweski, he reported a decrease in slow wave frequency, irregular slow wave rhythm and the cessation of contractile activity upon occlusion.  Interestingly, revascularization upon 3 hours of ischemia restored the contractile activity and regular slow wave rhythm. However, revascularization after prolonged periods of ischemia did not restore the nor
	Lammers reported that acute (5-10 minutes) local ischemia in a feline small intestine induced major disturbances in the propagation of the slow wave (Lammers 1997).  Local areas of inexcitability developed within minutes, often merging to form lines of conduction block. Similarly to Szurszweski, Lammers observed the appearance of subsidiary pacemakers.  
	Perhaps the most relevant resource for our study is a review paper written by Chou in 1982 “Relationship between Intestinal Blood Flow and Motility”. Chou referenced Cabot 1978, Chou 1981, Guisan 1975, Meissner 1976, Kyi 1970 to argue that: “intestinal ischemia and hypoxia can alter electrical contractile activities of the stomach and intestine depending on the duration and severity of the ischemia and hypoxia. Ischemia and hypoxia produced a biphasic change in motility-i.e., an initial transient increase f
	Furthermore, “the duration of ischemia determines whether or not the normal motor activity recovers after revascularization. When the circulation is restored within 1-3hr, the slow waves, spike potentials and spontaneous contractions returned to normal within 1-13min following revascularization. When completed ischemia persisted for more than 4 hr, revascularization did not restore the spontaneous contractions and spike potentials” (Chou 1982). 
	These studies suggest that ischemia has profound effects on the electrophysiology of the small intestine. Ischemia disrupts slow wave origin and propagation. Moreover, it produces an immediate increase in spike activity after which spike activity diminished progressively.   
	1.8 Induced Ischemia on Porcine Model Experiments 
	Several induced ischemia experiments were performed using a porcine model at the University of Auckland and Vanderbilt University. See Chapter 2, section _ for more details.A porcine model is employed because the GI system and abdominal wall architecture closely resemble that of a human. Note that the majority of previous experiments, such as those conducted by W.J.E.P Lammers, were conducted on canine or felines models. We were provided with the data along with the surgical and recording methodology for th
	1.9 Need for Automated Detection Method 
	Data collected from induced ischemia experiments is extensive; particularly data generated with high resolution electrodes.  For example, a 10-minute high resolution SER would produce 42 hours of data for analysis:                                                                                  
	High resolution experiments are desirable because they allow the generation of detailed spatial propagation maps. With these detailed maps it is possible to analyze extensively the patterns of spike propagation. Nevertheless, visual-manual techniques for marking spikes in extensive data sets is time consuming and burdensome.  An automated method detection method could process a data set as such in a few minutes.  
	Furthermore, the complexity of gastroelectrical signals may give rise to disagreement about the legitimacy of a spike cluster. As mentioned above, spike clusters consist of fast upward/downward deflections easily distinguished from slow waves.  However, small intestine SERs present signal contamination which makes spike clusters less obvious and gives rise to discrepancies amongst human markers. See Chapter 2, section _ for more details. Signal contaminants include respiration, cardiac frequency, etc. Hence
	Initial Considerations for Automated Spike Detection Method 
	 A satisfactory algorithm should specific, sensitive, and robust. The algorithm needs to be sensitive in order detect the majority of spikes in a data set. After all, we seek to measure possible changes on spike rates when ischemia is present. Moreover, the algorithm must be specific to only detect spike clusters. In other words, the method should distinguish amongst spikes, slow waves and signal contamination.  Finally, the algorithm should be robust and not oversensitive to detection parameters. 
	1.10 Previous Spike Detection Methods  
	SUMMERS 1982 
	Summers reported a software to detect spike bursts (Summers 1982) which consisted of data digitizing, digital filtering and burst detection based on user-defined parameters.  Seven channels of myoelectrical data were recorded with sampling frequency <50Hz. Digital filtering involved a second-order infinite impulse response filter.  Data was bandpass filterered with cutoff frequencies 10 and 30 Hz. Burst detection was based on a peak detecting algorithm (Yakovle 1977) whereby discrete sample values are used 
	 
	The ratio        has a user-defined threshold which determines the beginning or end of spike burst. 
	In contrast to high resolution experiments with 257 channels and 512 Hz sampling rate, Summers only processed 7 channels of data at 50 Hz sampling rate.  His method utilized the rate of change of data as a means of detection and yielded a machine-observer inter-rater k value of 88.16 (k indicates strength of agreement).  However, Summer’s method does not address the possibility of signal contaminants being erroneously marked a spike clusters. Moreover, Summer’s background signal or “growing window” is reset
	Nevertheless, Summers discusses two important issues: the spike algorithm should avoid detecting isolated spikes and should provide the user the ability to fine-tune detection parameters.  Isolated spikes, which do not show a propagation pattern, are not likely to reflect legitimate electrical activity. Allowing the user to fine-tune detection parameters will contribute towards the algorithm’s robustness. Given the complexity of small intestine SERs, fine-tuning detection parameters for a given data set cou
	GROH 1984 
	Groh’s method consisted of: bandpass filtering, slope averaging, threshold detection and statistical analysis. Initial stage used second-order Butterworth filter with bandpass frequency 10-20 Hz; attenuating the slow wave and other low frequency forms. The slope was averaged for a 0.2 second interval by using a modified moving average technique.  Detected waves were separated through statistical analysis based on amplitude on duration. Perfect agreement between automated results and observer was reached for
	Groh’s method, like Summer’s, focused on the rate at which signal changes. A possibly pitfall of this method is that any waveform with similar amplitude and duration to spikes will be erroneously detected. Given the contaminants observed in our data, this method could yield many false positives. Our algorithm classifies waveforms by focusing on more features; for example, the signal’s energy and signal to noise ratio. See Chapter 2, section _ for more details. 
	LAMMERS 2008 
	Lammers designed an on-line electrogram analysis for processing myoeletric readings from canine duodenum and antrum (Lammers 2008). 24 channels of data were recorded at 200 Hz and 1000 Hz sampling frequency. Signals were initially smoothed with a running average to remove 50 Hz noise. His method consisted of a slow wave/spike discriminator followed by specialized detection modules.  Spikes were separated from slow waves by normalization of the signal and high-pass filtering set at 30 Hz. A series of steps w
	In contrast to Summers and Groh, Lammers subjected signals to extensive processing. In particular, we question the initial signal smoothing and its effect on spike waveforms. Our algorithm attempts to 
	preserve spikes fine details by having a moving median filter with large window size and a high frequency filter set well above the expected for spikes. See chapter 2 section _ for more details.  In addition, Lammers method is designed to detect single spikes while we are interested in detecting spike clusters. We expect our algorithm to have advantage in processing contaminated signals over the aforementioned methods. 
	This chapter has addressed several topics concerning the small intestine: intestinal wall structure, ICC, electrical activity, electro-mechanical coupling, ischemia, induced ischemia experiments, need for automated spike detection and previous attempts at automated spike detection. We are ready to move into chapter 2 where we will discuss the details specific to the induced ischemia experiments and fully describe our algorithm.  
	 
	Chapter 2  
	Induced Ischemia Experiments: Methods and Data 
	2.1 Experimental Details 
	Our collaborators at Vanderbilt University and The University of Auckland conducted several induced ischemia experiments between 2008 and 2011. Both laboratories used a porcine model given the resemblance of the GI system and abdominal wall architecture to those of a human (Erickson 2009).Typically the animals were fasted during the 24 hours previous to the surgical procedures. All animal surgeries were carried out under strict Institutional Animal Care and Use Committee guidelines (IACUC). 
	Serosal Electrode Recordings (SERs) 
	SERs were made in vivo. The pig was anesthetized and place in supine position. A midline supra-umbilical incision was made. Once access to peritoneal cavity was gained, a segment of the small intestine was identified. The intestinal segment was placed on wet cotton gauze and an electrode array was attached to its serosal surface. Figure 2.1, illustrates this process with the use of a rigid electrode.  
	 
	Figure 2.1. Example of a serosal  electrode recording using a rigid electrode.  A. Exposed segment of the small intestine.    B. Rigid electrode.  C. Electrode in contact with serosal surface. [Source: Lammers 2003] 
	Similarly to the experiment in figure 2.1, the Vanderbilt experiments utilized rigid electrodes. More specifically, 49 Ag/AgCl electrodes in various arrangements. Figure 2.2 illustrates the dimensions of an electrode and its placement on an intestinal segment. While this electrode was not used in our experiments, it is important to realize the relative size of this apparatus. The example shown in figure 2.2 has an area of 1.656 cm2 and a 10 x 24 electrode array resulting in 240 channels of data. 
	. 
	Figure 2.2. Sample diagram to illustrate an electrode’s dimensions and placement on intestine. [Modified from: Lammers 2003] 
	The Auckland experiments relied on customized flexible printed circuit board electrodes (Peng Du 2009). See figure 2.3. These electrodes allowed high resolution mapping as they covered the entire intestinal circumference at a 512 Hz sampling rate and with 249 channels of data. The electrodes were held in place with warm gauze pads. Once electrode setup finished, the intestine was reintroduced into the abdominal cavity to avoid changes in the tissue’s temperature and humidity.  
	 
	Figure 2.3. Flexible printed circuit board electrodes used by the researchers at University of Auckland. On the right, zoom showing actual electrode which folds 360o around the intestinal serosal surface. [Source: Auckland Bioengineering Institute] 
	Baseline recordings were taken for all the experiments lasting approximately 30 minutes for Vanderbilt experiments and 8-15 minutes for Auckland experiments. The baseline recording intends to show the electrical activity of the intestine in a healthy state. However, it is important to acknowledge several experimental factors that could give rise to abnormal activity. Firstly, the animals had been fasted for an extended period. Hence, there was little or no food circulating in the animal’s intestine. Next, t
	Induced Ischemia 
	Following the baseline recordings, ischemia was induced by occluding local arteries near the intestinal loop. Two types of ischemia experiments were conducted: segmental and partial ischemia. For the segmental experiments, full ischemia was induced by simply tying a surgical string around the local 
	arteries (figure 2.4).  Data was collected for the particular ischemic segment.  Thereafter, blood flow was restored and ischemia was induced on a different intestinal segment.  
	For the partial experiments, ischemia was induced progressively by using inflatable occlusion cuffs (figure 2.5). The intervals at which data was recorded were 50%, 75%, 90% and 100% ischemia. 
	 
	 
	Figure 2.4. Inducing local full ischemia by tying a string around 3 arteries.[Source:Lammers 1997]. 
	 
	Figure 2.5.  Occlusion cuff or vascular occluder. On the left, cuff allows unobstructed blood flow. On the right, inflated cuff obstructs blood flow and induces ischemia. [Modified from: Kent Scientific] 
	https://www.kentscientific.com/products/ 
	2.2 Data Collected 
	The experimental details relevant for our analysis are: recording time, sampling rate, number of channels, and type of experiment: segmental or partial. The amount of data collected varies from experiment to experiment. See Table 2.1 for details. These differences arise primarily from the different recording technologies at the each laboratory and differences in recording time. Recording length ranged from 8 to 69 minutes.  
	 
	Table 2.1. Summary of data collected from induced ischemia experiments and relevant information for signal processing  
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	2.3 Need for Automated Spike Detection Method 
	Large Data Sets 
	As we mentioned in chapter 1 section _, these data sets are extensive. For example, a segment of an Auckland experiment which recorded during 9.8 minutes results in 70 million samples and 42 hours of data to analyze. This is because these experiments were performed with high resolution electrodes.                                                                                                                                                          
	A segment of a Vanderbilt experiment which recorded for 30 minutes results in 23 million samples and 24.5 hours of data to analyze. The Vanderbilt experiments used lower resolution electrodes in comparison to the Auckland experiments.                                                                                                                                                          
	If the experiment mentioned above was a partial ischemia experiment it would have had 5 segments: baseline, 50%, 75%, 90%, and 100% ischemia. The result is an overwhelming 122.5 hours of data to analyze.                                                                                                
	An automated method will greatly reduce analysis time. Visual inspection is time consuming and surveying large data sets such as those mentioned above would be a laborious task for the human observer.   
	Signal Contamination  
	In signals like figure 2.6, spikes are easily identified through visual inspection.  However, serosal recordings of the small intestine often present signal contamination. Some common contaminants are: cardiac waveform, respiration, artifacts, and baseline wander. The presence of these waveforms makes visual spike classification a complex task. Sometimes it is hard to confirm the presence of a spike due to the superimposed contaminants.  
	 
	Figure
	Figure
	Figure
	Figure 2.6. Easily recognizable spike clusters.  Small data set, little noise, no signal contaminants. 
	The initial stage of signal processing was focused on becoming familiarized with the data from the small intestine recordings. We visually inspected the recordings and were surprised to observe a wide range of waveforms. The electrical activity observed originates from the subject’s physiological activity but is also affected by the experimental conditions. Some factors that could influence the resulting data are:  type of electrode, sampling frequency, surface contact between the tissue and the electrodes,
	We have observed signal contamination in the recordings from both of our sources: experiments carried in Vanderbilt University and the University of Auckland.  In addition to the expected slow waves and spike clusters, it is possible to encounter: cardiac signals, respiration, several types of artifacts and a wandering baseline. The presence of these contaminants makes spike detection more challenging and demands an algorithm which can discriminate effectively amongst waveforms. 
	The cardiac signal is a small amplitude- high frequency waveform which occurs repetitively throughout a data channel (figure 2.7). If we look closely at figure 2.8, we observe an overlay of the cardiac signal over a larger amplitude-low frequency waveform. This low frequency waveform is respiration and it occurs approximately every 2.5s. In figure 2.9, we can observe a data section contaminated by respiration. 
	 
	Figure 2.7.Cardiac waveform. Period approximately 0.5-0.6s. 
	 
	Figure 2.8. Cardiac signal overlay with respiration. 
	 
	 
	Figure 2.9. Contamination of signal by respiration with period approx. 2.5s. 
	 
	Artifacts are large amplitude-medium frequency forms which occur once or twice in a data channel (figure 2.10 and 2.11). Typically, their frequency is lower than spike frequency but higher than respiration frequency. There is potential for confusing artifacts with slow waves or spikes. However, artifacts would seem isolated events with no clear spatial propagation unlike slow waves. 
	Moreover, high frequency artifacts can be distinguished from spikes given their unusually high amplitude.  In figure 2.11, the artifact reaches 5,000µV as opposed to the physiologically-expected 400-1000 µV.  Artifacts can be further distinguished from spikes because they do not happen in clusters.  In artifacts we observe a single “spike-like” upward-downward deflection, however, we do not observe the clustering of deflections as we expect from small intestine spikes. 
	 
	Figure 2.10. Smaller amplitude-low frequency artifact. 
	 
	 
	Figure 2.11. Large amplitude artifact. 
	 
	It is common to observe baseline wander (figure 2.12) and noise (figure 2.13). Baseline wander in raw data can be addressed during the pre-processing filtering stage. However, channels with high levels of noise can pose a challenge for spike detection particularly if the spike clusters do not have high amplitudes.  
	 
	Figure 2.12. Baseline Wander. Red line is a zero potential to emphasize signal baseline wander. 
	 
	Figure 2.13. High levels of noise in channel.  
	 
	 
	 
	 
	Oftentimes, channels have very low average amplitudes of 0-5µV (figure) which could be due to poor contact between an electrode and the intestinal tissue. These channels are considered defective and ignored during spike detection.  
	 
	Figure 2.14. Defective channel 
	2.4 Examples: Increased Difficulty in Visual Spike Classification 
	 The following are examples showing how contaminants and noise increase the difficulty of visually recognizing spike clusters. 
	A. 
	 
	B. 
	 
	Figure
	Figure
	Figure 2.15. A: signal contaminated with cardiac waveform. B: two possible spike clusters found. Second cluster is questionable.  
	 
	 
	 
	 
	A. 
	 
	B. 
	 
	Figure
	Figure
	Figure
	Figure 2.16. A: signal contaminated by baseline wonder and noise. B: three possible spike clusters.  Middle cluster is questionable. 
	A. 
	 
	B. 
	 
	Figure
	Figure 2.17. A: signal contaminated by heart waveform and respiration. B: Possible spike. 
	In chapter 2 we have discussed the experimental details of the induced ischemia experiments and become familiar with the obtained data. We have stated why it is necessary to have an automated method and what factors make spike detection challenging. We are ready to proceed into a detailed description of our algorithm.  
	Chapter 3  
	Spike Detection Algorithm Design 
	3.1 Analytical Method: Binary Classification  
	The algorithm was designed to classify waveforms into two categories: either a spike or not a spike. This procedure is called a binary classification and aligns perfectly with our interests.  We do not need the algorithm to separate the other waveforms into individual classes like cardiac, respiration, artifact, etc. Hence, we created a fictitious class which comprises all the waveforms which are not spikes. 
	There are four possible outcomes for a binary classification (see table 2.2). A true positive (TP): if the sample is a spike and the method detected it. A false negative (FN): if the sample is a spike and the method missed it. A false positive (FP): if the sample is not a spike but the method detected it. A true negative (TN): if the sample is not a spike and the method did not detect it. The outcomes are summarized in the chart below.  
	 
	Table 3.1. Possible Test Outcomes . 
	 
	 
	Thus, the outcomes that are sources of error are the FPs and FNs. We must keep in mind these sources of errors as we validate the algorithm and evaluate its performance. 
	3.2 Measures of Performance 
	Traditionally the two indicators of the performance of a test are sensitivity (SN) and positive prediction value (PPV) (or “specificity”). Sensitivity is referred to as the true positive rate and is defined as:            
	A low number of TP or large number of FN will result in low sensitivity. In order to have perfect sensitivity the test must detect ALL the existent spikes. Perfect sensitivity is unlikely; however, we could achieve high sensitivity by detecting a large portion of the existing spikes. 
	The positive prediction value is referred to as the precision rate and is defined as:              
	A low number of TP or a large number of FP will result in low PPV or specificity. In order to have perfect PPV the test must detect ONLY spikes and no other waveforms. If other waveforms are detected they will become FPs and decrease PPV. Like we mentioned previously, it is unlikely to have perfect specificity.  However, a high PPV could be achieved by having a low number of FP.  
	AROC: Area under the Receiving Operating Curve 
	For our analysis we employed a third performance metric termed AROC (Area under the Receiving Operating Curve) (Erickson 2009). AROC is defined as:               
	AROC is a measure of the algorithm’s performance for a given set of parameters. Three parameters we are interested in analyzing are k, DT and windowL. A perfect AROC will have a value of 1. It is important to point out that acceptable values of SN and SPC might result in a smaller AROC given the multiplication operation. For example, 95% SN and 95% SPC will result in AROC = 0.9025.   AROC will help us to understand how the algorithm performance is changing as parameters change and will also help us predict 
	 
	Figure 3.1. Plot to be constructed: AROC vs. detection parameter. Measuring algorithm performance. 
	3.3  “Gold” Standard Set: Compare Manual vs. Automated marks  
	In order to measure the algorithm performance we generated 5 sets of standard marks; each with 40 channels of data and 60 seconds long. The sets were selected from different experiments. Moreover, each set was analyzed separately by 3 observers. The observers agreed upon the general criteria to mark a spike. Then, each observer marked the spikes he observed in each data set.  Some spike clusters are easier to identify than others which gives rises to disagreement between the 3 sets of manual marks. Also, it
	The marks of the 3 observers were pooled together; only those clusters marked by the 3 observers (regardless of small timing differences) were determined to be the standard marks. This set of standard marks was used for the algorithm validation discussed in chapter 4. The automated marks were compared to the standards and performance metrics were calculated.  
	3.4 The Spike Burst Detection Algorithm 
	The algorithm consists of four steps executed in the following manner: preprocessing, candidate detection, machine classification, and additional discrimination. Figure 3.1 illustrates the algorithm flow and provides more details regarding each step. The next section provides a thorough explanation for every step in the algorithm accompanied by illustrations of each method.  
	 
	Figure 3.2. Flow chart of spike detection algorithm. See text for description of each stage. 
	3.5 Preprocessing 
	In chapter 2, section 2.3.2; we discussed the severity of signal contamination in SERs of the small intestine. It is possible to target contaminants by digitally filtering the signal. Filtering is a common initial step in many signal processing applications. We chose to filter low frequencies using a moving median (MM) filter and high frequencies using a Savitzky-Golay (SG) filter. By using the MM filter we aimed to reduce the wandering baseline and by using the SG filter we aimed to eliminate high frequenc
	The specific details are described here. Raw data in the.bdf format is loaded into GEMS (v1.6) and filtered before being export into a .mat file. We used the MM filter with windows size 0.5 or 1 and the SG 
	filter with polynomial 9 and windows size between 0.08 and 0.1. These values were derived from trial and error observations and previous work done by GEMS developers with slow waves. 
	These filter settings do not affect artifacts or the cardiac waveform. Thus, these contaminants will be carried forward and should be addressed in the later stages of the algorithm.   Moreover, the high frequency filter should be set carefully so as to avoid any possible distortion of true spikes. That is, the low pass filter should be set at a frequency much higher than the typical frequency for spikes. 
	3.5.1 Preprocessing examples 
	 
	Figure 3.3. Moving median filter.  Raw signal is depicted in blue and filtered signal in red. The removal of wandering baseline is evident. Filter executed with window size 1. 
	 
	Figure 3.4. Moving median filter .  Raw signal is depicted in blue and filtered signal in red. The removal of wandering baseline is evident. Filter executed with window size 1. 
	 
	Figure 3.5.Savitzky-Golay Filter. In blue raw signal and in red filtered signal.  Removal of high frequency noise is evident. Executed with polynomial 9 and windows size 0.1.   
	 
	3.6 Candidate Detection 
	As mentioned in chapter 2 section 2.31, the data sets generated by the induced ischemia experiments are extensive; in particular those generated with high resolution electrodes.  During the detection step we focused on small regions of interest called candidates.   
	Energy Operator 
	Prof. Erickson suggested the use of a technique employed in neural spike detection: the Smoothed Non Linear Energy Operator (SNEO), which is equivalent to the Teager Energy Operator (Teager 1980, Jabloun 1999).  SNEO has two great benefits:  it is really fast to compute and it is computationally “inexpensive”.  
	For a continuous signal     , the SNEO operator    is:                                
	For a discrete signal     , the SNEO operator    is:                                
	Moreover it has been shown that the energy E of a sine wave with amplitude A and frequency f is proportional to:            .  
	Spike waveforms have large amplitudes and high frequencies (figure 3.6). Given the proportional relation between  SNEO and these two variables it is expected to see spikes having large SNEO values (figure 3.7). However, large SNEO values are not always indicative of spikes.  Artifacts also have large amplitudes and high frequencies which will result in large SNEO values. We will refer to the SNEO as     . 
	 
	Figure 3.6.Filtered signal. Three evident spike clusters. See figure 3.7 for SNEO of this signal. 
	 
	Figure 3.7. SNEO of signal in figure 3.6. Note high energy regions and energy scale. 
	 
	Noise 
	We estimated the RMS noise        in the energy signal     .    was obtained by computing the median of the absolute deviation of      (Nenadic 2005, Erickson 2009). For a signal S(N),     is defined as:                                                       
	 Where            is the sample mean of       and       denotes the sample median. This is a robust estimate of noise because it is not sensitive to outliers (Erickson 2009). 
	Detection Threshold 
	A detection threshold is set by the product of the estimated noise        and parameter k.     
	                    
	Data samples with E(n) above            are selected to move forward in the process.  
	 
	Figure
	Figure 3.8. Detection threshold based on noise and parameter k.   Contrast high detection threshold in this figure to threshold in figure 3.9.  Different detection thresholds yield different candidates. 
	 
	Figure
	Figure 3.9. Detection threshold based on noise and parameter k. Low detection threshold captures a larger number of candidates 
	 
	 
	 
	 
	Grouping Samples into Clusters  
	The next step is to group the selected data samples into clusters. Samples separated by less than a preset threshold will be grouped together; else they will be separated into different clusters. The sample separation threshold is calculated based on the product of sampling frequency fs and the parameter DT.  For example, samples S(N)  and  S(N + x) will  be grouped together if:  
	                    
	These clusters are known as the spike candidates.  The information regarding the first and last data samples in a cluster is passed forward. These are treated as the beginning and ending of a spike burst. 
	 
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure 3.10. Clustering based on threshold. In this example large DT results in 3 spike clusters. Contrast to figure 3.11.  
	 
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure 3.11. Clustering based on threshold. In this example small DTresults in 4 spike clusters. 
	Parameters 
	It is important to acknowledge the role played by the two detection parameters k and DT. As seen in figure 3.8, 3.9, 3.10 and 3.11, different parameter values often yield different results. We will analyze parameters effects on the algorithm’s performance (AROC) in chapter 4 and suggest optimal values for these. 
	Initial Classification:  Cluster Length 
	An initial classification step is candidate discrimination by cluster length. We compute the cluster length (in seconds) based on the start and end times. The clusters determined to be too short or too long according to user-defined limits are eliminated.  We chose these restrictions: 
	 0.02 sec ≤ Cluster length < 3.5 sec 
	These limits are set according to physiological or waveform observations. For example, it is physiologically unlikely to observe a spike cluster which lasts 3 seconds. Clusters are usually shorter than that. Similarly, given that spikes occur in clusters it is unlikely to have a cluster which consists of two 
	data samples. For a 256 Hz sampling rate, the time between two samples is 0.0039 seconds; far too short to be a spike cluster.  
	3.7 Machine Classification:  
	The result of SNEO detection is a large number of candidates including spikes and non spikes. It is essential to classify these waveforms and select only spikes to move forward in the process. As we discussed in section _, the first step is simple cluster length discrimination. Next, we needed a more powerful method to classify waveforms based on their characteristics. Preliminary observations guided us toward choosing Support Vector Machines (SVM). 
	Machine learning is a powerful tool which relies on a computer’s ability to recognize patterns in data and make intelligent decisions. As humans, we are always classifying objects in our minds based on their characteristics. Machine learning follows the same principle, but takes advantage of the computer’s computational ability. A computer carries out complex mathematical operations and processes large quantities of information in a very short time.  In chapter 2 section _, we discussed the difficulties tha
	Next, we will introduce the concept lying at the core of machine learning with a straightforward example. This example is intended particularly for the reader with no previous knowledge regarding machine learning.   
	Figure 3.12 shows fictitious data for the height and weight of children between the ages 3-5 and adults 18 and older. It is easy to see a pattern in the distribution of the data points. The majority of adults are clustered in the upper right corner; at higher weights and heights. On the other hand, children are clustered in the lower left corner; at lower weights and heights. 
	In SVM theory, weight and height are called feature vectors as they describe a particular characteristic of a data piece. The set of data containing feature vectors and their classification (child or adult) is referred to as the training set in SVM theory.  The user must provide a training set to the SVM algorithm from which it will attempt to recognize any underlying patterns.  
	Training set = [weight, height, child or adult?] 
	Training set = [vector A, vector B, classification] 
	 
	By modifying figure 3.12  it is easier to observe the data distribution. See figure 3.13.  
	However, the overlap between children and adults at the boundaries of the quadrants also becomes noticeable (figure 3.14). In figure 3.14, the green rectangle indicates the area where overlap is observed. The SVM algorithm also notices the overlap and more importantly it draws a separating plane between the two objects (figure 3.15). 
	 
	 
	Figure 3.12. Fictitious data for height and weight of children and adults. Note evident data distribution. 
	 
	 
	Figure 3.13. Fictitious data for height and weight of children and adults Plot area has been divided into four quadrants. Note that data distribution becomes more evident. Adults are clustered in upper right quadrant while children are clustered in lower left quadrant.  
	 
	Figure
	Figure 3.14. Fictitious data for height and weight of children and adults. Note overlap area emphasized by green rectangle.  
	 
	Figure 3.15. Fictitious data for height and weight of children and adults. Pink and blue regions indicate areas separated by the SVM-generated plane. 
	 
	 
	Figure 3.15 is an example of a separating plane that could be generated by an SVM algorithm on a 2 dimensional space (based on 2 feature vectors). The separating plane is calculated based on the training set characteristics. The pink region in the plot is the region suggested for adults and the blue region is suggested for children. New data will be classified either into a child or an adult based on its location in the relative to the separating plane (figure 3.16). Note that some adults fall into the ligh
	Let’s test the SVM classification with an example. We have two data points with the following characteristics:   height 169 cm and weight 70 kg, height 100 cm and weight 35kg. If this information is passed onto a trained SVM, what will they be classified as? See figure 3.16. 
	 
	Figure 3.16. SVM test classification outcome. 
	According to figure 3.16, the test case [70,169] was classified as and adult. The test case [35, 100] was classified as a child. Once SVM is trained, the user only needs to provide information regarding the feature vectors. SVM will make a decision and return a classification. 
	Test Case = [weight, height] or   Test Case = [feature vectors] 
	Returned by SVM = [feature vectors, classification] 
	Even though this example is very simple, it exposes an important point:  real data overlaps and as such classification at the boundaries is difficult. Thus, SVM provides a powerful and consistent method for classifying data and optimizing classification at the boundaries. 
	 
	Considerations about SVM  
	In the previous example we saw how SVM generated a separating plane between the data sets based on the feature vectors height and weight. As explained by Prof. Erickson: SVM tries to optimize the hyperplane such that it maximizes the minimum distance from any of the feature points. Refer back to figure 3.13. SVM “wants” to find the plane that separates children from adults, but stay as far away from both children and adults as possible. The points that are closest to the plane (figure 3.15) are actually cal
	The mathematics concerning SVM are complex and more detail is available in Lutz 2009: We implemented Matlab’s SVM function from its Bioinformatics Toolbox. We used the Gaussian Radial Basis Function (RBF) to train SVM. In this approach, data is separated on radial symmetry.  The influence of a data point falls off like a Gaussian curve in the radial direction. Prof. Erickson suggested RBF because it allows the generation of non-linear hyperplanes. A non-linear hyperplane is more flexible and could model our
	Moreover, it is important to acknowledge that SVM classification will not be perfect. The planes are drawn so as to optimize results, but some samples will be misclassified. Data overlap, even at a small extent, is always likely to occur. 
	3.8 Candidate Windows  
	In order to carry out classification, we need to provide SVM with the features vector describing a waveform. We computed four features for every candidate cluster:  signal to noise ratio (SNR), integrated energy per unit time (IEpsec), mean-crossing points (MCPpsec) and median time between mean-crossing points (MTimeMCP).However, there is an intermediate step previous to feature computation: the conversion of candidate clusters into candidate windows of a given length. 
	From SNEO detection we are provided with the alleged start and end coordinates of candidate clusters. However, it is possible that these start and end points do not coincide with the actual start and end coordinates of the clusters.  This arises from the fact that the initial and final spikes in a cluster are smaller than those in the middle section.  Thus, it is possible that SNEO detects a cluster shorter than the actual one.  See figure 3.17 and 3.18. 
	 
	Figure 3.17. Raw signal. Two evident spike clusters. 
	 
	 
	Figure
	Figure 3.18. First cluster is detected by SNEO. However, starting  point is shifted to the right. Detected cluster is shorter than actual cluster. 
	In figure 3.15 we observe that the detected cluster is shorter than the actual; the start point is shifted rightwards. In order to minimize cluster limits inaccuracies and for ease of data processing we decided to expand the clusters into data windows of a given length. Window length is equal to twice the parameter windowL. 
	A data window is obtained by: computing the midpoint of the spike cluster and centering the window on this midpoint. Figures 3.19 and 3.20 show the effect of generating a larger window around a short cluster. 
	 
	Figure
	Figure
	Figure 3.19. Cluster detected by SNEO is shown by black rectangle. Candidate window is shown by red rectangle. Note that window encompasses a larger area than cluster. 
	 
	Figure
	Figure
	Figure 3.20. Candidate Window. Note that the entire cluster is found within the window. Arrow indicates window length  (2 x windowL). 
	 
	 
	 
	3.9 Feature Vectors 
	Signal to Noise Ratio (SNR) 
	This feature calculates the ratio between the signal in the candidate window and noise. The signal is estimated by calculating the standard deviation   for the samples S(n) in the small candidate window.                                 
	Where   is the total number of samples in the window. 
	Noise is estimated by computing the median of the absolute deviation. See section 3.5 for more details. Importantly, noise is computed over the entire data length for the channel, not just within the small window.  
	We expect spike windows to have high SNR. However, a high SNR is not always indicative of a spike cluster.  Artifacts and the fast component of the slow wave could also yield high SNR. 
	Integrated  Energy per Unit of Time (IEpsec) 
	We saw the energy operator SNEO is utilized previously in candidate detection. The energy operator is utilized again for calculating this feature. The IEpsec; as the name indicates; is the integration of       for the whole candidate window divided by the window length.  (Remember that E(n) refers to the SNEO). See below for illustration. 
	 
	Figure 3.21. Illustration of SNEO signal or E(n).                                                               
	We expect spike windows to have large values of IEpsec.  
	Mean-Crossing Points per Unit of Time (MCPpsec): 
	The feature called “mean-crossing” aims to trace how many times the signal goes above and below a certain value.  The threshold value chosen is the mean for all the data points in the candidate window. The “mean-crossing” feature is based on the idea that if you draw a horizontal line through a typical spike you will observe the signal going up and down through it several times. Thus, we say that a spike has a large number of mean-crossings in a small amount of time.  On the other hand, if we draw the same 
	 
	Figure 3.22. Example showing candidate window with spike cluster 
	 
	Figure 3.23 Example showing that a spike cluster generally has a high number of MCPpsec. In this example, number of mean crossing points is 26.  In reality, steps are taken to discriminate crossings that have low amplitudes; i.e. points that to cross the mean but do not go far up.  
	 
	Figure 3.24. Slow frequency waveform. These waveforms usually very low MCPpsec. For this case number of mean crossing points is 3. In reality, steps are taken to discriminate crossings that do not reach far up like the ones observed here. The number of mean crossing points could be reduced to 1 or 2. 
	While it is expected that spike clusters will have a larger number of MCPpsec; a large number of MCPpsec is not always indicative of a spike. The example in figures 3.25- 3.27 illustrates this claim. 
	 
	Figure
	Figure 3.25. Selected candidate window shown by red square. It is evident that candidate is not a spike cluster. Furthermore, data in channel does not reach amplitudes higher than 100 uV.  
	 
	Figure 3.26. Zoomed in view of candidate window reveals it is a noisy signal with very small amplitude (30uV) 
	 
	Figure 3.27. This candidate results in a high number of MCPpsec in spite of not being a spike cluster. Number of mean crossings is 23; comparable to spike cluster in figure 3.23. 
	The MCPpsec computation includes small modifications to eliminate crossing points that are too close to each other or points located on peaks which do not go up to high amplitudes.   
	Median Time between Mean-Crossing Points (MTimeMCP) 
	The fourth and final feature computes the times between mean-crossings points in a window, sorts them out and selects the median value. We expect spike clusters with large number of MCPpsec to have a short MTimeMCP. 
	The final features vector is summarized below: 
	 Feature vector for signal s(t) = [SNR,  IEpsec, MCPpsec, MTimeMCP] 
	While SNR and IEpsec are more widely used in signal processing, MCPpsec and MTimeMCP are based on initial empirical observations and serve a trial-and-error purpose.  The usefulness of each feature in the vector will be evaluated during the cross validation in chapter 4. If results indicate that MCPpsec and MTimeMCP do not provide benefits they will be removed and new features could be investigated if necessary 
	3.10 Training Set for SVM classification 
	Training Samples Classification 
	In order to train SVM we generated a large number of training samples. We ran SNEO threshold detection on several data segments and obtained 1-second long candidate windows. SNEO detection was performed with a low k parameter (k=5) to detect spikes as well non spikes (See figures 3.28 and 3.29). Candidates were analyzed within a 30 second display of channel data. An observer classified each sample through visual inspection. Classification of each sample was done conservatively. Classification was stored in 
	 
	Figure 3.28. Training samples passed onto SVM. All of the samples here were classified as spikes given their waveform characteristics: amplitude, frequency. 
	 
	Figure 3.29. Training samples passed onto SVM. All of the samples here were classified as non spikes given their waveform characteristics: amplitude, frequency 
	Training Set 
	Consisted of approximately 2300 training samples of which 80% are non spikes and 20% are spikes. Training samples were selected from following data sets: 
	Table 3.2. Information of data sources used to generate the training samples set. 
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	Mov. Median 
	Mov. Median 
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	Strong cardiac/ no clear spikes 
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	05.03.11 Auckland 
	05.03.11 Auckland 
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	Baseline +slow wave 
	Baseline +slow wave 
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	Pig 33 exp10 
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	Long spike clusters, spread through channels 
	Long spike clusters, spread through channels 
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	Few spikes 
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	Noisy data, artifacts, cardiac , baseline wander 
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	Nice spikes, can see spread through channels 
	Nice spikes, can see spread through channels 
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	Lots of spikes,  spread through channels 
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	Baseline, Slow wave 
	Baseline, Slow wave 
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	3.11 Final Algorithm Step: Additional Discrimination: 
	This is the final step in the algorithm and it consists of several user-defined restrictions on the signal features. This final step aims to reduce the number of FPs; signals misclassified by SVM. These restrictions are set to be lenient, only targeting candidates with features which are evidently uncommon for spikes. For example, MPCpsec is required to be greater or equal to 1. A signal having MCPpsec=0 could have been classified erroneously by SVM given its other features (SNR, IEpsec, etc). However, we w
	features. Otherwise, if we set strict restrictions based on observed values we would be undermining SVM’s classification power. 
	The values for the restrictions were obtained from analyzing the training samples. See chapter 4 for more details. Typical values for spikes were compared to values for non spikes and these limits were chosen. This is an additional step and the restrictions can be modified by the user. 
	The conditions were the following: 
	 0.5 < SNR <  15 
	 0.5 < SNR <  15 
	 0.5 < SNR <  15 

	 0 < IEpsec < 30,000 
	 0 < IEpsec < 30,000 

	 1 ≤ MCPpsec 
	 1 ≤ MCPpsec 

	 MTimeMCP < 0.15 seconds  
	 MTimeMCP < 0.15 seconds  


	3.12 Algorithm Design Summary 
	In chapter 3 we introduced the metrics used to measure the algorithm’s performance and described in detail each step in the algorithm. Moreover, we saw examples for every processing step and gained understanding about how spikes are detected and classified. Figure 3.30 provides a detailed summary of the algorithm; this is an expanded version of the diagram presented at the beginning of this chapter (figure 3.2). Chapter 4 will present the results obtained from algorithm validation and discuss the algorithm’
	Figure 3.30. Diagram: Summarize Algorithm Flow. See text under each heading for details regarding each step. 
	 
	 
	Chapter 4  
	Results: Tendencies in Data and Algorithm Validation  
	4.1 Training Samples: Tendencies in Data 
	As mentioned in chapter 3 we generated 2300 samples for SVM training. Samples were classified by an observer as spikes or non spikes. In this section we analyze the data tendencies observed in these samples. We will focus on three features computed for the training samples: SNR, IEpsec, MCPpsec (introduced in chapter 2).  See figures 4.1 through 4.7 for illustrations of observations. 
	Summary of observations: 
	  Low levels of SNR: overlap amongst spikes and nonspikes. (figure 4.1) 
	  Low levels of SNR: overlap amongst spikes and nonspikes. (figure 4.1) 
	  Low levels of SNR: overlap amongst spikes and nonspikes. (figure 4.1) 

	 Low levels of IEpsec: overlap amongst spikes and nonspikes.  (figure 4.2) 
	 Low levels of IEpsec: overlap amongst spikes and nonspikes.  (figure 4.2) 

	 Non spikes are clustered at very low levels of IEpsec. (figure 4.2) 
	 Non spikes are clustered at very low levels of IEpsec. (figure 4.2) 

	 Extensive overlap amongst spikes and nonspikes for all levels of MCPsec. (figure 4.3) 
	 Extensive overlap amongst spikes and nonspikes for all levels of MCPsec. (figure 4.3) 

	 3D: Spikes and non spikes seem are clustered in the low SNR, low-medium MCPsec area. (figure 4.5) 
	 3D: Spikes and non spikes seem are clustered in the low SNR, low-medium MCPsec area. (figure 4.5) 

	 3D:Data separation between spikes and non spikes becomes evident at high levels of MCPsec. At high levels of MCPpsec spikes have higher SNR than non spikes. This could arise from non spikes which have high levels of noise and thus high MCPpsec but low SNR. Spikes with high MCPpsec tend to have high SNR. (figure 4.6) 
	 3D:Data separation between spikes and non spikes becomes evident at high levels of MCPsec. At high levels of MCPpsec spikes have higher SNR than non spikes. This could arise from non spikes which have high levels of noise and thus high MCPpsec but low SNR. Spikes with high MCPpsec tend to have high SNR. (figure 4.6) 

	 3D: It is possible to observe data separation between spikes and non spikes along the vertical IEpsec axis. Spikes extend into regions of higher IEpsec. (figure 4.7) 
	 3D: It is possible to observe data separation between spikes and non spikes along the vertical IEpsec axis. Spikes extend into regions of higher IEpsec. (figure 4.7) 


	 
	 
	Figure 4.1.Red:spikes. Black: non spikes. For low levels of SNR there is overlap amongst spikes and nonspikes. Separation between waveforms starts close to 0.5 SNR. 
	 
	Figure 4.2. Red:spikes. Black: non spikes. For low levels of IEpsec there is overlap amongst spikes and nonspikes. Separation amongst waveforms starts at higher levels of IEpsec. Non spikes are clustered at very low levels of IEpsec. 
	 
	Figure 4.3. Red:spikes. Black: non spikes. There is extensive overlap amongst spikes and nonspikes for all levels of MCPsec. Slightly more spikes at levels of 15 MCPsec and higher. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Three-dimensional Space: SNR ,.IEpsec , MCPpsec  
	 
	Figure 4.4. Red:spikes. Black: non spikes. Both spikes and non spikes seem are clustered in the low SNR, low-medium MCPsec area.  
	 
	Figure 4.5. Red:spikes. Black: non spikes. Start to see some data separation in the plane MCPpsec vs. SNR. 
	 
	Figure 4.6. Red:spikes. Black: non spikes. Data separation between spikes and non spikes becomes evident at high levels of MCPsec. At high levels of MCPpsec spikes have higher SNR than non spikes. This could arise from non spikes which have high levels of noise and thus high MCPpsec but low SNR. Spikes with high MCPpsec tend to have high SNR. 
	 
	 
	 
	 
	 
	Figure 4.7. Red:spikes. Black: non spikes. It is possible to observe data separation between spikes and non spikes along the vertical IEpsec axis. Spikes extend into regions of larger IEpsec.  
	4.2 Algorithm Validation  
	Validation of the algorithm was two-folded: the first part tested the ability of SVM to classify data into spikes and non spikes, the second part tested the ability of the algorithm to detect spikes in comparison to human markers.  
	SVM 10-Fold Cross Validation 
	As mentioned in chapter 3, the SVM algorithm was trained with 2300 training samples of which 80% were non spikes and 20% were spikes. These samples were selected using SNEO threshold detection and classified as spikes or non spikes by a single observer. Classification made by SVM is compared to the manual classification.  The 10-fold cross validation measures the ability of SVM to classify the data available. More importantly, cross validation also reveals whether data is separable/ classifiable given the c
	had data about children between the ages 2-4 and children between the ages 4-6, it would be harder to separate. These two age groups are likely to overlap on height and weight and could not be easily separated.Each training sample consists of:  
	Training Sample= [Feature Vector, Manual Classification]   which expanded is  
	Training Sample= [SNR, IEpsec, MCPpsec, MTimeMCP, Manual Classification] 
	We executed SVM in Matlab and we ran a 10-fold cross validation.  The 2300 samples were distributed randomly into 10 groups of approximate equal size.The steps are the following:  
	1. 9 groups are chosen as a TRAINING SET while the remaining group is determined to be a TESTING SET.  
	1. 9 groups are chosen as a TRAINING SET while the remaining group is determined to be a TESTING SET.  
	1. 9 groups are chosen as a TRAINING SET while the remaining group is determined to be a TESTING SET.  

	2. SVM is trained with the training set feature vector and manual classification. Once training is finalized, a SVM structure is generated and SVM is ready to classify new data.  
	2. SVM is trained with the training set feature vector and manual classification. Once training is finalized, a SVM structure is generated and SVM is ready to classify new data.  

	3.  Only the testing set feature vector is passed onto SVM for classification.  
	3.  Only the testing set feature vector is passed onto SVM for classification.  

	4.  Then, the testing set manual classification is compared to the output produced by SVM. Several metrics are calculated to measure the performance of the automated classification.  See table 4.1 for detail on cross-validation metrics.  
	4.  Then, the testing set manual classification is compared to the output produced by SVM. Several metrics are calculated to measure the performance of the automated classification.  See table 4.1 for detail on cross-validation metrics.  

	5. This entire sequence is repeated 10 times; every time having a different group as a testing set. 
	5. This entire sequence is repeated 10 times; every time having a different group as a testing set. 

	6. Finally, the average metrics for the 10 combinations is computed and reported. 
	6. Finally, the average metrics for the 10 combinations is computed and reported. 


	Table 4.1.Cross validation statistics: definitions and abbreviations. 
	Abbreviation 
	Abbreviation 
	Abbreviation 
	Abbreviation 

	Definition 
	Definition 

	Formula 
	Formula 

	Span

	Absolute values 
	Absolute values 
	Absolute values 

	Span

	TP 
	TP 
	TP 

	Number of true positives 
	Number of true positives 

	 
	 

	Span

	FP 
	FP 
	FP 

	Number of false positives 
	Number of false positives 

	 
	 

	Span

	FN 
	FN 
	FN 

	Number of false negatives 
	Number of false negatives 

	 
	 

	Span

	TN 
	TN 
	TN 

	Number of true positives 
	Number of true positives 

	 
	 

	Span

	Nmarks 
	Nmarks 
	Nmarks 

	Number of marks 
	Number of marks 

	                   
	                   

	Span

	Metrics. Value ranges 0-1.   
	Metrics. Value ranges 0-1.   
	Metrics. Value ranges 0-1.   

	Span

	TPR 
	TPR 
	TPR 

	True positive rate 
	True positive rate 

	             
	             

	Span

	FPR 
	FPR 
	FPR 

	False positive rate 
	False positive rate 

	             
	             

	Span

	FNR 
	FNR 
	FNR 

	False negative rate 
	False negative rate 

	             
	             

	Span

	SPC 
	SPC 
	SPC 

	Specificity 
	Specificity 

	             
	             

	Span

	SN 
	SN 
	SN 

	Sensitivity 
	Sensitivity 

	           
	           

	Span

	PPV 
	PPV 
	PPV 

	Positive prediction value 
	Positive prediction value 

	            
	            

	Span


	While all the metrics mentioned in table 4.1 provide important information, we will focus on PPV and SN as discussed in chapter 3. The product of these two yields AROC; a measure of the test’s performance. 
	Results: 10-fold Cross-Validation  
	10-fold cross validation was done with the four features SNR, IEpsec, MCPpsec, and MTimeMCP (see table 4.2 for explanation of abbreviations). These features were defined and illustrated in chapter 3. Average PPV was 0.9567 ± 0.0118 and average SN was 0.9795 ±0.0088. Remember that perfect PPV and SN are equal to 1. These results yielded AROC = 0.9371. Table 4.3 provides detailed results of cross validation. 
	Table 4.2.Candidate feature names and abbreviations 
	Abbreviation 
	Abbreviation 
	Abbreviation 
	Abbreviation 

	Definition 
	Definition 

	Span

	SNR 
	SNR 
	SNR 

	Signal to noise ratio 
	Signal to noise ratio 

	Span

	IEpsec 
	IEpsec 
	IEpsec 

	Integrated candidate energy per unit time 
	Integrated candidate energy per unit time 

	Span

	MCPpsec 
	MCPpsec 
	MCPpsec 

	Number of mean-crossing points per unit time 
	Number of mean-crossing points per unit time 

	Span

	MTimeMCP 
	MTimeMCP 
	MTimeMCP 

	Median time between mean-crossing points (seconds) 
	Median time between mean-crossing points (seconds) 

	Span


	 
	Table 4.3. Average metrics for cross-validation with 4 features: SNR, IEpsec, MCPpsec, MTimeMCP. 
	Metric 
	Metric 
	Metric 
	Metric 

	Average 
	Average 

	Standard deviation (STDV) 
	Standard deviation (STDV) 

	Span

	 Nmarks  
	 Nmarks  
	 Nmarks  

	223.4 
	223.4 

	11.4426 
	11.4426 

	Span

	TP   
	TP   
	TP   

	209.5 
	209.5 

	10.4376 
	10.4376 

	Span

	FP  
	FP  
	FP  

	9.5 
	9.5 

	2.7183 
	2.7183 

	Span

	 FN  
	 FN  
	 FN  

	4.4 
	4.4 

	1.9551 
	1.9551 

	Span

	TPR  
	TPR  
	TPR  

	0.9380 
	0.9380 

	0.0157 
	0.0157 

	Span

	 FPR  
	 FPR  
	 FPR  

	0.0424 
	0.0424 

	0.0115 
	0.0115 

	Span

	FNR 
	FNR 
	FNR 

	0.0196 
	0.0196 

	0.0083 
	0.0083 

	Span

	PPV 
	PPV 
	PPV 

	0.9567 
	0.9567 

	0.0118 
	0.0118 

	Span

	SN 
	SN 
	SN 

	0.9795 
	0.9795 

	0.0088 
	0.0088 

	Span

	SPC 
	SPC 
	SPC 

	0.9576 
	0.9576 

	0.0115 
	0.0115 

	Span


	 
	The repetition of 10-fold cross validation (trial 1- trial 5) yielded different numerical results. See table 4.4. This is because early in the validation stage samples are assigned randomly to groups.  So for every repetition, samples are distributed differently amongst groups. However, the numerical difference does not indicate a real difference.  The mean SPC and mean SN vary within the standard deviation window. 
	Table 4.4.  Five trials of 10-fold cross validation. 
	 
	 
	 
	 

	TRIAL 1 
	TRIAL 1 

	TRIAL 2 
	TRIAL 2 

	TRIAL 3 
	TRIAL 3 

	TRIAL 4 
	TRIAL 4 

	TRIAL 5 
	TRIAL 5 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	95.89  ± 1.35 
	95.89  ± 1.35 

	95.64  ± 1.75 
	95.64  ± 1.75 

	95.70 ±1.88 
	95.70 ±1.88 

	95.74 ± 1.13 
	95.74 ± 1.13 

	 95.67 ± 1.18 
	 95.67 ± 1.18 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	98.00  ±  0.97 
	98.00  ±  0.97 

	97.92 ± 0.99 
	97.92 ± 0.99 

	97.90  ± 0.47 
	97.90  ± 0.47 

	97.99 ± 1.34 
	97.99 ± 1.34 

	 97.95 ± 0.88 
	 97.95 ± 0.88 

	Span


	 
	We can report that SVM classification with the four aforementioned features yields: average PPV= 95 ± 1 % and average SN= 98 ± 1 %. Then, average AROC= 0.93 ± 0.02 . 
	Table 4.5. Performance summary 4-feature SVM classification 
	Performance Summary  
	Performance Summary  
	Performance Summary  
	Performance Summary  

	Span

	PPV= 95 ± 1% 
	PPV= 95 ± 1% 
	PPV= 95 ± 1% 

	Span

	SN= 98 ± 1 %. 
	SN= 98 ± 1 %. 
	SN= 98 ± 1 %. 

	Span

	AROC= 0.93 ± 0.02  
	AROC= 0.93 ± 0.02  
	AROC= 0.93 ± 0.02  

	Span


	 
	 These results are satisfactory and provide support for the use of SVM in classification of new data. High PPV and SN indicate that the SVM structure has an adequate distribution of training samples and is able to generate an appropriate separating hyperplane.   
	Results in table 4.5 show a slightly lower PPV compared to SN.  This arises from a relatively larger number of FPs. SVM is able to detect the majority of spikes present (high SN). However, it also classified erroneously some non spikes giving rise to FPs (lower PPV). These are likely to be artifacts and contaminants with features (SNR, IEpsec, MCPpsec, and MTimeMCP) similar to spikes. 
	4.3 Feature Vector Assessment 
	Results for 10-fold cross validation of SVM with the four features SNR, IEpsec, MCPpsec, MTimeMCP were: average PPV= 95 ± 1 %, average SN= 98 ± 1 % and AROC= 0.93 ± 0.02. 
	These results were deemed satisfactory. Nevertheless, before proceeding into SVM classification of new data we assessed the legitimacy of every feature in the feature vector. In other words, we investigated whether a feature improved SVM performance by providing useful information. 
	For this purpose we conducted a series of cross validations using different feature vectors. See table 4.6 for results summary.  Figure 4.8 and 4.9 illustrate the results. Figure 4.8 suggests that several combinations of features have comparable performance. Lowest performance when only used MCPpsec or MTimeMCP .Combinations of two or more features yields 90% or higher AROC. Figure 4.9 shows that for the majority of feature combinations SN is always higher than PPV.  This observation suggests that SVM is ab
	 
	Figure 4.8. Changes in SVM performance for different combinations of feature vectors. 
	 
	 
	Figure 4.9. Changes in PPV and SN  for different combinations of feature vectors. Note interrelation between PPV and SN. Also, for the majority of cases SN is always higher than PPV. 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 4.6. Summary of Cross validation for different feature vectors. 
	Feature vector = [ SNR] 
	Feature vector = [ SNR] 
	Feature vector = [ SNR] 
	Feature vector = [ SNR] 

	Span

	Cross-validation 
	Cross-validation 
	Cross-validation 

	TRIAL 1 
	TRIAL 1 

	TRIAL 2 
	TRIAL 2 

	TRIAL 3 
	TRIAL 3 

	TRIAL 4 
	TRIAL 4 

	TRIAL 5 
	TRIAL 5 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	91.84 ± 2.87 
	91.84 ± 2.87 

	91.12 ±  2.17 
	91.12 ±  2.17 

	91.65 ± 1.88 
	91.65 ± 1.88 

	91.22 ± 2.48 
	91.22 ± 2.48 

	91.43 ± 3.30 
	91.43 ± 3.30 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	91.70 ± 3.87 
	91.70 ± 3.87 

	93.46 ±  2.36 
	93.46 ±  2.36 

	92.80 ± 3.44 
	92.80 ± 3.44 

	92.87 ± 2.57 
	92.87 ± 2.57 

	91.78 ±  4.12 
	91.78 ±  4.12 
	91.78 ±  4.12 
	91.78 ±  4.12 
	91.78 ±  4.12 




	Span

	Feature vector = [ IEpsec ] 
	Feature vector = [ IEpsec ] 
	Feature vector = [ IEpsec ] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	94.49±  1.89 
	94.49±  1.89 

	94.43 ± 1.27 
	94.43 ± 1.27 

	94.36±  2.37 
	94.36±  2.37 

	94.51 ± 1.88 
	94.51 ± 1.88 

	94.16 ± 1.69 
	94.16 ± 1.69 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	93.43±  2.33 
	93.43±  2.33 

	93.41 ± 3.29 
	93.41 ± 3.29 

	93.31±  3.41 
	93.31±  3.41 

	92.59±  2.76 
	92.59±  2.76 

	93.79±  2.40 
	93.79±  2.40 

	Span

	Feature vector = [ SNR, IEpsec ] 
	Feature vector = [ SNR, IEpsec ] 
	Feature vector = [ SNR, IEpsec ] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	93.50 ± 1.29 
	93.50 ± 1.29 

	93.44 ±1.31 
	93.44 ±1.31 

	93.52 ± 2.32 
	93.52 ± 2.32 

	93.52 ± 1.97 
	93.52 ± 1.97 

	93.52 ± 1.25 
	93.52 ± 1.25 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	96.46 ± 1.35 
	96.46 ± 1.35 

	96.39 ± 0.99 
	96.39 ± 0.99 

	96.48 ± 1.36 
	96.48 ± 1.36 

	96.45 ± 1.16 
	96.45 ± 1.16 

	96.54 ± 1.38 
	96.54 ± 1.38 

	Span

	Feature vector = [ SNR, IEpsec , MCPpsec ] 
	Feature vector = [ SNR, IEpsec , MCPpsec ] 
	Feature vector = [ SNR, IEpsec , MCPpsec ] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	95.45 ± 1.16 
	95.45 ± 1.16 

	95.41±  2.14 
	95.41±  2.14 

	95.51 ± 1.32 
	95.51 ± 1.32 

	95.50 ± 1.23 
	95.50 ± 1.23 

	95.38±  1.41 
	95.38±  1.41 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	97.91±  1.00 
	97.91±  1.00 

	97.91±  0.80 
	97.91±  0.80 

	97.95±  0.80 
	97.95±  0.80 

	98.05 ± 1.23 
	98.05 ± 1.23 

	97.96±  1.16 
	97.96±  1.16 

	Span

	Feature vector =[ SNR, IEpsec, MCPpsec, MTimeMCP] 
	Feature vector =[ SNR, IEpsec, MCPpsec, MTimeMCP] 
	Feature vector =[ SNR, IEpsec, MCPpsec, MTimeMCP] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	95.89  ± 1.35 
	95.89  ± 1.35 

	95.64  ± 1.75 
	95.64  ± 1.75 

	95.70 ±1.88 
	95.70 ±1.88 

	95.74 ± 1.13 
	95.74 ± 1.13 

	 95.67 ± 1.18 
	 95.67 ± 1.18 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	98.00  ±  0.97 
	98.00  ±  0.97 

	97.92 ± 0.99 
	97.92 ± 0.99 

	97.90  ± 0.47 
	97.90  ± 0.47 

	97.99 ± 1.34 
	97.99 ± 1.34 

	 97.95 ± 0.88 
	 97.95 ± 0.88 

	Span

	Feature vector =[ SNR, IEpsec, MTimeMCP] 
	Feature vector =[ SNR, IEpsec, MTimeMCP] 
	Feature vector =[ SNR, IEpsec, MTimeMCP] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	95.24±  0.46 
	95.24±  0.46 

	95.26± 1.87 
	95.26± 1.87 

	95.22± 1.22 
	95.22± 1.22 

	95.34± 0.86 
	95.34± 0.86 

	95.28± 1.76 
	95.28± 1.76 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	97.52±0.90 
	97.52±0.90 

	97.43 ± 1.19 
	97.43 ± 1.19 

	97.51± 0.98 
	97.51± 0.98 

	97.45±1.44 
	97.45±1.44 

	97.54 ±1.39 
	97.54 ±1.39 

	Span

	Feature vector =[ MCPpsec] 
	Feature vector =[ MCPpsec] 
	Feature vector =[ MCPpsec] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	83.32 ±2.48 
	83.32 ±2.48 

	83.31 ±1.92 
	83.31 ±1.92 

	83.26 ± 2.33 
	83.26 ± 2.33 

	83.28 ±1.63 
	83.28 ±1.63 

	83.27± 1.88 
	83.27± 1.88 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	95.82 ±1.96 
	95.82 ±1.96 

	95.80± 1.26 
	95.80± 1.26 

	95.82 ±1.36 
	95.82 ±1.36 

	95.82 ±1.12 
	95.82 ±1.12 

	95.87 ±1.60 
	95.87 ±1.60 

	Span

	Feature vector =[ MTimeMCP] 
	Feature vector =[ MTimeMCP] 
	Feature vector =[ MTimeMCP] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	73.89± 3.45 
	73.89± 3.45 

	73.87 ±2.67 
	73.87 ±2.67 

	73.64± 3.31 
	73.64± 3.31 

	73.94± 3.26 
	73.94± 3.26 

	73.97± 3.55 
	73.97± 3.55 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	98.93 ±1.18 
	98.93 ±1.18 

	98.87± 0.95 
	98.87± 0.95 

	98.86± 0.77 
	98.86± 0.77 

	98.95± 1.09 
	98.95± 1.09 

	98.88± 1.12 
	98.88± 1.12 

	Span

	Feature vector = [ SNR, MCPpsec ] 
	Feature vector = [ SNR, MCPpsec ] 
	Feature vector = [ SNR, MCPpsec ] 

	Span

	< PPV >  ± STDV 
	< PPV >  ± STDV 
	< PPV >  ± STDV 

	95.16 ±1.29 
	95.16 ±1.29 

	95.15± 2.29 
	95.15± 2.29 

	95.13 ±1.25 
	95.13 ±1.25 

	95.28± 1.88 
	95.28± 1.88 

	95.06 ±1.11 
	95.06 ±1.11 

	Span

	< SN >   ±  STDV 
	< SN >   ±  STDV 
	< SN >   ±  STDV 

	97.72 ±0.84 
	97.72 ±0.84 

	97.68 ±0.96 
	97.68 ±0.96 

	97.68 ±0.80 
	97.68 ±0.80 

	97.65± 0.82 
	97.65± 0.82 

	97.85± 1.23 
	97.85± 1.23 

	Span


	4.4 Additional Discrimination 
	The final step in the algorithm (post SVM classification) consisted of an additional discrimination step. As discussed in chapter 3, this additional discrimination was designed to possibly reduce the number of FPs.  We tested the impact of this final step by running it following SVM classification. Table 4.6 contrasts the 10-fold cross validation results for SVM classification only against SVM classification plus additional step. The final discrimination step does not affect significantly the results. We ob
	Table 4.7. Cross validation results comparison. SVM classification vs. SVM classification + add. discrimination 
	SVM classification   
	SVM classification   
	SVM classification   
	SVM classification   

	 
	 

	SVM classification +  add. discrimination 
	SVM classification +  add. discrimination 

	Span

	Metric 
	Metric 
	Metric 

	Mean 
	Mean 

	Standard deviation 
	Standard deviation 
	(STDV) 

	 
	 

	Mean 
	Mean 

	Standard deviation  
	Standard deviation  
	(STDV) 

	Span

	 Nmarks  
	 Nmarks  
	 Nmarks  

	223.4 
	223.4 

	11.4426 
	11.4426 

	 
	 

	223.4 
	223.4 

	11.4426 
	11.4426 

	Span

	TP   
	TP   
	TP   

	209.5 
	209.5 

	10.4376 
	10.4376 

	 
	 

	211.4 
	211.4 

	10.88 
	10.88 

	Span

	FP  
	FP  
	FP  

	9.5 
	9.5 

	2.7183 
	2.7183 

	 
	 

	7.1 
	7.1 

	2.2336 
	2.2336 

	Span

	 FN  
	 FN  
	 FN  

	4.4 
	4.4 

	1.9551 
	1.9551 

	 
	 

	4.9 
	4.9 

	1.9692 
	1.9692 

	Span

	TPR  
	TPR  
	TPR  

	0.9380 
	0.9380 

	0.0157 
	0.0157 

	 
	 

	0.9464 
	0.9464 

	0.0126 
	0.0126 

	Span

	 FPR  
	 FPR  
	 FPR  

	0.0424 
	0.0424 

	0.0115 
	0.0115 

	 
	 

	0.0317 
	0.0317 

	0.0097 
	0.0097 

	Span

	FNR 
	FNR 
	FNR 

	0.0196 
	0.0196 

	0.0083 
	0.0083 

	 
	 

	0.0219 
	0.0219 

	0.0086 
	0.0086 

	Span

	PPV 
	PPV 
	PPV 

	0.9567 
	0.9567 

	0.0118 
	0.0118 

	 
	 

	0.9676 
	0.9676 

	0.0099 
	0.0099 

	Span

	SN 
	SN 
	SN 

	0.9795 
	0.9795 

	0.0088 
	0.0088 

	 
	 

	0.9773 
	0.9773 

	0.0089 
	0.0089 

	Span

	SPC 
	SPC 
	SPC 

	0.9576 
	0.9576 

	0.0115 
	0.0115 

	 
	 

	0.9683 
	0.9683 

	0.0097 
	0.0097 

	Span


	 
	4.5 Algorithm Validation: Automated Results vs. Standard and Parameter Analysis 
	As mentioned in chapter 3, several segments of data were marked manually by three observers experienced in recognizing spikes. The manual marks were pooled in together and the spike clusters marked by the three observers regardless of any small time difference were selected. Then, the manual marks were compared to automated marks generated by the algorithm.  This is a validation of the algorithm in its entirety; in contrast to the 10-fold cross validation which only investigated SVM performance. 
	The algorithm was run for 840 combinations of parameters in order to determine the optimal combination.   
	Parameters used: 
	k= { 3 , 6 , 9 , 12 , 15 , 18} 
	DT= {0.3 , 0.5 , 0.7, 0.9 , 1.1, 1.3 , 1.5} 
	windowL= {0.25 , 0.5, 0.75, 1} (window length=2 x windowL ) 
	 
	Next, AROC (PPV x SN) was calculated and plotted against k and DT. In this case, AROC is a measure of the algorithm’s performance for a set of parameters. AROC 0.8 or higher is regarded as a good performance, which results from 0.9% SN and 0.9% PPV. 
	  
	Figures 4.10 through 4.13 illustrate the relation between AROC and the parameters. From these we can observe that AROC is dependent on k, DT. The maximum AROC values observed were in the range 0.7-
	0.76 for k=5 and DT=1.5. These were deemed satisfactory. This is the performance one could expect when running a new data set on the algorithm with those parameters.  
	 
	Furthermore, figure 4.11 reveals important information regarding the robustness of the algorithm The AROC surface plot is nearly flat near high DT and low k. This allows the user to select parameter values within this region and get good algorithm performance. The algorithm is not oversensitive to these parameters. Table 4.8 summarizes the optimal algorithm performance for each data set.  
	 
	 
	Table 4.8. Optimal performance for each set of standards  
	File  
	File  
	File  
	File  

	k 
	k 

	DT (s) 
	DT (s) 

	windowL 
	windowL 
	(s) 

	Aroc 
	Aroc 

	Sens 
	Sens 

	PPV 
	PPV 

	TP 
	TP 

	FP 
	FP 

	FN 
	FN 

	Ncands 
	Ncands 

	Nspks 
	Nspks 

	Span

	05.22.09b 
	05.22.09b 
	05.22.09b 

	18 
	18 

	0.9-1.5 
	0.9-1.5 

	0.5 
	0.5 

	0.89470 
	0.89470 

	0.91764 
	0.91764 

	0.975 
	0.975 

	78 
	78 

	2 
	2 

	7 
	7 

	355 
	355 

	80 
	80 

	Span

	05.03.11 
	05.03.11 
	05.03.11 

	3 
	3 

	1.5 
	1.5 

	0.75 
	0.75 

	0.88506 
	0.88506 

	0.92968 
	0.92968 

	0.952 
	0.952 

	238 
	238 

	12 
	12 

	18 
	18 

	276 
	276 

	250 
	250 

	Span

	05.29.09 
	05.29.09 
	05.29.09 

	3 
	3 

	1.3 
	1.3 

	0.5 
	0.5 

	0.85388 
	0.85388 

	0.89843 
	0.89843 

	0.95041 
	0.95041 

	115 
	115 

	6 
	6 

	13 
	13 

	258 
	258 

	121 
	121 

	Span

	04.14.09 
	04.14.09 
	04.14.09 

	3,15 
	3,15 

	1.3 
	1.3 

	1 
	1 

	0.84424 
	0.84424 

	0.97647 
	0.97647 

	0.86458 
	0.86458 

	83 
	83 

	13 
	13 

	2 
	2 

	265 
	265 

	96 
	96 

	Span

	06.01.11 
	06.01.11 
	06.01.11 

	15 
	15 

	1.5 
	1.5 

	1 
	1 

	0.69879 
	0.69879 

	0.89024 
	0.89024 

	0.78494 
	0.78494 

	73 
	73 

	20 
	20 

	9 
	9 

	122 
	122 

	93 
	93 

	Span

	TR
	Span


	 
	 
	 
	 
	Figure 4.10. AROC surface for parameters DT, k. 
	 
	Figure 4.11. AROC is directly proportional to DT.  Future work should be carried with DT=1.5 
	 
	 
	Figure 4.12. Not a clear relationship between AROC and k. However, highest AROC at small k. Future work could be carried with k=5. 
	 
	Figure 4.13. Highest algorithm performance at low k, high DT (observe maroon blocks in plot) 
	Validation Overview 
	As we discussed in chapter 3 the algorithm consisted of the following processes: 
	Filtered Signal →SNEO threshold detection + SVM + additional discrimination = Spike cluster information 
	Now, the algorithm is validated and can be used to analyze spike activity in ischemic intestines. 
	 
	Chapter 5  
	Preliminary Results: Induced Ischemia and Spike Activity  
	5.1 Ischemic Intestine Data Analysis 
	 
	Table 5.1.Details Regarding Preliminary spike detection with algorithm. 
	 
	 
	 
	 

	Channels 
	Channels 

	FILE 
	FILE 

	5min  
	5min  

	5min  
	5min  

	5min  
	5min  

	5min  
	5min  

	TOTAL 
	TOTAL 

	Span

	 
	 
	 

	 
	 

	PIG 1 
	PIG 1 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	Span

	TR
	TD
	Span
	baseline 

	TD
	Span
	49chan 

	TD
	Span
	04.14.09_a 

	TD
	Span
	60-360s 

	TD
	Span
	360-660s 

	TD
	Span
	1000-1300s 

	TD
	Span
	1300-1600s 

	TD
	Span
	 

	Span

	 
	 
	 

	 
	 

	# of spikes detected 
	# of spikes detected 

	9 
	9 

	2 
	2 

	14 
	14 

	21 
	21 

	46 
	46 

	Span

	TR
	TD
	Span
	75%ischemia 

	TD
	Span
	49chan 

	TD
	Span
	04.14.09_d 

	TD
	Span
	60-360s 

	TD
	Span
	360-660s 

	TD
	Span
	700-100s 

	TD
	Span
	1000-1300s 

	TD
	Span
	 

	Span

	 
	 
	 

	 
	 

	# of spikes detected 
	# of spikes detected 

	364 
	364 

	22 
	22 

	11 
	11 

	93 
	93 

	490 
	490 

	Span

	 
	 
	 

	 
	 

	PIG 2 
	PIG 2 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	Span

	TR
	TD
	Span
	baseline 

	TD
	Span
	49chan 

	TD
	Span
	05.29.09a 

	TD
	Span
	60-360s 

	TD
	Span
	500-800s 

	TD
	Span
	1000-1300s 

	TD
	Span
	1400-1700s 

	TD
	Span
	 

	Span

	 
	 
	 

	 
	 

	# of spikes detected 
	# of spikes detected 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	1 
	1 

	Span

	TR
	TD
	Span
	segmental 

	TD
	Span
	49chan 

	TD
	Span
	05.29.09b 

	TD
	Span
	60-360s 

	TD
	Span
	500-800s 

	TD
	Span
	1000-1300s 

	TD
	Span
	1800-2100s 

	TD
	Span
	 

	Span

	 
	 
	 

	 
	 

	# of spikes detected 
	# of spikes detected 

	512 
	512 

	544 
	544 

	135 
	135 

	18 
	18 

	1209 
	1209 

	Span


	 
	Spike Activity: Ischemic Intestine vs. Baseline 
	 (Figures 5.1 and 5.2).  Number of spike clusters per minute per channel. For 20-minute long experiments. Compared to spike rate in baseline recordings. Vanderbilt experiments 04.14.09 and 05.29.09. 
	 
	Figure 5.1. Number of spike clusters per minute per channel. For 20-minute long experiment.  
	 
	Figure 5.2. Number of spike clusters per minute per channel. For 20-minute long experiment. 
	Spike Rate in Ischemic Intestine 
	 (Figure 5.3 and 5.4) Average number of spikes per channel during partial ischemia experiment (75%). Spike rate changes throughout experiment. (x axis is the time coordinate during the experiment). Vanderbilt experiments 04.14.09 and 05.29.09. 
	 
	Figure 5.3. Average number of spikes per channel during partial ischemia experiment (75%). 
	 
	Figure 5.4. Average number of spikes per channel during partial ischemia experiment (75%). 
	5.2 Spatial Spike Propagation Analysis  
	Once spike detection has been conducted it is possible to analyze the wave’s spatial propagation. A preliminary attempt to model spike spatial propagation was performed by using the cycle partitioning algorithm REGROUPS (Erickson 2010).  This algorithm was designed for gastric slow wave activity but could be appropriate for spike analysis; testing to be conducted in the future. Figure 5.5 provides an example of how REGROUPS can partition spike wave fronts. Figure 5.6 illustrates the spatial propagation of t
	 
	 
	 
	 
	Figure 5.5. Cycle Partitioning analysis conducted with REGROUPS. Electrode placement information is necessary. 
	 
	Figure 5.6. Spatial propagation of spike wave fronts detected by REGROUPS in figure 5.5. Scale red to blue indicates time delay. Red: first. Blue: last. 
	5.3 Results Overview  
	The design and validation of the spike detection algorithm presented in this thesis was the first step in the process to investigate the effects of intestinal ischemia on spike activity. Based on AROC analysis we deemed the algorithm satisfactory it is current state. Detailed discussion of the algorithm validation will be published shortly. Moreover, the spike detection algorithm has been incorporated to the GEMS v1.6 software (GastroIntestinal Mapping Suite) for additional testing. Figure 5.7 shows data di
	The ischemia analysis results presented here are preliminary and are intended to show possible applications of the algorithm. Future research will involve the use of the algorithm for spike rate analysis and spike spatial propagation analysis.  
	 
	 
	Figure 5.7 
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