
LEVERAGING PARAMETER AND RESOURCE NAMING

CONVENTIONS TO IMPROVE TEST SUITE ADHERENCE TO

PERSISTENT STATE CONDITIONS

by

Johanna Goergen

2016

c© 2016 Johanna Goergen
All Rights Reserved

TABLE OF CONTENTS

LIST OF TABLES . v
LIST OF FIGURES . vi
ABSTRACT . viii

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Web Applications . 3
2.2 Web Application Testing . 5

2.2.1 Automated Web Application Testing 6

3 THE PROBLEM: INCOHERENT SELECTION OF REQUEST
PARAMETERS IN TEST CASES 8

4 EXPLORATORY STUDIES . 11

4.1 Resource Naming Conventions Study 11

4.1.1 Methodology . 11
4.1.2 Results and Evaluation . 12

4.2 Parameter Naming Conventions Case Studies 13

4.2.1 Subject Applications . 14
4.2.2 Methodology . 14
4.2.3 Results and Evaluation . 16

4.2.3.1 Logic . 16
4.2.3.2 ORPM . 18

iii

4.2.3.3 WebCollab . 18

4.3 Conclusions from Exploratory Studies 19

5 APPROACH: CLASSIFICATION EXTRACTOR AND
PSE-MATCHING ALGORITHM . 21

5.1 Classification Extractor . 23
5.2 PSE-Matching Algorithm . 26

5.2.1 Example of PSE-Matching Algorithm 27
5.2.2 PSE-Matching Algorithm Rules 30

6 EXPERIMENT, RESULTS, AND ANALYSIS 36

6.1 Research Questions . 36
6.2 Experiment Methodology . 36

6.2.1 N-Gram Simple Model . 37
6.2.2 Parameter Interaction Model 39

6.3 Metrics . 40
6.4 Results and Analysis . 42

6.4.1 Improvements in Line and Branch Coverage 42
6.4.2 Analysis of Coverage Data . 45
6.4.3 Analysis of High and Low -Improvement Resources 48
6.4.4 Time Complexity of Classification Extraction and

PSE-Matching Algorithms . 50

6.5 Threats to Validity . 51
6.6 Summary of Analysis and Observations 51

7 CONTRIBUTIONS AND FUTURE WORK 53

7.1 Contributions . 53
7.2 Future Work . 54

BIBLIOGRAPHY . 55

iv

LIST OF TABLES

4.1 List of ID-Indicators . 14

4.2 ID-Parameter Data from Three Subject Applications 16

5.1 Terminology for the Classification Extractor and the PSE-Matching
Algorithm . 24

6.1 Number of requests per resource in 50-case WebCollab test suite . 46

6.2 Significant data from high-improvement and low-improvement
resources from Logic’s 30 test suites 48

6.3 Time requirements for the Classification Extractor 50

6.4 Time requirements for the PSE-Matching Algorithm 50

v

LIST OF FIGURES

2.1 Components of a web application, including session and persistent
state . 3

2.2 Components of HTTP requests referenced in this paper 4

2.3 Web aplication components, including requests and responses . . . 4

3.1 Requests ordered in test suite without respect to persistent state
requirements . 9

3.2 Parameter requiring value from persistent state 9

3.3 Parameter requiring unique value 10

4.1 PSE in Resource Name Matches Parameter Name 16

4.2 An ID-Parameter for a Course PSE 17

4.3 Another ID-Parameter for a Course PSE 17

4.4 Ambiguous ID-Parameter in ORPM 18

4.5 Action Parameter Example . 19

5.1 Input and output for the Classification Extractor and the
PSE-Matching Algorithm . 21

5.2 Classification Extractor example on Logic request 25

5.3 Identifying key elements of a request 28

5.4 Inferring the request’s effect on entities in persistent state 28

5.5 Selecting eligible parameter values for the request 29

vi

5.6 Updating the Persistent-State Map upon acquiring an eligible
parameter set . 29

5.7 Create-classified request creating an entity already in persistent state 30

5.8 Read-classified request accessing nonexistent entity in persistent state 31

5.9 Update-classified request in which no ID-Parameter for the Request
PSE exists . 32

5.10 Delete-classified request in which no ID-Parameter for the Request
PSE exists . 34

6.1 Example of conditional probabilities for selecting parameter sets . 39

6.2 Function for coverage improvement threshold 41

6.3 Average line coverage of 10 simple test suites v. PS-aware test suites
with Logic as subject application 43

6.4 Average branch coverage of 10 simple test suites v. PS-aware test
suites with Logic as subject application 43

6.5 Line coverage of most improved Simple test suite v. PS-Aware test
suite by size with Logic as subject application 44

6.6 Branch coverage of most improved Simple test suite v. PS-Aware test
suite by size with Logic as subject application 45

6.7 Line Coverage of Simple test suites v. PS-Aware test suites by size
with WebCollab as a subject application 46

vii

ABSTRACT

With the prevalence of web applications increasing daily in various aspects of

modern life, the need for cost-effective, efficient, and thorough web application testing

is now greater than ever. One approach to web application testing is automatic test

suite generation based on real user sessions. This approach is promising, but tends

to leave a considerable amount of web application functionality untested. It remains

overall ineffective due to most automatically generated test suites’ lack of adherence to

the persistent state of the application under test, or the parts of the application’s state

that are stored in a data store external to the application itself. This thesis explores

the possibillity of leveraging the resource and parameter naming conventions of web

applications to automatically predict the actions test cases will perform on data in

persistent application state. I propose an algorithm that creates these predictions and

another that leverages these predictions to improve test suites to more closely adhere

to the conditions of data in persistent state. These improvements are achieved through

optimization of request parameter selection. I perform experiments to determine the

success of the two algorithms and I propose suggestions for improvements as well as

suggestions for future work.

viii

Chapter 1

INTRODUCTION

A web application is a software application whose functionality can be accessed

by users over the Internet via web browsers. As web applications take on more and

more vital, sensitive responsibilities such as banking, tax, and health services, it is

increasingly critical that web applications are well tested and maintained before they

are deployed to the public and with every subsequent update or change. For software

in general, the testing process “accounts for approximately 50% of the cost of software

system development” [6]. Testing of web applications in particular can be extremely

expensive and time-consuming due to the dynamic nature of the content they generate.

Much of the content displayed by web applications is dynamically generated

by the application code as the user navigates the application. Some of this dynamic

content can also be determined by data acquired from a database or other data store

outside the application itself. For example, consider an online shopping application in

which a user saves his shopping cart and logs out. If that user is able to access the

items in his shopping cart and purchase them upon his next login, the dynamically

generated content of his shopping cart must have been stored in a database during his

first session and accessed again during his second. Ensuring the correctness of even

this simple shopping transaction requires a great deal of testing. Specifically due to

the incredibly large domain of input possible for web applications, it is often infeasible

to test all possible web application functionality manually.

As a result, a great deal of web application testing is automated and many

approaches to automated web application testing exist. A common current approach

to automating web application testing is test suite generation based on user sessions

[4, 5, 8, 10]. Although this approach to automated testing is very promising, it leaves

1

room for improvement in effectiveness due to its lack of adherence to requirements

imposed by data outside of subject application code, such as data stored in databases.

My objective is to contribute an approach to creating more effective usage-based web

application test suites based on predicting the content of the subject application’s

external data store(s) throughout testing.

The contributions of my work are:

1. Language-based techniques for determining HTTP request’s implications for per-
sistent application state

2. Dynamic prediction and tracking of elements in persistent application state through-
out traversal of a test suite

3. Algorithm to apply persistent state predictions and create a persistent-state
aware test suite

4. Persistent-state aware test suite improves coverage for applications written in two
different programming languages

The organization of this thesis is as follows: in Chapter 2, I elaborate upon the

definition of a web application and the role persistent state plays in the testing process.

In Chapter 3, I more specifically outline the shortcomings of current automatic testing

methods which I hope to improve upon. Chapter 4 details the two exploratory studies

I performed in order to inform the direction of my further approach. In Chapter 5, I

provide a hypothesis and approach based on the findings of these exploratory studies.

Chapter 6 reveals the results of my approach and offers an analysis of the results, also

detailing various algorithms developed to provide a more comprehensive analysis of

test suite success. Chapter 7 offers conclusions and recommendations for future work.

2

Chapter 2

BACKGROUND

2.1 Web Applications

A web application is a system of web pages and other resources on a web server

with which a user can interact via a web browser. A web application dynamically

determines the content rendered by the client browser based on information received

from the user and/or by accessing session state and persistent state. Session state

refers to the data created on the server throughout a user session, which is a series of

interactions between one user and the application, delimited by periods of inactivity

greater than some certain amount of time by that user. Throughout a user session,

the data created by the user as well as that created in previous sessions and stored

in persistent state, or a data store outside the application code, is used to dynami-

cally determine content seen by the user. Figure 2.1 shows the components of a web

application, including session and persistent state.

Figure 2.1: Components of a web application, including session and persistent state

To specify certain actions such as navigation through the web application or

submission of forms to the application, the user interacts with the web page in the

client browser which in turn sends a request to the application server. By request, I

refer to an HTTP (HyperText Transfer Protocol) request.

3

Figure 2.2: Components of HTTP requests referenced in this paper

An HTTP request is a request for a resource belonging to the web application.

Figure 2.2 identifies the components of a request I will be referencing in this thesis;

however, HTTP requests often contain much more information than displayed. An

HTTP request is sent by the user’s browser to the web application server, and it

contains information to allow the server to respond with requested resource to the

correct place, in the correct form. The request consists at least of a request method–

usually GET or POST– as well as a resource and zero or more parameters consisting of

name/value pairs. The web application server then returns a response, whose body is

typically an HTML (HyperText Markup Lanuage) document, which the client browser

renders. The HTML document often contains elements that the user can interact with

to then send further HTTP requests. The components of a web application used with

a browser and shared data store are shown in Figure 2.3.

Figure 2.3: Web aplication components, including requests and responses

If a particular response has content determined by the application code based

4

on variable input, then this response is dynamic. For example, a response is dynamic

if the parameters passed in a request are used by the application code to determine the

exact content returned by the server. Suppose an admin and a general user of some

web application both log in to the web application from the same login page. This login

request may result in the rendering of a different HTML page for the admin than for

the general user if the admin can access different functionality than the general user.

This means the response was dynamic because application code must have determined

which user was an admin and which was a general user based on their usernames

and passwords. Other examples of dynamic responses are HTML pages displayed as

the result of a specific search query, where that search query string is the parameter

determining the content seen by the user.

Dynamic responses are most often determined by how the request accesses and

changes an application’s persistent state. Persistent state is the web application’s state

that is not a part of the application code itself but is instead stored in some outside

data store such as a database or text file. In Figure 3, the shared data store represents

persistent state. Persistent state is state maintained across sessions that allows a web

application user to access, modify, or remove data created in previous user sessions or

even in the user sessions of other users with the same application. For example, when

a user account is created in one session, the new user’s username and password will

likely be stored in a database and required at this user’s next login attempt. Such use

of outside data stores is the only way to create a continuity and coherence between

different user sessions, allowing the user account created in one session to be accessible

by the new user in his subsequent attempt to log into the web application.

2.2 Web Application Testing

Functionality testing of web applications seeks to exercise a web application’s

functionality by executing as much application code as possible, in terms of both code

branches and lines, to reveal any faults in the code. Upon executing the application

code, many web application testing services compare the HTML responses displayed by

5

the browser with the expected HTML responses, ensuring application code correctness

for as many cases as possible. While this exhaustion of application functionality may

be easily achievable manually for small applications with few resources and a simple

navigational model, it becomes incredibly time and cost ineffective to manually exercise

all application functionality for large, highly dynamic web applications. For this reason,

web application testing has become a predominantly automated process.

2.2.1 Automated Web Application Testing

To decrease the time and resource costs necessary to test web applications, a

common approach is automation of testing. Approaches to automatic testing use many

different models to generate test suites. A test suite is typically an ordered series of

test cases meant to model user sessions. Each test case consists of a series of requests,

which provide the information specified in Figure 2.2. Although HTTP requests contain

much more than just the resource, method, and parameters, these three components

are the three necessary to create a model interaction with a web application when

testing because the session and cookie information can be automatically handled by a

test case execution tool.

Today, one common method for automated software testing is utilizing user

access logs to create a usage-based testing model [4, 5, 8, 10]. To create usage-based

test suites, it is necessary to mine actual accesses to a subject web application. These

access logs are then partitioned into user sessions. From these user sessions, any number

of algorithms can be used to develop abstract test suites, ranging from creating Markov

usage models to ordering requests at random. An abstract test suite is a series of

abstract test cases that each consist of requests without parameter values specified.

Lack of parameter specification makes the test suite abstract and allows the automated

testing algorithm the possibility to apply additional models in choosing parameter

values.

Usage-based testing offers benefits not offered by various white-box web testing

methods. For example, reliance on usage-based statistical models allows test suites to

6

more exhaustively test the most common usage patterns (i.e. the functionalities of the

application that will likely see the most user traffic) while not spending more time or

resources than necessary on uncommon usage patterns (i.e. functionalities that users

of the web application will not likely use often) [5]. Researchers have employed many

combinations of statistical and usage-based testing models to achieve high-coverage

testing algorithms, such as Sant et al’s Simple Model, which creates usage-based Markov

chains, giving the likelihood of any one request based on the one or two requests

preceding it [9]. The Simple Model creates a series of abstract test cases in this fashion

(resulting in an abstract test suite), then specifies parameter values for the requests in

those abstract test cases by referencing another Markov assumption model for selection

of parameter values.

7

Chapter 3

THE PROBLEM: INCOHERENT SELECTION OF REQUEST
PARAMETERS IN TEST CASES

Since I consider a test suite to be a series of test cases meant to model user

sessions, an ideal test suite retains a level of logical coherence throughout the traversal

of its individual cases in order. In other words, the test cases meant to test non-

error code within a suite should create information that can be successfully stored

and accessed, as well as change or delete existing information successfully. When

applications rely heavily on external data stores, however, it is difficult to automatically

generate test suites that correctly model interactions with these external data stores.

This is because it is not always clear which application resources access or create

external data. Certain requests may only succeed if particular information exists within

the external data store, and others only if the data store is empty. Most algorithms to

automatically generate test suites are unable to take these requirements imposed by

persistent application state into account and as a result, the test suites they generate

are often unable to achieve high code coverage. This inability of automatic test suite

generating algorithms to adhere to the conditions of persistent state often results in

the following defects in test suite coherence:

1. Test cases ordering creates logical inconsistencies. Some test cases
require prerequisite actions to occur before they are able to execute non-error code
successfully. For example, in testing a human resources management application,
if a series of test cases modeling employee user sessions are executed before a test
case modeling an admin user session adds employees to the application’s database,
those initial employee test cases will repeatedly hit the same error code, likely not
executing any code beyond the login page. As in this example, it is common that
the successful execution of code by one test case relies on the previous execution
of some other code by another test case. Figure 3.1 provides an example of

8

illogical test case ordering. Without the ability to interact with an application’s
outside data stores, a test suite generating algorithm cannot easily know where
such dependencies lie, and therefore will fall short in the way it orders test cases.
This results in excessive coverage of error code and sparse coverage of the rest of
the application code.

Figure 3.1: Requests ordered in test suite without respect to persistent state require-
ments

In Figure 3.1, the first test case attempts to delete a user with ID 4, but this
user is not created until the second test case. The illogical ordering will result in
coverage of error code instead of code that performs deletion of the user.

2. Test cases contain requests which refer to data in persistent state. Re-
quests that are intended to update, delete, or read data often contain parameters
that specify the data to be accessed. Any data stored in persistent state is likely
accessed by either an ID string or some combination of characteristics (e.g., a
database query specifying one or more attribute), which are specified in some
way by the user’s interaction with the web application then sent via request.
Many approaches to automated test suite generation use some degree of ran-
domness in choosing the parameter values in a request [9]. However, if requests
attempting to refer to specific data in persistent state contain randomly selected
parameter values, it is unlikely that they will be able to successfully create or
access that data. Most often, the parameters of the request will refer to nonex-
istent data, which will once again result in repeated coverage of error code. In
Figure 3.2, I provide a request that requires the existence of a certain entity in
persistent state to succeed.

Figure 3.2: Parameter requiring value from persistent state

The request shown in Figure 3.2 seeks to access the task with ID 47. This will
result in error code if there is no record in the application’s persistent state about
a task with ID 47.

9

3. Test cases contain requests that require new data. Requests that are
intended to create new information to store in persistent state often contain
parameters that specify new data (e.g., usernames or IDs not already stored in
persistent state) to be saved. As in Case 2, it is less likely that the requests
will contain new parameter values when these values are randomized. Figure 3.3
provides an example of a request that requires a unique parameter to succeed in
performing its desired functionality. The request seeks to create a new student
and add the student’s information to its persistent state. The value belonging
to the username parameter must be unique (i.e. cannot already exist within the
application’s state) for this request to succeed. Although it is necessary to test
situations in which a user attempts to create duplicate data to assure that the
web application does not allow this, it is not ideal to cover this exception-handling
code excessively. Thus, test cases with persistent state having requests of this
type will cover error code too heavily, as in the cases above.

Figure 3.3: Parameter requiring unique value

Considering the above limitations, the inability of test suite generators to access

a subject application’s persistent state appears to severely limit the logical coherence

of parameter values throughout test suites. Therefore, the research I present aims to

improve the logical continuity of automatically generated test suites by specifically im-

proving the parameter values selected within the test suites requests. I hypothesize that

it is possible to use resource and parameter naming conventions to predict dependen-

cies created and changed throughout a test suite in order to make these improvements

in parameter value selection.

10

Chapter 4

EXPLORATORY STUDIES

To provide insight about how parameter values within a test suite’s requests

might be automatically assigned within the confines of persistent state requirements,

I conducted two exploratory studies.

4.1 Resource Naming Conventions Study

This study explores the hypothesis that resource naming conventions used by

web developers might allow testing algorithms to infer persistent state information

about the requests within a test suite. The ability to classify HTTP requests with

regards to the actions they perform on items in a shared data store might allow us to

keep track of this data while building test suites.

4.1.1 Methodology

I began by acquiring the Firefox histories of two users and mining 1,980 resource

names belonging to 74 well-known web applications (i.e. Amazon, KAYAK, etc.) from

the histories. I evaluated these resources for resource naming conventions and pat-

terns manually, searching especially for patterns that indicated dependencies among

resources. After manual evaluation of the resource names, it was possible to produce

a list of words that establish a resource as one that is likely to affect an application’s

persistent state as a Create, Read, Update, or Delete (CRUD) operation. I call these

words Persistent State Indicator Words (PSIW). More specifically, for a word to be

classified as a PSIW word, it needs to meet the following specifications:

11

1. Has obvious CRUD classification by common English language stan-
dards: For example, the word “remove” is a Delete-classified PSIW, as it ob-
viously fits this one classification and no others. Similarly, “submit” is Create-
classified, as it clearly indicates the intention to create new data for storage.

2. Appears in resource names belonging to more than one application:
Some web applications might feature a certain word heavily within its resource
names and each request utilizing this word might affect persistent state in the
same way; however, this word might be an indicator specific to this application
only. If a word did not appear in at least two of the web applications in the study,
there was not a strong enough case for classifying it as a PSIW. For example, the
word “results” was identified in resource names from 8 different applications in
the study, each having a likely Read-classification. Therefore, “results” became
an R-classified PSIW.

3. Has same CRUD classification across all resource names: This require-
ment ensures that not only is a CRUD-classified word common but also consistent
in its implications for persistent state. If a word appears in resources from many
applications but these resources perform various types of CRUD operations, the
word’s presence does not indicate one definitive classification strongly enough to
consider it a PSIW. In the “results” example mentioned above, the fact that each
of the resources containing “results” had a Read-classification suggests that pres-
ence of the word “results” has unambiguous implications in terms of persistent
state.

4.1.2 Results and Evaluation

Applying a mixture of manual and script-based means to compile a conclusive

list of Persistent State Indicator Words resulted in a list of 49 PSIWs with 29 Reads, 11

Creates, 6 Updates, and 3 Deletes. From this PSIW list, it was possible to categorize

a list of 111 Create, 596 Read, 73 Update, and 7 Delete resources out of the original

1,980 resource names from Firefox history. These results indicate that there is some

universality in naming conventions when it comes to the use of CRUD words in resource

names. It indicates also that there will generally be more resources devoted to simply

accessing objects in a session or persistent state than removing, modifying, or creating

them, as expected. Upon analysis of the PSIW list alongside the original collection of

resource names, an evident question arose: if a PSIW indicates the execution of some

CRUD action, what object is this CRUD action performed on? It seems likely that

12

this information is also derivable from resource names. Creating, reading, updating,

and deleting are actions that take direct objects, and the idea that direct objects

too should be determinable via analysis of resource names logically follows. Further

manual analysis of the mined resource names indicated that indeed, a 72% majority of

the 787 CRUD-classified resources had both a PSIW and some noun in their names,

which could often be identified as the likely direct object of that CRUD action. In

CRUD-classified requests whose resource name can be split to contain one clear object

alongside a PSIW (as determined by a splitting algorithm [1]), this object (usually

a noun) will be referred to as the request’s Persistent State Element. A Persistent

State Element (PSE) is an object whose state is likely persistent, or an object whose

information is likely stored in an external data store.

4.2 Parameter Naming Conventions Case Studies

As explained in Chapter 3, requests that access existing entities in persistent

state will often rely upon request parameters to specify the particular objects on which

they act. The idea that it may be possible to logically connect a PSE to the parameters

used to identify it within a request brought me to the next exploratory study, which

focuses on parameter-naming conventions. The Parameter Naming Conventions Study

sought to identify patterns in request parameter names, especially linguistic indicators

of relationships between parameter names and entities in persistent state. The study

of parameter naming conventions was conducive to a case study instead of an analysis

of a large dataset (as in the Resource Naming study), due to the fact that access to and

some knowledge of subject application code were necessary to perform these studies.

After finding requests to be CRUD-classifiable, I wondered if the parameter names in

these requests might help identify the PSEs on which the requests act. I hypothesize

that using parameter-naming conventions will allow automatic identification of param-

eters whose values are likely unique ID strings within requests. I will refer to these

parameters as ID-Parameters. Furthermore, it will be possible to predict the PSEs

represented by these unique ID strings.

13

4.2.1 Subject Applications

The following subject applications were used in this case study:

1. Logic: Logic is a Java web application used by Washington and Lee logic
courses, with which professors can administer quizzes to students and keep track
of students’ grades. It is built with Java EE technology (i.e. servlets and JSPs),
JavaScript client-side functionality, and PostgreSQL as its database backend.
The web application contains 20,965 lines of code.

2. Online Rental Property Manager (ORPM): ORPM [7] is a PHP web
application by which landlords can track current and past properties, tenants,
leases, applications for leases, and lease applicants as well as interact with their
tenants and applicants via email. Its back end is written in PHP with support
for a MySQL database, and its user interface features components written in
JavaScript. It contains 23,231 lines of code.

3. WebCollab: WebCollab [11] is a PHP web application that allows an admin to
create groups within which multiple users can create, assign, and track projects
and tasks. It supports either MySQL or PostgreSQL as its database backend and
also uses JavaScript in its frontend without a framework. It contains 29,332 lines
of code.

4.2.2 Methodology

From experience with web application development and use of web applications

and databases, I compiled a short list of strings I will refer to as ID-indicators– strings

that, when found within a parameter name, imply the corresponding parameter value

to be a unique identifier key used to locate an item within persistent state.

ID-Indicators
ID

Key
Username

Table 4.1: List of ID-Indicators

To provide evidence for the claim that finding ID indicators in parameter names

implies unique IDs as values, I gathered three key data points from each subject ap-

plication. First, I collected usage data from the three applications in the form of

14

request logs. The usage data for the Logic application was genuine usage data from

two semesters of an introductory logic course. The usage data for ORPM and WebCol-

lab was a series of sessions I carried out in an effort to use as much of the applications

functionalities as possible while accessing persistent state in a realistic fashion.

First Data Point: From the access logs for each application, I compiled the

set of all unique request combinations for each application (i.e. all unique combinations

of request method, resource name, and parameter names). For example, in the ORPM

application, a GET request for propertiesview.php can contain the parameter t or

it can contain the parameters SelectedID, record-added-ok, Embedded, SortField,

SortDirection, FirstRecord, DisplayRecords, and SearchString. Ill refer to these

as different request combinations. Additionally, if it were possible to make a POST

request for propertiesview.php with the same parameters as either of the above

request combinations, this would be considered its own unique request combination

and added to the set as such.

Second Data Point: From each application’s set of unique request combina-

tions, I gathered the number of unique request combinations with parameters contain-

ing ID-Indicators. For example, the WebCollab GET request for tasks.php asks for

the parameter taskid, which the splitting algorithm parses into the two words “task”

and “ID”. The presence of “ID” in the parameter name implies that the corresponding

value for this parameter will be a unique identification string. Thus, the second im-

portant data point I gathered is the size of the subset of unique request combinations

containing at least one parameter with an ID-Indicator.

Third Data Point: The final data point for each application is the size of

the subset of unique request combinations from the above subset containing param-

eters like taskid where the parameter name implies not only the existence of an ID

string but also gives the name of the object being acted on– in this case “task”. In

other words, the third data point is the number of unique request combinations per

application containing at least one parameter name with an ID-Indicator as well as a

likely Persistent-State Element.

15

4.2.3 Results and Evaluation

Unique Re-
quest Combi-
nations

Requests with
ID-Indicators

Requests with
ID-Indicators
and a PSE

Logic 75 13 7
ORPM 103 60 33

WebCollab 52 28 28

Table 4.2: ID-Parameter Data from Three Subject Applications

Table 4.2 indicates the basic commonality of the ID-Indicators specified by Ta-

ble 4.1 as well as some evident variety in naming conventions among different applica-

tions. With a deeper evaluation of the results for each individual subject application,

I seek to explain why the data presented in Table 4.2 has unique and promising impli-

cations for the possibility of predicting interactions with persistent state. I offer the

following analysis of the results obtained for each of the three applications:

4.2.3.1 Logic

The Table 4.2 data for the Logic application features a comparatively low fre-

quency of ID-indicator parameters within its unique request combinations, which is

surprising because Logic relies heavily on interactions with a database. Upon further

inspection, Logic features many requests such as Figure 4.1, where unique ID strings

are given names that are equivalent to the PSEs they represent.

Figure 4.1: PSE in Resource Name Matches Parameter Name

In Figure 4.1, the ID for the course is passed as the value for the parameter

named course. Conveniently, the resource-naming study indicates that “course” is

16

the PSE of this request based on the result of splitting the resource name into parts.

Out of the 17 Logic requests like the one above that use the name of a known PSE

as a parameter name, 15 of those single-noun parameters are confirmed to require

unique IDs of the specified PSE type as values. Therefore, not all ID-Parameters are

identified by ID-Indicators in their parameter names. If a parameter name is the name

of a Persistent State Element, the parameter’s value is likely the ID for that PSE.

Therefore, an ID-Parameter can either have a name equivalent to a known PSE (see

Figure 4.2) or a name containing both an ID-Indicator and a PSE (see Figure 4.3).

Figure 4.2: An ID-Parameter for a Course PSE

Figure 4.3: Another ID-Parameter for a Course PSE

Note that in both Figure 4.2 and Figure 4.3, the ID-Parameters have values that

most likely represent objects in persistent state, but they do not represent the object

that is likely being created in CreateQuiz or read in GradesStats (supposing this request

were identifiably Read-classified). They each represent the “course” object identified

by the ID 1 but this “course” object is not the item being targeted by the CRUD-action

indicated by the two resource names. For example, the request in Figure 4.2 most likely

performs a Create operation on a “quiz” object, as explained in Section 4.1.1. It is im-

portant to remember that requests may contain ID-Parameters for multiple Persistent

State Elements, and that the PSE acted upon by the request (as determined by the re-

source name) may or may not be included in those Persistent State Elements provided

via ID-Parameters. Additionally, many requests contained ID-Parameters represent-

ing ambiguous PSEs. I refer to these as ambiguous ID-Parameters. For example, the

17

CreateProfessor resource takes the parameters username, email, fname, and lname.

The username parameter is an ID-Parameter but does not explicitly indicate the PSE it

represents. In a majority of requests such as those for the CreateProfessor resource

containing ambiguous ID-Parameters, the ambiguous ID-Parameter corresponded to

an ID for the request PSE. In the CreateProfessor request, for example, the value of

username is an ID string for a professor.

4.2.3.2 ORPM

The ORPM application contained the highest percentage of unique request com-

binations containing ID-Indicators. However, these ID-Parameters contained ID strings

belonging to ambiguous PSEs. For example, Figure 4.4 displays one ambiguous ID-

Parameter that appears in many requests for resources in the ORPM application.

Figure 4.4: Ambiguous ID-Parameter in ORPM

The SelectedID parameter in Figure 4.4 and similarly ambiguous ID-Parameter

names are used in ORPM, making it difficult to predict the type of PSE the requests

act upon without a personal knowledge of the application’s implementation details.

Although the ambiguity in naming parameters with respect to PSEs yields less predic-

tive possibilities for the ORPM application than the Logic application, the high rate

of ID-Indicators in its set of request combinations at least supports the concept that

ID-Parameters can be identifiable by a set of relatively common ID-Indicators.

4.2.3.3 WebCollab

The WebCollab application revealed another important parameter naming pos-

sibility. Out of the 52 unique request combinations, 45 request combinations contained

a parameter called action, which serves the same purpose in all 45 requests. The We-

bCollab request combinations contained requests for only 12 unique resources because

18

the application utilizes a dispatcher model. By this, I refer to a model where each

resource possesses a switch statement with many cases, each of which deploys some

different functionality based on the value of the parameter named action. Out of these

12 unique resources, only 4 resources do not require the action parameter. Those 4

are the resources used exclusively to perform user login and logout. Interestingly, the

action parameter takes various verbs as values, according to usage data.

Figure 4.5: Action Parameter Example

Figure 4.5 displays the use of the action parameter. Like the resource name

tasks.php, WebCollab features only resource names made up of a noun at a time.

The action parameter is used to indicate which CRUD action a request will perform

on the PSE indicated by the resource name. This pattern suggests that there are other

ways to CRUD-classify requests than just looking at the resource name (as in the

resource naming study). If a web application uses one consistent parameter to specify

the type of action performed by its resource, I will refer to this parameter as an action

parameter. To qualify as an action parameter, a parameter must appear in all of the

requests whose responses have dynamically determined aspects, with the exception of

the login page. It must also serve the same purpose in all the requests it appears in,

like the action parameter in WebCollab.

4.3 Conclusions from Exploratory Studies

1. CRUD classifications for requests can be determined by either:

(a) Checking the resource name for a PSIW

(b) Identifying the value of the action parameter (if any such parameter exists
for the application)

2. PSE objects of CRUD-classified requests, which I will refer to as request PSEs,
can be determined by:

19

(a) Finding the PSE name as part of the resource name (usually when the
resource name also indicated the CRUD classification)

(b) Finding the PSE as the entire resource name (only probable if the applica-
tion uses an action parameter)

(c) Finding the PSE name as a part of an ID-Parameter

3. IDs for request PSEs, or PSEs affected by a CRUD-request, are often passed as
the values of ID-Parameters, that either:

(a) Have a name containing an ID-Indicator when split

(b) Have a name that is the name of a known PSE (usually just a noun)

(c) Have a name that is a single ID-Parameter when split, and is the only such
parameter (ambiguous ID-Parameter) in a request containing no clear ID-
Parameter for the request PSE

Most importantly, the evidence gathered here suggests that a relatively univer-

sal system for naming resources and parameters in web applications exists. Although

the three case studies evaluated three unique applications built on very different frame-

works, all three applications seem to support the CRUD-classification of requests and

identification of ID-Parameters in requests.

20

Chapter 5

APPROACH: CLASSIFICATION EXTRACTOR AND
PSE-MATCHING ALGORITHM

Utilizing the PSE and CRUD-classification concepts discovered in the exploratory

studies, I hypothesize that it is possible to create an algorithm that modifies an original

input test suite to be more persistent-state aware. The use of CRUD classifications and

PSEs will allow this algorithm to extract dependencies between a subject application’s

resources, dynamically map unique IDs to the PSEs they represent, and replace request

parameters values with intelligent values to output a new persistent-state-aware test

suite.

Figure 5.1: Input and output for the Classification Extractor and the PSE-Matching
Algorithm

Figure 5.1 displays the inputs and outputs of the PSE-Matching Algorithm.
The inputs for the algorithm, in greater detail, are:

• A test suite is a collection of files containing requests. The only request in-
formation needed to interact with the web application is the request type (Get,
Post, Put, etc.), the request URL (without the query string in the case of a Get
request), and the request parameters (both name and value). Each file within
the test suite is one test case, made up of a series of such requests.

21

• Usage data, consisting of logged requests from real users, goes through prepro-
cessing by the Classification Extractor before reaching the PSE-Matching Algo-
rithm.

• A parameter-selection data model specifies the conditional probability of
each parameter set from usage data appearing in each request. The data model
can relate any number of conditions to the probability of encountering a certain
parameter set. For example, a data model might use the parameters specified in
the three most recent requests to determine the probability of the next request
containing a set of parameters. Another data model might just use the resource
name in the current request as its only condition for probability of the next
request containing that set of parameters. The PSE-Matching Algorithm will
use the specified parameter-selection model to acquire a parameter set for various
requests as it traverses the input test suite.

The algorithm will traverse the test suite by iterating over its test cases in order,

reading each request in search of PSEs that can be connected to unique ID strings.

As the algorithm finds ID-to-PSE mappings, it will maintain a map of these ID-PSE

pairs, which will represent the objects currently assumed to be in persistent state at

any given point in the traversal of the test suite. When the algorithm comes across

requests that try to read, update, or delete PSEs that do not exist (as determined by

the mappings in the ID-PSE map), the algorithm uses the map of existing ID-PSE

pairs along with the supplied parameter-selection data model to supply new parameter

values for these requests.

The goal of the PSE-Matching Algorithm is ultimately to take any test suite as

input, regardless of the algorithm used to create that test suite, and to return a more

persistent-state aware version of that suite. In other words it aims to return a test suite

with less logical inconsistencies than the original. It follows that a more persistent-state

aware test suite should achieve higher line and branch coverage of subject application

code. To achieve greater coverage results, it is important that the algorithm infers

connections between parameters and resource names without making parameter value

replacements that inadvertently detriment the coherence of the test suite. It is for this

reason that the algorithm takes any data model as input to guide and/or restrict it in

selecting parameter values as it traverses the test suite.

22

Table 5.1 provides a summary of the terminology that will be used frequently

throughout the rest of the description of the PSE-Matching Algorithm.

5.1 Classification Extractor

Before the PSE-Matching Algorithm can modify an input test suite, another

algorithm first takes usage data, including logs of requests from users, as input and

compiles the unique requests from the logs. From these requests, the classification

extractor creates a map that maps request characteristics to the CRUD classification

and request PSE for requests containing those characteristics. For different application

types, the information necessary to extract a CRUD classification and PSE differs,

therefore the actual classification map created by the extractor will differ slightly.

However, in both cases the classification map is a mapping that uses the fewest possible

components of a request to predict request PSEs and classifications. The use of this

map will make the PSE-Matching Algorithm much more efficient by saving it the

work of re-classifying requests as it traverses a test suite. Instead of classifying and

extracting a PSE from each request in a large test suite, the PSE-Matching Algorithm

can reference the map provided by the classification extractor to provide it the request

classification and request PSE. For applications like WebCollab whose requests rely

on an action parameter to specify the parts of the resource’s code to exercise, the

classification extractor determines a classification and PSE for each request based on

the request’s resource name, parameter names, and action parameter value (if an action

parameter exists in request). If a request’s action parameter value is a PSIW or contains

only one PSIW when split, the classification extractor determines that the request itself

has the same CRUD classification as that PSIW. If the resource name can be split to

only contain one word, the classification extractor determines that this word is the

PSE of the request. As a result, the classification extractor adds an entity to its

output map whose key is the resource name, parameter names, and action parameter

(if applicable). This key maps to a string containing the classification and PSE for any

request containing the specified resource, parameters, action parameter value.

23

Persistent State
Indicator Word
(PSIW)

• “action word” indicating CRUD action performed

• has consistent CRUD classification across web applications

• request whose resource name contains a PSIW is given that
PSIW’s CRUD classification

Persistent State El-
ement (PSE) • object predicted to be in persistent state by some part of a

request

• parameters whose names can be split into a noun and ID word
or just a standalone noun are said to have that noun as their
PSE

• see request PSE for the case when PSE found in resource
name

Request PSE

• direct object of CRUD-action performed by CRUD-classified
request

• always determined by finding noun in resource name

ID-Indicator

• Word that, when found within a parameter name, indicates
corresponding parameter value is unique ID string

ID-Parameter

• Parameter whose value is likely to be the unique ID key for a
PSE

• Parameter name is either a known PSE or contains an ID-
Indicator along with a known PSE

Persistent State
Map • Map connecting PSEs to IDs belonging to that PSE

Action Parameter

• Parameter appearing in a majority of an application’s possible
requests, whose value specifies the action performed by each
request

Table 5.1: Terminology for the Classification Extractor and the PSE-Matching Algo-
rithm

24

For applications like Logic whose resources are single-responsibility and do not

make use of action parameters, the classification extractor determines a classification

and request PSE for each request based on the resource name alone. It does so by

checking for a PSIW in the resource name when split. If the resource name is made

up of a PSIW and one other word, the classification extractor determines the PSIW’s

classification to be the request’s classification and the other word to be the request’s

PSE. The classification extractor for this type of application maps each resource name

to a string containing a classification and PSE for any request for this resource name.

For both application types, any request information that does not conclusively

result in the extraction of either a classification or a PSE will simply map to an empty

string because the PSE-Algorithm will be unable to predict the persistent state impli-

cations of a CRUD action on an unknown PSE or of an unknown CRUD action on a

PSE.

Figure 5.2 shows an example of how the classification extractor adds items to the

classification map given a request within a user session. Note that Figure 5.2 illustrates

this process for Logic, an application with single-responsibility resources and no action

parameters.

Figure 5.2: Classification Extractor example on Logic request

25

5.2 PSE-Matching Algorithm

After the Classification Extractor has turned usage data into request classifi-

cation data, the classified requests and their PSEs are passed to the PSE-Matching

Algorithm along with an input test suite to be made more persistent-state aware. The

primary state maintained by the PSE-Matching Algorithm is a map of IDs to persis-

tent state elements which I call the Persistent State Map. The Persistent State Map

maintains the set of ID/object pairs in existence throughout the traversal of a test

suite. Each key in the Persistent State Map is a string made up of an ID and the

object, or PSE, it represents. An example key is “74 quiz” for a quiz with ID 74. Its

corresponding value is an object containing various predicted attributes of the PSE

represented by the ID. For example, if the most recent action performed on the quiz

with ID 74 is an update, this data will be stored in the state of the object with key

“74 quiz” in the Persistent State Map.

The PSE-Matching Algorithm consists of many rules, each of which can modify

the Persistent State Map or modify the test suite itself based on its findings within the

Persistent State Map as it traverses the test suite. If, during the test suite traversal,

the algorithm encounters a parameter whose value should be changed, it attempts to

use the Persistent State Map to produce a list of more likely parameter values. If the

algorithm succeeds in producing a list, I will refer to these more likely parameter values

as eligible parameter values.

When the algorithm selects eligible parameter values for a certain request pa-

rameter, the algorithm does not necessarily make a replacement. At the outset of the

algorithm, the algorithm takes as input a “randomness threshold” between 0 and 1

that tells the algorithm how often (by percentage) to leave an original value in the test

suite when it comes up with more eligible values. Randomness ensures that if one log-

ical inconsistency is found many times throughout the test suite, the algorithm does

not necessarily remove the inconsistency entirely. By maintaining the inconsistency

sometimes, the algorithm maintains some coverage of the error code executed by that

inconsistency, since it is important to test error code too. Furthermore, the algorithm

26

may produce a large number of eligible parameter values for parameter x in request r.

The PSE-Matching Algorithm utilizes some user-specified parameter selection model

to choose a parameter value set from usage data for request r that contains one of the

eligible parameter values as the value of parameter x. Therefore, even though a param-

eter value is deemed eligible, the algorithm does not necessarily insert the parameter

value into the test suite in place of the original parameter value. Eligible values found

within more statistically common parameter sets for request x may be more likely to

be selected by the PSE-Matching Algorithm if the specified parameter-selection model

is reflective of selection frequencies from usage data. Then, if a parameter value set

containing an eligible value is selected, the entire parameter set is placed into the re-

quest as parameter values. If the parameter value set supplied does not contain an

eligible value for x, a new parameter value set is chosen–either until the selected set

contains an eligible value for x or until all possibilities are exhausted. If all possibilities

are exhausted and the model is unable to come up with a parameter value set with

an eligible value as the value for parameter x, the PSE-Matching Algorithm will leave

request r unchanged. When the PSE-Matching Algorithm refers to the parameter-

selection model to acquire a parameter value set containing an eligible value for x, I

will refer to the final parameter value set chosen as the eligible parameter set if the

algorithm succeeds in acquiring one.

5.2.1 Example of PSE-Matching Algorithm

The following example illustrates the identification of key components of a re-

quest, the algorithm’s interpretation of those components, and the changes the algo-

rithm makes to the original request as a result.

Figure 5.3 shows the components of a request, as identified by both the classifica-

tion extractor and the PSE-Matching Algorithm. Before the PSE-Matching Algorithm

even comes across this request in the test suite, the classification extractor has already

determined that any request for tasks.php with the parameters action and taskid as

well as the action parameter value “delete” will be a D-classified request with “task” as

27

Figure 5.3: Identifying key elements of a request

its PSE. Thus, the PSE-Matching Algorithm finds, by checking the classification map,

that this request acts on the PSE “task” and is Delete-classified. The PSE-Matching

Algorithm then identifies taskid as an ID-Parameter because its name is parsed into

the words “task” and “ID”, which is an ID-Indicator.

Figure 5.4: Inferring the request’s effect on entities in persistent state

In Figure 5.4, the PSE-Matching Algorithm infers information about the specific

object this request deletes. To successfully delete an object from an external data store,

that object must first exist in the external data store. This means that if it is possible

to identify the precise object deleted by the request, the algorithm must make sure that

particular object exists in persistent state. Since there is an ID-Parameter (taskid)

in the request that has the same PSE as the overall request itself, the specific PSE

specified by the taskid parameter is predicted to be the object deleted by the request.

Specifically, the request is predicted to perform a delete operation on a task with ID

31.

The next step is to check the PS-Map to see if a task with ID 31 exists in

persistent state. A task with ID 31 does not exist in persistent state, and as a result

the PSE-Matching Algorithm will check the Persistent-State Map to find any task

28

Figure 5.5: Selecting eligible parameter values for the request

values on which the request can act. Figure 5.5 depicts the process. The algorithm

compiles a list of eligible values containing the current IDs for tasks in the map. These

3 eligible values are added to the list, and one final output value is selected to become

the new taskid value, based on probabilities indicated by the parameter-selection data

model input to the PSE-Matching Algorithm. In Figure 5.5, the new ID-Parameter

value is 0.

Figure 5.6: Updating the Persistent-State Map upon acquiring an eligible parameter
set

Finally, the deleted object must be removed from the Persistent-State Map, as

shown in Figure 5.6, because the request is Delete-Classified and this ID-Parameter

taskid indicated the task targeted by this delete operation. This example illustrates

29

the primary function of the algorithm– to track major changes to persistent state and

direct the test suite to meet persistent state requirements with the resulting insights.

5.2.2 PSE-Matching Algorithm Rules

The following more fully details the changes the PS-Matching Algorithm makes

to both the input test suite and the Persistent-State Map as it traverses the input suite.

Create-Classified Requests:

Since Create requests often require a unique ID-Parameter value to represent

the new entity created then added into persistent state, it is important that a test suite

succeeds at some point in providing unique IDs as ID-Parameter values.

Figure 5.7: Create-classified request creating an entity already in persistent state

If a request is classified as a Create request, the request is checked for a PSE,

which will be the object on which the entire request acts. In the example of Figure 14,

“task” was determined to be the request PSE. In Figure 5.7, “quiz” is determined by

the Classification Extractor to be the request PSE, or the object on which the request

likely acts. Since it matches the PSE of ID-Parameter quiz_id, the PSE-Matching

Algorithm infers that the request is performing a create operation on the specific quiz

object with ID 192.

Since this request is Create-classified, the algorithm must check to make sure

there is not already a quiz object with ID 192 in the application’s persistent state. It

does so by consulting the Persistent-State Map for the key “192 quiz”. If no such item

is found in the map, the algorithm makes no change to this request. Otherwise, if “192

quiz” is found, the algorithm must create a list of eligible values for the parameter

quiz_id. For Create-classified requests, this means the algorithm gathers all logged

sets of parameters for this POST request for the CreateQuiz resource (which also have

30

the parameters course, quiz_id, and quiz_title). Of these possible parameter sets,

it gathers as many as possible whose quiz_id parameter value is not associated with

a quiz currently in the PS-Map. These quiz_id values become the eligible values for

this parameter. From the list of eligible values, a new quiz ID value is selected along

with the rest of its eligible parameter value set using the parameter-selection model

supplied.

If a new eligible parameter value set is successfully chosen to replace the original

parameter set, the algorithm finally adds the new value of the ID-Parameter to the

Persistent State Map to indicate that this ID has now been used to identify the request’s

PSE. After replacing “192” with some ID x in the Figure 5.7 request, the algorithm

will add a quiz with ID x to the PS-Map.

In any case where the request PSE does not match the PSE of an ID-Parameter

in the request, the algorithm makes no changes. This is because even if there are other

ID-Parameters in the request, a Create-classified request may take new or old IDs for

objects other than the one on which it performs a create operation. Due to this ambi-

guity, the only time a Create-classified request changes the parameter set is in request

like Figure 18 where the ID of the object on which the request acts is unambiguously

identifiable.

Read-Classified and Update-Classified Requests:

Since Update and Read requests act on objects which already exist in persistent

state or elsewhere, it is important that valid ID values of objects in persistent state

are passed to ID-Parameters in order that they access objects in existence, thus likely

accessing non-error code to access or update objects.

Figure 5.8: Read-classified request accessing nonexistent entity in persistent state

31

In a request like that in Figure 5.8, where the request PSE matches the PSE

of an ID-Parameter in the request, the ID for the PSE operated on by the request is

known. In Figure 5.8, the Read-classified request has PSE “task” and the ID-Parameter

taskid has the same PSE. Therefore, the value of this ID-Parameter is predicted to

be the ID of the object on which the read operation is performed. Here, the request

performs a read operation on the task object with ID 35. Note that if the request were

Update-classified, the same process would apply.

Next, the PSE-Matching Algorithm checks for an object with the specified ID

in the PS-Map. In the case of the Figure 5.8 request, the algorithm checks the PS-Map

for a task object with ID 35. If it exists in the map, the value for taskid will remain

unchanged because it already successfully reads existing data from persistent state.

However, if a task object with ID 35 is not located in the map, the algorithm must

compile a list of eligible parameter values for the taskid parameter. If it successfully

finds IDs belonging to task objects in persistent state, these IDs make up the list of

eligible values. From these, a new ID value along with the eligible parameter value set

containing it is chosen.

In a case unlike Figure 5.8, where perhaps none of the ID-Parameters found in

the request obviously have the same PSE as the request, the algorithm first evaluates

whether an ambiguous ID-Parameter exists that might represent the request PSE. If

not, the algorithm tries to replace the parameter set with one that supplies existing

IDs for any other ID-Parameters in the request. For example, Figure 5.9 depicts a

situation in which multiple ID-Parameters are identified but none obviously has the

same PSE as the request itself, whose PSE is “student”.

Figure 5.9: Update-classified request in which no ID-Parameter for the Request PSE
exists

In Figure 5.9, since neither of the two ID-Parameters, course or username,

can unambiguously be predicted to represent the ID of the “student” PSE, which is

32

the PSE of the request itself, the parameter set is further evaluated. The username

parameter is ambiguous because it does not clearly reference a PSE. However, since it

is the only ambiguous ID-Parameter in the parameter set and the parameter set does

not contain any clear ID-Parameter for “student”, the PSE-Matching Algorithm can

infer that the username ID-Parameter takes the username of a “student” object. Thus,

if a student with username “bs1” does not exist in the PS-Map, the algorithm searches

for eligible values for the username parameter and makes a replacement the same way

it did for the taskid parameter in the Figure 5.8 example.

However, in the case that the username parameter did not exist in the Figure 5.9

request, the PSE-Matching Algorithm would not be able to select any parameter in

the set to represent the request PSE, “student”. In this case, it would attempt to

ensure that it provides an existing course ID for the value of the course parameter,

if any course IDs exist in the PS-Map. In this case, the algorithm checks if a course

object with ID 4 exists in the PS-Map. If so, the algorithm makes no changes because

the request already refers an existing entity. If no course object with ID 4 is found,

the algorithm compiles a list of eligible parameter values for the course parameter.

The list will simply consist of IDs for “course” objects located in the Persistent-State

Map. From the eligible values list, the parameter interactions model is used to select

a final parameter value for course along with an eligible parameter value set to be

placed into the request. Even though “course” is not the PSE this request is updating,

it is unlikely that an Update or Read classified request would try to supply a new ID

instead of providing the ID for an existing object regardless of whether the object is

directly changed or read.

Note that neither Figure 5.8 nor Figure 5.9’s request results in any change to

the PS-Map. This is because update and read operations are likely to change objects

already in application state and unlikely to result in those objects removal. The only

case that will cause the PS-Map to become faulty is an Update-classified request that

changes a PSE’s unique ID string. Although this functionality would ideally be met

with a change in the PS-Map, the PSE-Matching algorithm has no handling for such

33

requests as this ID-modifying functionality is difficult to predict using language alone.

Delete-Classified Requests:

Because a Delete-classified request also seeks to perform an action on an existing

object in the same was a Read or Update request does, there is only one difference

between the way the algorithm treats Delete requests and Read or Update requests.

The one important difference is the modification of the Persistent-State Map. No

matter which particular parameter value is replaced in Read and Update requests,

the Persistent-State Map remains unchanged because no object is created or removed.

However, Delete requests remove data from persistent state and should therefore affect

the Persistent-State Map by deleting the IDs of the deleted object(s). As portrayed in

Figures 5.3- 5.6, when a request contains a PSE as well as an ID-Parameter with that

same PSE, it is possible to predict which object the request removes from the shared

data store. In Figure 5.6, the task object with ID 0 is removed because the PSE of the

Delete-classified request is “task” and the ID-Parameter with the same PSE points the

algorithm to the specific ID of the task being deleted. This allows the algorithm to

make that same change to its own model of the application’s state, the Persistent-State

Map.

In cases like the Figures 5.3- 5.6 example, in which the algorithm can infer the

actual ID of the deleted object, the only replacement the PSE-Matching Algorithm will

ever make is a replacement like the one in Figure 5.5 that targets the ID-Parameter of

the deleted object. In other cases where an ID-Parameter is found in the request but it

does not necessarily represent the deleted item, the algorithm changes the parameter

value so it contains an ID currently in existence for the parameter’s PSE, if possible.

Figure 5.10: Delete-classified request in which no ID-Parameter for the Request PSE
exists

34

Figure 5.10 shows a situation in which a request results in no change to PS-

Map. This is because the ID passed by this request is an ID for a “post” object

and the thing being deleted is predicted to be a “forum” object (although this is an

incorrect prediction, it does not cause any harm since nothing is removed from the

map). Since no ID for a “forum” PSE appears in the request, the PSE-Matching

Algorithm checks the PS-Map for a post object with ID 10. If found, the algorithm

makes no replacements. Otherwise, the PSE-Matching Algorithm attempts to build

a list of eligible values for postid and makes a parameter-set replacement using the

parameter-selection model if possible.

35

Chapter 6

EXPERIMENT, RESULTS, AND ANALYSIS

In this chapter, I present the research questions I seek to answer experimentally.

I then detail the experiment conducted to test these research questions and describe

the metrics by which I measure the PSE-Matching Algorithm’s success. I then provide

the results attained and an analysis of those results, as well as an analysis of the

time complexity of the algorithm. I then describe the threats to the validity of the

experiment’s results. I close with my observations and conclusions.

6.1 Research Questions

I seek to answer the following questions in this chapter:

1. Does the PSE-Matching Algorithm modify an original test suite to make it
persistent-state aware in a way that results in increased code coverage as com-
pared to the original test suite?

2. Can analysis of the coverage improvement attained by the PSE-Matching Algo-
rithm reveal particular strengths or failures of the algorithm?

3. What does the PSE-Matching Algorithm cost with respect to time and space?

6.2 Experiment Methodology

I designed an experiment to answer the above research questions.

To test the effectiveness of the PSE-Matching Algorithm, I created test suites

of varying size for both Logic and WebCollab as subject applications (described in

Chapter 4) and evaluate the improvement achieved by passing each suite as input to

the PSE-Matching Algorithm.

For each experiment, I first create a test suite using the Sant et al 2-gram simple

data model [9], which builds test cases one request at a time using a 2-gram Markov

36

chain to determine the next request based on the one previous request. I describe this

data model in greater detail in Subsection 6.2.1. For each application, I generate a

test suite containing 50 cases, one containing 100, and one containing 150.

I then instrument the code of the subject application and replay this original test

suite, using a code coverage tool to track and report the coverage achieved by the suite.

For WebCollab, which is written in PHP, I use a modified version of PHPCoverage [2],

and for Logic, which is written in Java, I use Cobertura [3]. Since PHPCoverage does

not report branch coverage, I will only be reporting line coverage for WebCollab instead

of both line and branch coverage, as reported for Logic. The coverage attained by this

first test suite will be the coverage value to which I will compare the coverage achieved

by a persistent-state aware suite.

Next, I will pass this test suite into the PSE-Matching Algorithm along with

usage data for the subject application. I will pass the Parameter-Interaction Model to

the PSE-Matching Algorithm as the parameter-selection data model. The Parameter-

Interaction Model is described in Subsection 6.2.2. Then, I replay the new persistent-

state aware test suite using a coverage tool to track and report the coverage achieved

by the suite. I hypothesize that comparison of the coverage achieved by the input test

suite and the output test suite should reflect an improvement in coverage of resources

and code responsible for interacting with persistent state.

6.2.1 N-Gram Simple Model

The goal of usage-based testing is to leverage real user sessions to test realistic

usage patterns as well as to extrapolate additional realistic patterns for testing not

explicitly found in those sessions. To do this, it is necessary to employ a data model

that is informed by–but not confined to–patterns in usage data. The use of Markov

assumptions in building test suites achieves this balance well. A Markov assumption

refers to the probability of one event occurring based on the previous n-1 events.

Given a certain value for n, a data model that determines the probability based on the

preceding n-1 events is called an n-gram model. For the sake of building test suites, we

37

are interested in the probability of a certain request occurring based on the requests

preceding it.

The n-gram simple approach to test suite generation, proposed by Sant et al [9],

builds a template test suite one request at a time using an n-gram data model. Recall

that a template test suite is a suite whose requests do not have parameter values.

A unigram (1-gram) model, for example, chooses the next request in a case based

only on the probability of each request happening independently of previous requests,

while the bigram (2-gram) model chooses the next request as a function of the one

request preceding it. Although a unigram (1-gram) model achieves high code coverage

the most rapidly in comparison to other n-gram models, it creates the least realistic

test cases in terms of application functionality successfully exercised. On the other

hand, the bigram and trigram models both succeed in accessing application code that

modifies state, as well as application code responsible for exception handling [9]. Upon

completion of the template suite, the Simple Data Model is used to place parameter

values into the template requests within the suite. The Simple Data Model utilizes a

2-gram Markov assumption model to select the parameter set supplied in each request.

It determines the probability of each parameter set based on the current request’s

resource and parameter names.

Using a test suite generated with the 2-gram and simple data models as input

to the PSE-Matching Algorithm is consistent with the goal of exercising realistic usage

patterns and functionalities within the subject application, including functionalities

that interact with persistent state. A test suite generated with these models will

successfully access persistent state occasionally because the navigation path through

the application is realistic and the parameters selected for requests pseudo-randomly

are sometimes valid. Such a test suite lends itself well to improvement by an algorithm

focused on optimizing parameter selection.

38

6.2.2 Parameter Interaction Model

Previous research in web application testing has offered various approaches to

providing test suite templates, or test suites whose requests do not yet contain param-

eter values, with concrete parameter values. The parameter interaction data model,

offered by Sant et al [9], utilizes probability determined from usage data to choose the

set of parameter values for each request in a suite.

The model associates each resource name in usage data with the collection of

parameters passed in requests with it. Each time a request for a certain resource

appears in the usage logs, each unique set of parameter values supplied in the request

becomes a parameter value set for that resource. Once these parameter value sets are

compiled for each resource, each resource r will be associated with x parameter value

sets. Of these x parameter value sets, those that appear in many requests for resource

r will have higher usage probability than those that appear less.

Using the parameter interaction model to choose parameter values for requests

instead of an independent model that supplies parameter values individually (i.e. not

in a set) allows the benefit that the resulting requests model actual requests made by

users. Leveraging actual, recorded parameter sets reduces the likelihood that logical

inconsistencies will exist between parameters within a request. For example, in a login

request that requires a username and a password, the parameter interaction model will

supply parameter values more likely to enable successful login by keeping passwords

and usernames together.

Figure 6.1: Example of conditional probabilities for selecting parameter sets

39

Figure 6.1 shows an example of the conditional probabilities used to select

parameter value sets with the Parameter-Interaction data model. It displays the likeli-

hood of selecting all possible parameter sets for two ORPM requests. The probability

of selecting user100 as ownerID and 23419 as property for a request containing the

properties.php resource is 50% because this reflects the trends found in usage data.

The second parameter set for the editProperty resource appeared twice as often as

the other parameter sets for this resource in usage data, and therefore has twice as

high a likelihood of becoming the parameter set used in a test suite.

6.3 Metrics

The first metric by which I evaluate the PSE-Matching Algorithm is coverage

improvement. First I measure the coverage achieved by an original input test suite

and then measure the coverage achieved by the same suite after it is modified by

the PSE-Matching Algorithm. I will refer to the original as the Simple test suite

and the modified version as the Persistent State Aware (PS-Aware) test suite. I will

use both line and branch coverage in evaluating the algorithm’s success on the Logic

application and only line coverage for the WebCollab application due to limitations

imposed by PHP coverage tools. Line coverage is the number of executable lines

of application code exercised by the test suite. Branch coverage is the number of

possible branches executed, where a branch refers to the specific set of conditions met

in order for the application code to enter each control structure. For example, consider

some application code containing an if-else statement and a test suite that manages

to execute the if-else statement only once, where the value of its boolean condition

evaluates to True. Then for this particular code segment, the suite has achieved 50%

branch coverage because the boolean condition has never evaluated to False.

As part of my analysis of this coverage improvement data, I provide the results

of a coverage evaluation script designed to identify potential oversights and strengths

of the algorithm. The evaluation considers differences between the original input test

suite and the algorithm’s output suite. Given a resource X, the line coverage for that

40

resource achieved by the input test suite, LCOV(I(X)), and the line coverage for that

same resource achieved by the output Persistent-State Aware test suite, LCOV(O(X)),

I define X ’s ratio of improvement ∆ as a decimal between -1 and 1 (inclusive) that

indicates proportionally how much the algorithm improved coverage of resource X. The

function for determining ∆ of resource X is shown in Figure 6.2.

Figure 6.2: Function for coverage improvement threshold

Values of ∆ less than 0 indicate negative line coverage improvement accom-

plished by the algorithm, which is undesirable. However, depending on the expecta-

tions of testers, a certain value for ∆ might be very desirable for one tester or subject

application and very undesirable for another tester or application. Therefore, the re-

maining heuristics allow the tester to identify a value L such that any resource X

achieving ∆(X) < L is considered a low-improvement resource under the algorithm

that took I(X) to O(X).

Given some input between -1 and 1 for L, the evaluation script begins by compil-

ing all the names of low-improvement resources, or any resource X achieving ∆(X) < L

by ∆ defined in Figure 6.2, as well as high-improvement resources, or any resource X

achieving ∆(X) > L by the same definition of ∆. It then splits the names of all

the low-improvement and high-improvement resources into words (using splitting al-

gorithm mentioned in Exploratory Studies), and checks for possible PSEs that appear

more than once in the group of resources. Instead of consulting the Persistent-State

41

Map to get names of known PSEs of low-improvement resources, the script simply

splits resource names into words and outputs any component word that is in the En-

glish dictionary but not in the list of PSIWs. This allows for the identification of PSEs

the algorithm may not have recognized as PSEs automatically that should have been

PSEs.

After providing this analysis of the coverage data, I will discuss the time and

space requirements of the Classification Extractor and PSE-Matching Algorithm. I

will present the time required to turn usage data into classifications and PSEs by the

classification extractor as well as that required to apply these classifications to input

test suites of various sizes by the PSE-Matching Algorithm. I will provide a time

complexity evaluation of both algorithms as well.

6.4 Results and Analysis

In this section I provide the data acquired about the PSE-Matching Algorithm

using the metrics discussed in Section 6.3. Upon passing each suite into the PSE-

Matching Algorithm and acquiring the coverage improvement over the original, I record

the coverage achieved by both the original and the PS-Aware test suite. For Logic, I re-

port the average coverage achieved before and after modification by the PSE-Matching

Algorithm across 10 suites at each size (50, 100, and 150 test cases). For WebCollab, I

report the coverage achieved by one test suite at each size before and after modification

by the PSE-Matching Algorithm.

6.4.1 Improvements in Line and Branch Coverage

In Figures 6.3 and 6.4, I show the average coverage improvement made by the

PSE-Matching Algorithm on ten test suites of each size for Logic. Each test suite

modeled a series of sessions of users with administrative privileges because these users

perform the most CRUD actions on data in persistent state. The coverage rates re-

ported are a measurement of the lines/branches executed out of the total lines/branches

in the admin JSPs and servlets, containing 5,245 lines and 1,950 branches total.

42

Figure 6.3: Average line coverage of 10 simple test suites v. PS-aware test suites
with Logic as subject application

Figure 6.4: Average branch coverage of 10 simple test suites v. PS-aware test suites
with Logic as subject application

43

The average improvement in line coverage achieved by making a 50-case test

suite persistent state aware is 4.29%, a 100-case suite 0.94%, and a 150-case suite

1.64%. The lack of clear trend present in these improvements as size increases may

be attributable to the small experiment size; however, the notably high coverage im-

provement achieved in making the average 50-case suite persistent state aware is worth

evaluating.

The 4.29% increase in line and 2.97% increase in branch coverage for the average

50-case test suite reflects the influence of one test suite whose improvement by the PSE-

Matching Algorithm was a large outlier. One single 50-case test suite saw its line and

branch coverage more than double when improved by the PSE-Matching Algorithm. No

improvement of any 100-case test suite or 150-case test suite was nearly as substantial

as this. Figures 6.5 and 6.6 show the best experimental case for coverage improvement

achieved on a test suite of each size, out of the ten in each set.

Figure 6.5: Line coverage of most improved Simple test suite v. PS-Aware test suite
by size with Logic as subject application

Figure 6.7 shows the line coverage achieved by one Simple test suite of each

size (50, 100, and 150) before and after modification by the PSE-Matching Algorithm

44

Figure 6.6: Branch coverage of most improved Simple test suite v. PS-Aware test
suite by size with Logic as subject application

with WebCollab as a subject application. Because the version of PHPCoverage used in

instrumenting WebCollab and tracking coverage caused the web application to respond

excessively slowly, it was only possible to attain coverage data for one pair of test suites

at each size.

6.4.2 Analysis of Coverage Data

While the coverage improvement achieved by the PSE-Matching Algorithm for

both subject applications is not large on average, the results show that the smallest

test suite has the largest potential for improvement. This trend requires further anal-

ysis. Table 6.1 represents the number of requests for each resource within the average

WebCollab test suite of size 50.

The resources listed in Table 6.1 are the only PHP files in the WebCollab ap-

plication accessible directly by request. Other PHP code in the application is accessed

when files are included in the source code of these 13 resources. Therefore, although

there are 100 PHP files containing executable code in the application, 87 of those files

are accessed when certain conditions are met by the parameters passed into requests for

45

Figure 6.7: Line Coverage of Simple test suites v. PS-Aware test suites by size with
WebCollab as a subject application

Table 6.1: Number of requests per resource in 50-case WebCollab test suite

46

those in Table 6.1. Therefore, the only way for a test suite to access as many of these

behind-the-scenes files in as many meaningful ways as possible is to vary its selection

of request parameters.

It follows, then, that as suite size increases, the pseudo-random parameter selec-

tion method employed by the simple test suite generator eventually succeeds in selecting

parameters that access many of these resources by brute force. The pseudo-random

parameter selection may account in part for the higher rate of coverage improvement

achieved by the PSE-Matching Algorithm for the 50-case suite in comparison with the

100 and 150 -case suites. Table 6.1 displays the large disparity the Simple algorithm

creates between statistically frequently accessed resources and rarely accessed resources

in usage data. The Files.php resource, for example, appears only 3 times in the us-

age logs in comparison with the tasks.php resource, which is accessed at least 3 times

per session in the usage logs. The frequency with which each resource appears in the

test suite is therefore a relatively accurate extrapolation of the usage data. However,

a suite containing only 50 test cases gives the Simple algorithm very few opportuni-

ties to stochastically supply valid parameters to requests for lesser-accessed resources

within the test suite. This creates a need for deliberate assignment of parameter val-

ues in generating a test suite that successfully interacts with external data. This need

for deliberate parameter value selection especially in smaller suites explains why the

smallest test suite was most improved by the PSE-Matching algorithm for WebCollab,

as well as why one of the smallest test suites for Logic was the outlier for exceptional

improvement by the PSE-Matching Algorithm. Although the improvement for the 50-

case WebCollab test suite is small percentagewise, the 1.63% improvement represents

an improvement of 326 lines of executable code across 27 resources.

This higher comparative rate of success achieved on smaller test suites for both

applications illuminates a potentially useful characteristic of the PSE-Matching Algo-

rithm: given a test suite that does not excessively exercise some particular application

functionality, the PSE-Matching Algorithm seeks to make the limited accesses of that

functionality as coherent as possible and therefore improve test suite efficiency. This

47

may have promising implications for testing much larger applications whose entire func-

tionality cannot be as easily exercised by a small test suite. In such an application,

it is more unrealistic to achieve high code coverage of certain resources by brute force

and is therefore more critical to ensure that requests are predominantly successful in

exercising non-error code.

6.4.3 Analysis of High and Low -Improvement Resources

Evaluation of the high- and low-improvement resources, as defined by the im-

provement threshold shown in Figure 6.2, with the threshold for improvement being

0.05 (a 5% increase or decrease in coverage), illuminates strengths and shortcomings

of the PSE-Matching Algorithm. To gather this data, I gathered a list of the resources

that were most commonly high-improvement resources and those that were most com-

monly low-improvement resources for each of the three groups of test suites (grouped

by size of suite). For each, I provide the two PSEs appearing most frequently in the

high-improvement resources. I then provide the two classifications most frequently be-

longing to high-improvement resources. I then provide the most frequent suggestion

for potentially missed PSEs for each size. Table 6.2 displays this data.

Table 6.2: Significant data from high-improvement and low-improvement resources
from Logic’s 30 test suites

48

The fact that all three groups of test suites had their most frequently improved

resources contain the same PSE indicates that there is a degree of consistency in the

modifications made by the PSE-Matching Algorithm. This is also indicated by the

fact that the most frequently improved resources for all three groups possess the same

classification. Update-classified resources were consistently the most improved, regard-

less of suite size. Surprisingly, there were no high-improvement resources in any of the

30 total test suites with a Read classification. Additionally, only the 150-size test

suites possessed a Create-classified high-improvement resource. This indicates that the

most consistently improved functionality by the PSE-Matching Algorithm is function-

ality that updates or deletes objects in persistent state. Despite the PSE-Matching

Algorithm leaving many resources without coverage improvement, the evaluation of

coverage data yielded no predictions for possible PSEs missed by the algorithm. This

means that the lack of coverage improvement achieved was most likely not a result of

errors in extraction of request PSEs. In Section 6.6, I examine possible causes of the

lack of coverage improvement.

Since WebCollab’s resources do not themselves possess classifications (the action

parameter value is used to allow each resource to carry out various CRUD actions

on a per-request basis), a similar analysis of WebCollab’s most frequently improved

functionality by classification was not possible based on coverage data. However, the

three test suites for WebCollab all had “task” in common as the PSE of their most

frequently improved resources. This again shows the trend that the PSE-Matching

Algorithm retains some consistency in the modifications it makes across test suites.

However, unlike the Logic results, the analysis of low-improvement resources across the

three WebCollab suites yielded the prediction of “usergroup” as a potentially missed

PSE. By knowledge of the web application, this potential PSE is indeed an object in

persistent state that the algorithm is unable to associate with ID-Parameters due to

internal naming inconsistencies.

49

6.4.4 Time Complexity of Classification Extraction and PSE-Matching Al-

gorithms

Table 6.3 shows the time required by the classification extractor to determine

classifications and request PSEs of all unique requests in the usage logs for each subject

application. Because there are substantially more user session logs for Logic than for

WebCollab, I include the calculation time for both applications.

Web Application Real Time (s) User + Sys-
tem Time (s)

Logic (626 sessions) 0.294 0.173
WebCollab (30 sessions) 0.203 0.129

Table 6.3: Time requirements for the Classification Extractor

The algorithm has O(MN) time complexity where N is the number of requests

in the test suite and M is the number of unique request combinations (i.e. combinations

of resource name, request method, and parameter set) in the suite. This has an upper

limit of O(N2) because the number of unique requests will be at maximum the number

of total requests.

Test Suite Size (Number
Cases)

Real Time (s) User + Sys-
tem Time (s)

100 7.086 6.365
200 15.002 13.79
300 27.508 22.045

Table 6.4: Time requirements for the PSE-Matching Algorithm

Table 6.4 shows the time required by the PSE-Matching Algorithm to modify

three Logic application test suites of varying size. The time complexity of the PSE-

Matching Algorithm is O(MN) where N is the size of the test suite in terms of number

of requests and M is the number of elements in the Persistent State Map. This has an

50

upper limit of O(N2) since the size of the Persistent State Map will never exceed the

number of requests in the suite.

6.5 Threats to Validity

In this section, I offer experimental details that may pose a threat to the validity

of findings presented in this chapter.

To acquire usage logs for WebCollab and ORPM, I personally interacted with

both applications deployed on a local server. My interactions with each application

modeled the sessions of multiple different users and exercised as many usage patterns

and functionalities as possible, however the data logged from these model sessions

cannot be considered authentic usage data.

Although the data in the usage logs for WebCollab is not authentic, it succeeds

in providing both valid and invalid parameter sets to be used in the PSE-Matching

Algorithm and provides multiple parameter sets for each unique request combination.

Therefore, the usage logs do not limit or inform the PSE-Matching Algorithm in any

way that would increase or decrease the success of the PSE-Matching Algorithm more

than authentic usage data likely would.

For the sake of the Parameter Naming Exploratory Study, the lack of authentic

usage data poses less of a threat because the usage data was only a data set from which

to mine as many ID-Parameters as possible. Note that there is no guarantee that the

Logic application’s usage data reveals all of the Logic application’s ID-Parameters

either, even though the usage data for Logic is data compiled from real user sessions.

6.6 Summary of Analysis and Observations

While the PSE-Matching Algorithm does, on average, secure some improvement

in code coverage of applications under test, there is much room for improvement. The

following insights follow from the data presented in this chapter:

1. While the PSE-Matching Algorithm achieves some success with the Persistent
State Map’s initial state containing no data, it is unlikely that this accurately
represents a subject application’s initial state when testing. Most often, subject

51

applications are tested after having their external data stores populated with
some initial state. If the PSE-Matching Algorithm were to leverage the initial
state of a subject application, this would likely create considerable improvements
in coverage.

2. The PSE-Matching Algorithm is unable to account for internal application-specific
dependencies. For example, for a series of requests to succeed, it may be necessary
that a certain parameter value is held constant across each request. Dependen-
cies such as this, or dependencies related to user permissions, etc., are difficult
to detect without a knowledge of application-specific implementation details.

3. In Section 6.4.3, analysis of low and high- improvement Logic resources revealed
that the PSE-Matching Algorithm improved no Read-classified resources. This is
primarily because the Logic application contains fewer Read-classified resources
than Update or Delete -classified resources for its most commonly accessed PSEs
like ”professor” or ”student”. However, I predict that Read-classified requests
may, in general, rely on fewer internal dependencies to succeed. In general, the
code for accessing an element’s attributes just to display them likely does not
contain as many executional branches as the code to modify an element– first
checking to ensure the element exists, then checking permissions to allow editing,
then performing validation of the new attributes provided for the entity, etc.
Thus, if the parameter values passed into requests for an application do indeed
decide the execution branches exercised by these requests, the fact that Update
and Delete-classified resources saw more coverage improvement upon modification
of these parameter values follows, along with the fact that Read-classified requests
succeeded often enough by brute force pseudo-random parameter selection (in the
test suites created with the Simple model) and thus experienced no improvement.
This idea lends itself well to future study with additional web applications.

4. The PSE-Matching Algorithm operates on the premise that every CRUD-classified
request it encounters as it traverses a test suite is successfully executed. It does
not account for the possibility that some CRUD-classified requests may fail, such
as requests attempted in a user session with an invalid login. Thus, the PS-Map
begins to maintain state that does not accurately represent persistent state when
it encounters many failed requests.

52

Chapter 7

CONTRIBUTIONS AND FUTURE WORK

In this chapter, I recount the contributions of the work I have presented and

make recommendations for future work.

7.1 Contributions

The contributions of my work are:

1. Language-based techniques for determining HTTP request’s implica-
tions for persistent application state: The exploratory studies presented
in Chapter 3 provide evidence to support the existence of certain naming con-
ventions that can be leveraged to predict the operations performed by HTTP
requests.

2. Dynamic prediction and tracking of elements in persistent application
state throughout the traversal of a test suite: The PSE-Matching algorithm
presented in this thesis uses a simple map, the Persistent State Map, to model
the data predicted to exist in persistent state as it traverses a test suite.

3. Algorithm to apply persistent state predictions and create a persistent-
state aware test suite: Using the Persistent State Map, the PSE-Matching
Algorithm provides request parameter values that create a greater coherence
between test cases within a suite.

4. Persistent-state aware test suite improves coverage for applications
written in two different programming languages: Comparison of code and
branch coverage achieved by test suites before and after modification by the PSE-
Matching Algorithm shows improvement in test suite performance for the Logic
application written in Java and the WebCollab application written in PHP. This,
along with the results of exploratory studies performed in Chapter 4.3, indicates
that the persistent state mapping approach is extensible to a variety of web
applications.

53

7.2 Future Work

The approach discussed in this thesis lends itself to further development in the
following ways:

1. A study of fault types most and least frequently detected by the PSE-Matching
Algorithm will likely reveal potential for specialization of the algorithm, if cer-
tain faults are revealed more than others. Evaluation of the PSE-Matching
Algorithm’s performance using a larger set of usage data as input will allow for
a more thorough understanding of relationship between input size and algorithm
success.

2. Evaluation of algorithm on additional subject applications will further test the
extensibility of the algorithm.

3. Implementing algorithm improvements discussed in Section 6.6 would will likely
improve coverage achieved by Persistent-State Aware test suites.

4. A study that analyzes most common usage patterns relating to entities in persis-
tent state will likely be useful in further informing the PSE-Matching Algorithm’s
selection of ID-Parameters for requests. Because the PS-Map stores the most re-
cent action performed on each PSE as well as its ID, an understanding of common
usage patterns with regards to CRUD actions on PSEs could be leveraged in a
useful way.

54

BIBLIOGRAPHY

[1] How to split text without spaces into list of
words? http://stackoverflow.com/questions/8870261/

how-to-split-text-without-spaces-into-list-of-words, 2012.

[2] Phpcoverage. http://phpcoverage.sourceforge.net/, 2013.

[3] Cobertura. http://cobertura.sourceforge.net/, 2012.

[4] S. Elbaum, S. Karre, and G. Rothermel. Improving web application testing with
user session data. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 49–59, May 2003.

[5] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II. Leverag-
ing user session data to support web application testing. IEEE Trans. on Software
Engineering, 31(3), 2005.

[6] B. Korel. Automated software test data generation. In Transactions on Software
Engineering (TSE). IEEE, Aug 1990.

[7] Bigprof software. http://bigprof.com/appgini/applications/

online-rental-property-manager, 2016.

[8] Sreedevi Sampath, Valentin Mihaylov, Amie Souter, and Lori Pollock. A scal-
able approach to user-session based testing of web applications through concept
analysis. In Proceedings of the Automated Software Engineering Conference, pages
132–141, September 2004.

[9] Jessica Sant, Amie Souter, and Lloyd Greenwald. An exploration of statistical
models of automated test case generation. In International Workshop on Dynamic
Analysis (WODA), May 2005.

[10] Sara Sprenkle, Lori Pollock, and Lucy Simko. A study of usage-based navigation
models and generated abstract test cases for web applications. In International
Conference on Software Testing, Verification and Validation (ICST). IEEE, Mar
2011.

[11] Webcollab. http://webcollab.sourceforge.net/, 2016.

55

http://stackoverflow.com/questions/8870261/how-to-split-text-without-spaces-into-list-of-words
http://stackoverflow.com/questions/8870261/how-to-split-text-without-spaces-into-list-of-words
http://phpcoverage.sourceforge.net/
http://cobertura.sourceforge.net/
http://bigprof.com/appgini/applications/online-rental-property-manager
http://bigprof.com/appgini/applications/online-rental-property-manager
http://webcollab.sourceforge.net/

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 Web Applications
	2.2 Web Application Testing
	2.2.1 Automated Web Application Testing

	3 The Problem: Incoherent Selection of Request Parameters in Test Cases
	4 Exploratory Studies
	4.1 Resource Naming Conventions Study
	4.1.1 Methodology
	4.1.2 Results and Evaluation

	4.2 Parameter Naming Conventions Case Studies
	4.2.1 Subject Applications
	4.2.2 Methodology
	4.2.3 Results and Evaluation
	4.2.3.1 Logic
	4.2.3.2 ORPM
	4.2.3.3 WebCollab

	4.3 Conclusions from Exploratory Studies

	5 Approach: Classification Extractor and PSE-Matching Algorithm
	5.1 Classification Extractor
	5.2 PSE-Matching Algorithm
	5.2.1 Example of PSE-Matching Algorithm
	5.2.2 PSE-Matching Algorithm Rules

	6 Experiment, Results, and Analysis
	6.1 Research Questions
	6.2 Experiment Methodology
	6.2.1 N-Gram Simple Model
	6.2.2 Parameter Interaction Model

	6.3 Metrics
	6.4 Results and Analysis
	6.4.1 Improvements in Line and Branch Coverage
	6.4.2 Analysis of Coverage Data
	6.4.3 Analysis of High and Low -Improvement Resources
	6.4.4 Time Complexity of Classification Extraction and PSE-Matching Algorithms

	6.5 Threats to Validity
	6.6 Summary of Analysis and Observations

	7 Contributions and Future Work
	7.1 Contributions
	7.2 Future Work

	Bibliography

