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abstract

Tsirelson space was constructed in 1974 as the first example of a Ba-
nach space without an embedded c0 or lp space. In 1989, Casazza
and Shura wrote a book Tsirelson’s Space devoted to Tsirelson space
and its many properties. In this thesis, we give two representations of
Tsirelson space and give an exposition of many results found in the
Casazza-Shura book. In the final chapters, we make two mathemat-
ical contributions. First, we give new examples of extreme points of
the unit ball of Tsirelson space, which expands the list of known ones
from the Casazza-Shura book. Secondly, we improve the bounds on
j(n), which roughly measures the complexity of norming a vector of
length n. We give an O(log2(n)) lower bound and an O(

√
n) upper

bound. Both of these results answer questions from Tsirelson’s Space,
the second of which improves upon the O(n) upper bound given by
Casazza and Shura. This thesis is written to be accessible to mathe-
maticians outside of functional analysis.
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1
I N T R O D U C T I O N

In 1920, Stefan Banach highlighted and studied the classes of com-
plete normed linear spaces, now known as Banach spaces [2]. While
complete normed linear spaces were studied prior to Banach’s work,
his focus on them as a mathematical object was central to many later
developments in analysis. Banach was mainly concerned with study-
ing operators on and between Banach spaces, but eventually math-
ematicians began to study the isomorphic theory of Banach spaces
and ask questions about it. As mentioned in [5], the main questions
asked about an arbitrary Banach space X revolved around finding
“nice” subspaces like a c0 or an l p , finding non-obvious examples of
operators on X, and examining the non-obvious aspects of X’s struc-
ture as a result of these non-obvious operators. As Banach spaces con-
tinued to gain popularity within the functional analysis community,
many central questions in the isomorphic theory of Banach spaces
remained open for decades. In the early 1990s, W.T. Gowers did
pioneering work in Banach space theory by constructing many ex-
amples of infinite-dimensional Banach spaces which solved problems
posed by Banach in the 1930s [5]. Gowers was eventually awarded
the Field’s Medal for this work in 1998. Much of Gowers’ work owes
its origins to work of Boris Tsirelson and his construction in 1974 of
what is now called Tsirelson space.

Tsirelson space is considered the first example of a Banach space
in which neither an l p space nor a c0 space can be embedded [1].
As a way to familiarize ourselves with and explore Tsirelson space,
we relied heavily on the work of Peter Casazza and Thaddeus Shura
in their book Tsirelson’s Space. Published in 1989, this book serves
as the backbone of our thesis [3]. Tsirelson’s Space contains various
theorems regarding properties of Tsirelson space, and we provide ex-
positions of these proofs in hopes of clarifying them. Furthermore,
the majority of our original work comes from trying to answer open
questions within this text.

Tsirelson space is not a typical topic of conversation amongst un-
dergraduate mathematics students, but we hope to make the topic ac-
cessible through this thesis. Our approach assumes that readers have
a relatively limited knowledge of functional analysis and no knowl-
edge of constructions in Banach space theory. Instead of focusing on
the functional analysis side, most of our results are combinatorial in
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introduction

nature. To ease the reader into the topic, some basic concepts and
notation of Banach spaces are laid out in Chapter 2. Then in the
subsequent two chapters, we provide two different representations of
Tsirelson space: one with norms and another with functionals. With
this foundation in place, Chapter 5 serves to establish shortcuts for
computing the Tsirelson norm and apply these shortcuts to prove re-
sults including how its unit vector basis is 1-unconditional.

Then we address two major problems in this thesis, the first of
which involves finding extreme points of the unit ball of Tsirelson
space. Thanks to Lindenstrauss’ and Phelps’ use of the Baire Cate-
gory Theorem to develop a non-constructive proof that balls of re-
flexive Banach spaces have uncountably many extreme points, we
know that Tsirelson space, a reflexive Banach space by definition,
has uncountably many extreme points in its unit ball BT [7]. In
Tsirelson’s Space, Casazza and Shura give examples of extreme points
of BT but do not give uncountably many [3]. Thus, we considered
the problem of constructing uncountably many extreme points in BT .
Despite not solving this exact problem, our attempts to solve it led us
to find methodologies for constructing new extreme points. Our new
examples are presented in Chapter 6.

In the seventh chapter of the thesis, we consider another problem
found in Tsirelson’s Space. This book defines a quantity j(n), which
roughly measures the complexity of calculating the Tsirelson norm
for vectors of length n. Although Casazza and Shura provide an
upper bound for this quantity of b(n − 1)/2c, Problem 2(a) near
the book’s end asks for a tighter upper bound [3]. In an attempt
to tighten this upper bound and the lower bound on j(n), we give
an O(

√
n) upper bound and an O( log2 (n)) lower bound with the

help of work in the thesis of Noah Duncan [4]. To wrap up the thesis,
Chapter 8 contains the code used to help compute various norms. In
Tsirelson’s Space, they wrote code in Fortran to compute the norm
values of vectors, while we use Python to do more than just com-
pute a norm [3]. Yes, our Python programs include one to mimic
the Casazza-Shura Fortran program by simply printing out the norm
value given a vector and norm level, but we also provide all ways to
norm the vector by showing how it can be broken up. In addition to
these programs, we also wrote code to help determine extreme points
of BT and to enumerate all possible ways to usefully break a vector.
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2
I N T R O D U C T I O N T O B A N A C H S PA C E S A N D
P R E L I M I N A R I E S I N N O TAT I O N

Before defining Tsirelson space, we must lay the foundations of Ba-
nach spaces and introduce other significant definitions. We begin
with the definitions of a norm on a real vector space and the cor-
responding normed linear space. The same definition holds for com-
plex scalars but we restrict our attention to real scalars. The following
definition will be necessary to define a Banach space.

Definition 1. Suppose X is a real vector space. A norm ‖ · ‖ is a real-
valued function satisfying the following three conditions:

1. ‖x‖ > 0 for all x ∈ X and ‖x‖ = 0 if and only if x = ~0,

2. (Homogeneity) ‖λx‖ = |λ |‖x‖ for all x ∈ X, λ ∈ R,

3. (Triangle Inequality) ‖x + y‖ 6 ‖x‖ + ‖y‖ for all x , y ∈ X.

The pair (X , ‖ · ‖), that is, the linear space X equipped with the norm ‖ · ‖,
is called a normed linear space.

Note that the normed linear space (X , ‖ · ‖) is complete provided all
Cauchy sequences in X have limits in X. This precise definition of
completeness is not important for our purposes.

Definition 2. The normed linear space X is a Banach space provided X is
complete with respect to its norm. Let BX = {x ∈ X : ‖x‖ 6 1}, the ball
of X, and SX = {x ∈ X : ‖x‖ = 1}, the sphere of X.

Let R∞ denote all sequences of real numbers. All Banach spaces
we consider will be subspaces of R∞ . If a given X ⊆ R∞ is an in-
complete normed linear space, there there is a unique normed linear
space X̂ ⊆ R∞ such that X ⊆ X̂, X̂ is complete with respect to X ′ s
norm, and X is dense in X̂. The space X̂ is a Banach space and is
called the completion of X. As an easy example, the completion of Q

with the absolute value norm is R. The technical definition of com-
pletion uses equivalence classes of Cauchy sequences, so we will not
give it here.

Let x = (a1 , a2 , a3 , . . .) be an infinite sequence of real numbers.
The support of x is denoted supp x = { i : a i 6= 0}. Then max supp x
is the maximum element in supp x. Let c00 denote the vector space of
all infinite sequences of real numbers whose support is finite. That is,
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introduction to banach spaces and preliminaries in notation

each vector x ∈ c00 is a finitely supported (eventually zero) sequence
of real numbers.

Now we provide a couple examples of Banach spaces.
For 1 6 p < ∞, ( l p , ‖ · ‖ p ) is a Banach space, where

l p =

{
(a i )

∞
i=1 :

( ∞

∑
i=1
|a i | p

) 1
p

< ∞
}

and ‖(a i )‖ p = (∑∞
i=1 |a i | p )

1
p .

As another example, (c0 , ‖ · ‖0 ) is a Banach space, where

c0 =

{
(a i )

∞
i=1 : lim

i→∞
a i = 0

}
and ‖(a i )‖0 = sup i∈N |a i |.

Although we have stated that ( l p , ‖ · ‖ p ) and (c0 , ‖ · ‖0 ) are Ba-
nach spaces, it is not trivial to show this. Conditions one and two
from Definition 1 are easy to show, but the triangle inequality for
‖ · ‖ p is called Minkowski’s inequality. In addition it is cumbersome
to prove that l p and c0 are complete with respect to their norms.

The approach we take in defining our Banach spaces is to define a
norm on c00 ⊆ R∞ and let the Banach space be the completion of c00

with respect to this norm. In this case, we lose touch with the exact
description of the vectors in the resulting space. However, in most
cases, this is not important as c00 is a dense subset of the resulting
space. For example, taking the completion of c00 with respect to
‖ · ‖ p gives us ( l p , ‖ · ‖ p ). Likewise, taking the completion of c00

with respect to ‖ · ‖0 gives us (c0 , ‖ · ‖0 ).
For x ∈ c00, let x( i) be the i th coordinate of x. The standard unit

vectors (e i )
∞
i=1 of c00 are such that for each e i , we have e i ( i) = 1 and

e i ( j) = 0 for all j 6= i.
For all Banach spaces we are considering, particularly Tsirelson

space, these vectors will form a Schauder basis. This means that the
sequence (a i )

∞
i=1 is in the Banach space X if and only if ∑∞

i=1 a i e i is
Cauchy with respect to the norm on X. This definition is not signifi-
cant to our thesis but helps us name the sequence (e i )

∞
i=1 of standard

unit vectors as the unit vector basis.
A last common notation is that any vector x ∈ c00 can be written

as x = ∑∞
i=1 x( i)e i , where x( i) is the i th coordinate of x. If E ⊂ N

and x ∈ c00 we define Ex := ∑ i∈E x( i)e i .
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3

T S I R E L S O N S PA C E D E F I N I T I O N

In this chapter we provide the definition of Tsirelson space. To do so,
we begin with a definition of a Schreier set, which will be used in the
definition of the Tsirelson norm.

Definition 3. A finite subset F = {n1 , n2 , . . . , nk} of natural numbers
where n1 < n2 < · · · < nk is said to be a Schreier set, or admissible, if
k 6 n1. The set of all Schreier sets is denoted by S1.

For example, {2, 3} is a Schreier set since 2 = k 6 n1 = 2. How-
ever, {3, 4, 5, 6} is not a Schreier set since 4 = k > n1 = 3.

Definition 4. Given two finite, non-empty sets E , F of natural numbers,
we will write E < F if max E < min F and E 6 F if max E 6 min F.
For k ∈ N we write k 6 E in place of {k} 6 E.

For example, given E = {3, 4, 5} and F = {7, 8, 9}, we say E < F
since 5 = max E < min F = 7.

Next we define admissible sequences of subsets of natural numbers.
This definition will place restrictions on how we can break up a given
vector when taking the norm.

Definition 5. For k ∈ N, a sequence (Ei )
k
i=1 of finite, non-empty sets of

natural numbers such that k 6 E1 < E2 < · · · < Ek is an admissible
sequence.

As an example, the sequence (Ei )
3
i=1 for E1 = {3, 4, 5, 6}, E2 =

{7}, and E3 = {10} is an admissible sequence, since k = 3 6 E1 <

E2 < E3. Note that the individual sets Ei need not be admissible.

3.1 understanding tsirelson space

Tsirelson space is the completion of c00 with respect to a norm ‖ · ‖T .
The norm ‖ · ‖T is defined as the supremum over m of the increasing
sequence of norms (‖ · ‖m )m . These norms are defined recursively
as follows: For x ∈ c00

‖x‖0 = max
n∈N

|an | .
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3.1 understanding tsirelson space

The completion of c00 with respect to this norm gives the Banach
space c0 which we mentioned in the introduction. Let us move onto
the first level norm.

‖x‖1 = ‖x‖0 ∨ sup
{

1
2

k

∑
j=1
‖E j x‖0 : k ∈ N, (E j )

k
j=1 admissible

}
.

To better understand the above definition, we consider a vector whose
level zero and level one norms are different. For x = (1, 1, 1, 1, 1, 0, 0, . . .),
we have that ‖x‖0 = 1 but

‖x‖1 >
1
2

3

∑
j=1
‖E j x‖0 =

1
2
(‖E1 x‖0 + ‖E2 x‖0 + ‖E3 x‖0 ) =

1
2
(1 + 1 + 1) =

3
2

for E1 = {3}, E2 = {4}, and E3 = {5}. In fact, ‖x‖1 = 3
2 .

Define the level two norm in a similar way.

‖x‖2 = ‖x‖1 ∨ sup
{

1
2

k

∑
j=1
‖E j x‖1 : k ∈ N, (E j )

k
j=1 admissible

}
.

To understand this definition, we consider an example in which a vec-
tor has different level one and level two norms. Consider the vector
x = (1, 1, 1, 1, 1

2 , 1
2 , 1

2 , 1
2 , 0, 0, . . .). We have

‖x‖1 >
1
2

3

∑
j=1
‖E j x‖0 =

1
2
(‖E1 x‖0 + ‖E2 x‖0 + ‖E3 x‖0 ) =

1
2
(1 + 1 +

1
2
) =

5
4

for E1 = {3}, E2 = {4}, and E3 = {5, 6, 7, 8}, while

‖x‖2 >
1
2

3

∑
j=1
‖E j x‖1 =

1
2
(‖E1 x‖1 + ‖E2 x‖1 + ‖E3 x‖1 )

=
1
2

(
1 + 1 +

1
2
(

1
2
+

1
2
+

1
2
+

1
2
)

)
=

3
2

for the same E1 , E2 , E3 as above. It turns out that ‖x‖1 = 5
4 and

‖x‖2 = 3
2 . We will continue in this pattern as we define the next

level, which ultimately results in

‖x‖m+1 = ‖x‖m ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
for any m > 0. Notice that by definition, for each x ∈ c00 and m ∈ N

we have ‖x‖m 6 ‖x‖m+1. Also note that for each m ∈ N we have

‖x‖m 6
∞
∑

i=1
|x( i) | < ∞ (since x ∈ c00). Therefore for each x ∈ c00

the sequence (‖x‖m )m is increasing and bounded above. Therefore

‖x‖T = lim
m
‖x‖m

and is well defined. We collect all of these definitions and observa-
tions in the following.

10



3.1 understanding tsirelson space

Definition 6. We define a sequence of norms (‖ · ‖m )∞
m=0 on c00 induc-

tively. Let x = (a i ) ∈ c00 and define ‖ · ‖0 by

‖x‖0 = max
n∈N

|an | , (1)

and, assuming ‖ · ‖m has been defined for m > 0, define ‖ · ‖m+1 by

‖x‖m+1 = ‖x‖m ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
.

(2)

With the above sequence of norms defined on c00 we now introduce
the Tsirelson norm.

Definition 7. Given a vector x ∈ c00, we define the Tsirelson norm of x,
or ‖x‖T , as follows:

‖x‖T = lim
n→∞

‖x‖n = sup
n∈N

‖x‖n . (3)

Finally, we give the formal definition of Tsirelson space.

Definition 8. Tsirelson space, or T, is the completion of c00 with respect to
‖ · ‖T .
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4

N O R M I N G S E T S

This chapter offers an alternate presentation of the Tsirelson norm
based on norming sets. These norming sets allow us to define norms
on c00 like those in the previous chapter. While this representation of
norms via norming sets is not significant in the majority of the thesis,
we will frequently refer to the norming set for Tsirelson’s space in
Chapter 7. We begin by giving the definition of a norming set and
showing how a norming set induces a norm on c00. We then give
some examples of norming sets which coincide with norms defined
in Chapter 2. To conclude this chapter, we define a norming set for
T .

Definition 9. A set W ⊆ c00 is a norming set if and only if the following
conditions are satisfied.

1. e∗i ∈ W for all i ∈ N, where each e∗i is defined as e i within the unit
vector basis defined above,

2. − f ∈ W for all f ∈ W.

For a norming set W , an element f ∈ W is called a functional. Using
the above definitions, we prove the following proposition.

Proposition 10. Let W ⊆ c00 be a norming set. Then the function ‖ · ‖W :
c00 → [0, ∞) defined by

‖x‖W = sup{ f (x) : f ∈ W} (4)

is a norm on c00, where f (x) := 〈 f , x〉 is the dot product of f and x.

The proof of the above proposition is usually omitted in the literature,
but we include it here for the sake of completeness.

Proof. Let W ⊆ c00 be a norming set. We must prove that all con-
ditions within Definition 1 hold. Let x ∈ c00. First we show that
‖x‖W > 0.

‖x‖W > 〈si gn(x(1))e∗1 , x〉 = |x(1) | > 0,

where the sign function si gn returns 1 if its input is positive and −1
otherwise. The first inequality holds by definition, and the rest follow
from there. So, ‖x‖W > 0, as desired.
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norming sets

Next we show that ‖x‖W = 0 if and only if x = ~0. To prove
the forward direction, assume ‖x‖W = 0. Then, since e∗i ∈ W for
all i ∈ N by assumption, it must be that e∗i (x) = x( i) = 0 for all
i ∈ N. This occurs only if x = ~0, as desired.

To prove the reverse direction, assume x = ~0. It trivially follows
that ‖x‖W = 0, since the dot product of ~0 and anything is still 0.

Now we prove that ‖λx‖W = |λ |‖x‖W for all λ ∈ R. Let λ ∈ R.
If λ = 0 we are done, as ‖λx‖W = 0 = |λ |‖x‖W . Suppose λ 6= 0.
Then

‖λx‖W = sup{ f (λx) : f ∈ W}
= sup{|λ |(si gn(λ) f )(x) : f ∈ W}
= |λ | sup{ f (x) : f ∈ si gn(λ)W}
= |λ | sup{ f (x) : f ∈ W}
= |λ |‖x‖W .

The first equality above follows from the definition of ‖ · ‖W . The
second and third equalities follows from the ability to rearrange scalars
within dot products. The fourth equality comes from the fact that
W = −W where −W = {g : g = − f for some f ∈ W}, based on
condition (2) of our norming set definition. The last equality follows
from our definition. Thus, ‖λx‖W = |λ |‖x‖W for all λ ∈ R, as
desired.

Lastly, we must demonstrate that ‖x + y‖W 6 ‖x‖W + ‖y‖W . Fix
x , y ∈ c00. Let g ∈ W and ε > 0 such that ‖x + y‖W 6 g(x + y) + ε

for some g ∈ W . So,

‖x + y‖W 6 g(x + y) + ε = g(x) + g(y) + ε 6 ‖x‖W + ‖y‖W + ε .

The lone equality follows from rules of dot products, and the sec-
ond inequality results from the definition of ‖ · ‖W . So, since ε was
arbitrary, the triangle inequality holds.

Therefore, ‖ · ‖W is a norm on c00 by Definition 1.

As an example of a norming set and its associated norm, consider the
set

Wc0 = {±e∗i : i ∈ N}

and its associated norm

‖(a i )‖Wc0
= sup

i∈N

|a i | = ‖(a i )‖0 .

As another example, consider the norming set

WS1 =

{
∑
i∈F
±e∗i : F ∈ S1

}
and its associated norm

‖(a i )‖WS1
= sup

F∈S1

∑
i∈F
|a i | .
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norming sets

The completetion of c00 with the above norm called Schreier’s space
and is an important precursor to Tsirelson’s space.

As a last example, consider the norming set

W`1 =

{
∑
i∈E
±e∗i : E ⊆ N is an interval

}
.

Then

‖x‖W`1
= sup{ f (x) : f ∈ W`1 }

= sup
{

∑
i∈E
±e∗i (x) : E ⊆ N is an interval

}
= ∑

i∈N

|x( i) | = ‖x‖`1 .

Proposition 11. Let W ⊆ c00 be a norming set, and in addition assume
E f ∈ W for any interval E ⊆ N. Then for all intervals E ⊆ N and
x ∈ c00 we have ‖Ex‖W 6 ‖x‖W .

Proof. Let W ⊆ c00 as in the hypothesis, x ∈ c00, and E ⊆ N be an
interval. Let ε > 0 and find f ∈ W such that ‖Ex‖W 6 f (Ex) + ε

for some f ∈ W . Then, as desired,

‖Ex‖W 6 f (Ex) + ε = (E f )(x) + ε 6 ‖x‖W + ε .

The lone equality above comes from the fact that E will restrict the
range of our dot product in either place. So, since ε was arbitrary, we
have ‖Ex‖W 6 ‖x‖W .

We can now inductively define norming sets W1 , W2 , W3 , . . . so
that Wn is the norming set for the norm ‖ · ‖n defined in Chapter 3

and W = ∪n∈NWn is the norming set for ‖ · ‖T .

Definition 12. Let
W0 = {±e∗i : i ∈ N} .

Let

W1 = W0 ∪
{

1
2 ∑

i∈F
±e∗i : F ∈ S1

}
.

For all k ∈ N with k > 1, let

Wk+1 = Wk ∪
{

1
2

d

∑
i=1
±E f i : (supp f i )

d
i=1 is admissible and E is an interval

}
.

Then let W = ∪∞
k=1Wk .

Note that for all m ∈ N ∪ {0}, Wm satisfies all conditions necessary
to be a norming set.

Proposition 13. ‖ · ‖Wk = ‖ · ‖k for all k ∈ N ∪ {0}.
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norming sets

Proof. For k ∈ N ∪ {0} let Pk be defined as follows: for all x ∈
c00 , ‖x‖Wk = ‖x‖k .
Base Case: As seen earlier in this chapter when we defined Wc0 , we
see Wc0 = W0 and we have already shown ‖(a i )‖Wc0

= ‖(a i )‖0.
Inductive Step: Now assume Pm holds for some m > 0. We now show
that Pm+1 holds as well. Let x ∈ c00. By definition

‖x‖m+1 = ‖x‖m ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
.

If ‖x‖m+1 = ‖x‖m , then by the Inductive Hypothesis

‖x‖m+1 = ‖x‖Wm 6 ‖x‖Wm+1 ,

where the inequality holds since Wm ⊆ Wm+1.
Otherwise consider (E j )

∞
j=1 admissible.

‖x‖m+1 =
1
2

d

∑
j=1
‖E j x‖m =

1
2

d

∑
j=1
‖E j x‖Wm .

For each j find f j ∈ Wm so that f j (E j x) = ‖E j x‖Wm . Let g j =

E j f j ∈ W . Since (E j )
d
j=1 is admissible, (suppg j )

∞
j=1 is admissible.

Thus,
1
2

d

∑
j=1
‖E j x‖Wm =

1
2

d

∑
j=1

g j (x) 6 ‖x‖Wm+1 .

Thus ‖x‖m+1 6 ‖x‖Wm+1 . Alternatively, find f ∈ Wm+1 such that
f (x) = ‖x‖Wm+1 . If f ∈ Wm then ‖x‖Wm+1 = ‖x‖Wm = ‖x‖m 6
‖x‖m+1. If f ∈ Wm+1 \ Wm then f = 1

2 ( f1 + · · · + f d ) with
(supp f i )

d
i=1 admissible. So,

‖x‖Wm+1 =
1
2

d

∑
i=1

f i (x) 6
1
2

d

∑
i=1
‖Ei x‖Wm =

1
2

d

∑
i=1
‖Ei x‖m 6 ‖x‖m+1 ,

where Ei = r an ge( f i ). Here r an ge( f i ) is the smallest interval con-
taining f i .

Based on the above proposition, we have that ‖ · ‖W = ‖ · ‖T for
‖ · ‖T defined in Definition 7.
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5

P R O P E RT I E S O F T S I R E L S O N S PA C E

This chapter serves to simplify our previous definition of the Tsirelson
norm and to prove properties of Tsirelson space that result from these
simplifications. Therefore the chapter contains two subsections: one
to provide these alternate norm forms and the other to apply them.

5.1 alternate ways to compute the tsirelson norm

Recall that for x ∈ c00 we have ‖x‖T = supm∈N ‖x‖m where for
m > 0 the norm ‖ · ‖m+1 satisfies:

‖x‖m+1 = ‖x‖m ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
.

In subsequent chapters we will be computing the Tsirelson norm of
various vectors, and we would like to do so as easily as possible.
Therefore, in this chapter we will prove several results that provide
shortcuts for calculating the norm of a given vector, which we now
present as items in the below proposition.

Proposition 14. Let x ∈ c00. The following hold:

1. [3, Proposition I.10] For any m > 0

‖x‖m+1 = ‖x‖0 ∨ sup

{
1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (Ei )

k
i=1 admissible

}
.

(5)

2. [3, Ch.1 Remark 5] We have

‖x‖T = ‖x‖0 ∨ sup
{

1
2

k

∑
i=1
‖Ei x‖T : k ∈ N, (Ei )

k
i=1 admissible

}
.

(6)

3. If minsupp x = m with m > 3

‖x‖T = ‖x‖0 ∨ sup
{

1
2

k

∑
i=1
‖Ei x‖T : k > m , (Ei )

k
i=1 admissible

}
.

(7)
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5.1 alternate ways to compute the tsirelson norm

4. We have

‖x‖T = ‖x‖0 ∨ sup
{

1
2

k

∑
i=1
‖Ei x‖T : k ∈ N, k > 3, (Ei )

k
i=1 admissible

}
.

(8)

In the above proposition, Items 1 and 2 are results from [3], while
Items 3 and 4 are original results. Although all four results seem sim-
ilar, they tell us subtly different things. In particular, Item 1 switches
out the first ‖x‖m on the right-hand side of (2) for ‖x‖0, and this re-
sult will be used to prove (e i )

∞
i=1 is 1-unconditional, a term we will

later define. Item 2 shows that the norm of T satisfies an implicit
equation that is in terms of itself. This point is interesting because
Tsirelson space is the first Banach space whose norm satisfies such an
equation. Item 3 above shows that if a vector with minsupp x = m
and m > 3 is normed by summing the norms of its various pieces,
then the vector will at least be broken into m-many pieces. This result
essentially says that a vector should always be broken into as many
pieces as possible, which is slightly different from the other original
result of Item 4. Item 4 says that we will never break a vector into less
than three pieces. With the above proposition explained, we begin by
proving its first item as seen in [3][pg. 13].

Proof. (Proposition 14)(Item 1) Let x ∈ c00 and m > 0. From (2), we
know

‖x‖m+1 = ‖x‖m ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
,

so we just have to justify why

‖x‖0 ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
=

‖x‖m ∨ sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
.

Suppose

‖x‖m+1 > sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}
.

Then we know by definition that ‖x‖m+1 = ‖x‖m . Therefore, we
know

‖x‖m > sup
{

1
2

k

∑
j=1
‖E j x‖m : k ∈ N, (E j )

k
j=1 admissible

}

> sup
{

1
2

k

∑
j=1
‖E j x‖m−1 : k ∈ N, (E j )

k
j=1 admissible

}
,
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5.1 alternate ways to compute the tsirelson norm

where the second inequality follows from the fact that ‖E j x‖m >
‖E j x‖m−1 for any E j by definition. Hence ‖x‖m = ‖x‖m−1. Contin-
uing in this manner, we conclude ‖x‖m+1 = ‖x‖0.

Next, we prove the second item of Proposition 14, which offers a
seemingly circular equation for the Tsirelson norm. We will prove
it using the definition of Tsirelson norm and previous results in this
thesis. This alternate representation provides a much simpler way to
think about the norm.

Proof. (Proposition 14)(Item 2) Fix x ∈ c00. Note that for all (Ei )
k
i=1

admissible and m > 0 we have

‖x‖m+1 >
1
2

k

∑
i=1
‖Ei x‖m .

Taking m → ∞ we have

‖x‖T >
1
2

k

∑
i=1
‖Ei x‖T .

Since ‖x‖T > ‖x‖0 we have

‖x‖T > max

{
‖x‖0 , sup

{
1
2

k

∑
i=1
‖Ei x‖T

}}
.

In the other direction, fix m > 0 and find (Fi )
k
i=1 admissible with

‖x‖m+1 =
1
2

k

∑
i=1
‖Fi x‖m

6
1
2

k

∑
i=1
‖Fi x‖T

6 max

{
‖x‖0 , sup

{
1
2

k

∑
i=1
‖Ei x‖m

}}
.

The first inequality above follows by definition of the Tsirelson norm,
and the second inequality follows from Proposition 14 (Item 1). Tak-
ing m → ∞ on the above inequality, we have

‖x‖T 6 max

{
‖x‖0 , sup

{
1
2

k

∑
i=1
‖Ei x‖T

}}
,

as desired. So,

‖x‖T = ‖x‖0 ∨ sup
{

1
2

k

∑
i=1
‖Ei x‖T : k ∈ N, (Ei )

k
i=1 admissible

}
.

This is the desired result.
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5.1 alternate ways to compute the tsirelson norm

Building on our above representation of the Tsirelson norm, we can
specify the representation even more given the minimum of the sup-
port of the vector whose norm we are determining. In particular, we
prove Item 3 of Proposition 14 in order to show that if a vector is
normed by summing the norms of its various pieces, then the vector
will be broken into as many pieces as possible.

Proof. (Proposition 14)(Item 3) Let x ∈ c00 with minsupp x = m for
m > 3. By (6), we have

‖x‖T = ‖x‖0 ∨ sup
{

1
2

k

∑
i=1
‖Ei x‖T : k ∈ N, (Ei )

k
i=1 admissible

}
,

so we just need to show that choosing an admissible (Ei )
k
i=1 with

k < m will not yield the supremum. Assume via contradiction that

‖x‖T = 1
2

k
∑

i=1
‖Ei x‖T for some (Ei )

k
i=1 admissible and k < m. Since

minsupp x = m, we may assume that minsupp E1 > m, so we can
have up to (m − 1)-many sets after E1 by definition of admissible.
We can find some j ∈ {1, . . . , k} such that |E j | > 2 and write
E j = E j ,1 ∪ E j ,2 where E j ,1 and E j ,2 are intervals and the collection
{E1 , . . . , E j ,1 , E j ,2 , . . . , Ek} is admissible since k < m. Therefore if
k < m we can find a new admissible sequence which yields a greater
norm than the original sequence, as we show below. Thus we may
restrict the sequences (Ei )

k
i=1 to k > m.

Returning to our fixed (Ei )
k
i=1 with k < m, suppose without loss

of generality that we must break up just E1 into E1,1 and E1,2 in
order for E1,1 ∪ E1,2 ∪ (Ei )

k
i=2 to contain m-many sets. Then, by the

triangle inequality from Definition 1,

1
2
(‖E1 x‖T + ‖E2 x‖T + · · · + ‖Ek x‖T ) 6

1
2
(‖E1,1 x‖T + ‖E1,2 x‖T + ‖E2 x‖T + · · · + ‖Ek x‖T ) ,

so E1,1 ∪ E1,2 ∪ (Ei )
k
i=2 is an admissible set that yields the supre-

mum. This contradicts (Ei )
k
i=1 yielding the supremum, so we are

done.

The above proof shows the importance of breaking a vector into the
maximum number of pieces when summing the norms of its parts,
and the below proof of Item 4 within Proposition 14 reveals that we
will never break a vector into less than three pieces. This remark
therefore builds on (6) to make it even stronger.

Proof. (Proposition 14)(Item 4) Note that the right hand side of (8) sim-
ply replaces k > 1 in (6) with k > 3. Therefore since we are taking
the supremum over a smaller set, the inequality

‖x‖T > ‖x‖0 ∨ sup
{

1
2

k

∑
i=1
‖Ei x‖T : k ∈ N, k > 3, (Ei )

k
i=1 admissible

}
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5.2 applications of proposition 14

holds.
Let x = ∑ i a i e i ∈ T and assume ‖x‖0 < ‖x‖T .
Suppose first that the supremum is attained for k = 1. Then
‖x‖T = 1

2 ‖E1 x‖T for some interval E1. This cannot happen since
‖E1 x‖T 6 ‖x‖T , which is a clear contradiction.

In the second case we show that if the supremum is attained for
k = 2 then it also must be attained for some k > 3. If ‖x‖T =
1
2 (‖E1 x‖T + ‖E2 x‖T ) then ‖x‖T = ‖E1 x‖T = ‖E2 x‖T since ‖Ei x‖T 6
‖x‖T for all i ∈ N. Note that min E2 > 3. Therefore

‖x‖T = ‖E2 x‖T =‖E2 x‖0 ∨ sup{ 1
2

k

∑
i=1
‖Fi (E2 x)‖T : k > 3, (Fi )

k
i=1 admissible}

6 ‖x‖0 ∨ sup{ 1
2

k

∑
i=1
‖Fi x‖T : k > 3, (Fi )

k
i=1 admissible} 6 ‖x‖T .

We can restrict to k > 3 since min E2 > 3. Putting this together
we have the desired result.

5.2 applications of proposition 14

With the help of the alternate ways to compute a norm found in
Proposition 14, we can now prove several results. As a first applica-
tion of this proposition, we show the basis (e i ) of T is 1-unconditional.
We begin with the definition of 1-unconditional.

Definition 15. Let (xn )∞
n=1 be a sequence of vectors in a Banach space X.

(xn )∞
n=1 is 1-unconditional if for all (a i ) , (b i ) ∈ c00 with |a j | 6 |b j | for

j ∈ N, we have ‖ ∑ j a j x j‖ 6 ‖ ∑ j b j x j‖.

From the above definition, we can easily see how (e i )
∞
i=1 is 1-unconditional

for norms other than the Tsirelson norm. As an example, we consider
the unit vector basis with respect to ‖ · ‖ p for 1 6 p < ∞ below.

Remark 16. For ‖ · ‖ p with 1 6 p < ∞, it is easy to see that
the unit vector basis (e i )

∞
i=1 is 1-unconditional. Indeed, if we have

(a i ) , (b i ) ∈ c00 with |a j | 6 |b j | for j ∈ N, then

‖∑ a j e j‖ p :=
( ∞

∑
i=1
|a i | p

) 1
p

6
( ∞

∑
i=1
|b i | p

) 1
p

= ‖∑ b j e j‖ p .

The below proposition will help us prove many other subsequent
statements.

Proposition 17. The unit vector basis (e i )
∞
i=1 is a 1-unconditional basis

for T.

Proof. We prove the above proposition by induction, using the follow-
ing inductive statement Pn .

Pn : for all (a j )
∞
j=1 , (b j )

∞
j=1 ∈ c00 such that |a j | 6 |b j | , for all j ∈ N
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5.2 applications of proposition 14

‖∑ a j e j‖n 6 ‖∑ b j e j‖n .

Base Case: Let (a j )
∞
j=1 and (b j )

∞
j=1 be scalar sequences such that

|a j | 6 |b j | for all j ∈ N. For n = 0,

‖∑ a j e j‖0 = sup
j∈N

|a j | 6 sup
j∈N

|b j | = ‖∑ b j e j‖0 .

The two above equalities come from Definition 6, and the above in-
equality follows from the assumption that |a j | 6 |b j | for all j ∈ N.
Thus, the base case holds.
Inductive Step: Now assume that Pn holds for some n ∈ N. We show
that Pn+1 holds as well. Let (a j )

∞
j=1 and (b j )

∞
j=1 be scalar sequences

such that |a j | 6 |b j | for all j ∈ N. By (5), we know there are just
two options for ‖ ∑ a j e j‖n+1.
Case 1: Suppose ‖ ∑ a j e j‖n+1 = ‖ ∑ a j e j‖0. Then we have∥∥∥∥∑ a j e j

∥∥∥∥
n+1

=

∥∥∥∥∑ a j e j

∥∥∥∥
0
6

∥∥∥∥∑ b j e j

∥∥∥∥
0
6

∥∥∥∥∑ b j e j

∥∥∥∥
n+1

.

The first inequality above follows from the fact that |a j | 6 |b j | for all
j ∈ N, and the second inequality follows from Definition 6. Therefore
‖ ∑ a j e j‖n+1 6 ‖ ∑ b j e j‖n+1.

Case 2: Now suppose ‖ ∑ a j e j‖n+1 = 1
2

k
∑

i=1
‖Ei (∑ a j e j )‖n for some

(Ei )
k
i=1 admissible. So,

‖∑ a j e j‖n+1 =
1
2

(
‖ ∑

j∈E1

a j e j‖n + ‖ ∑
j∈E2

a j e j‖n + · · · + ‖ ∑
j∈Ek

a j e j‖n

)
.

Then, by our inductive hypothesis, we know that for each m ∈ {1, 2, . . . , k},
‖ ∑ j∈Em

a j e j‖n 6 ‖ ∑ j∈Em
b j e j‖n . Thus,

‖∑ a j e j‖n+1 =
1
2

(
‖ ∑

j∈E1

a j e j‖n + ‖ ∑
j∈E2

a j e j‖n + · · · + ‖ ∑
j∈Ek

a j e j‖n

)
6

1
2

(
‖ ∑

j∈E1

b j e j‖n + ‖ ∑
j∈E2

b j e j‖n + · · · + ‖ ∑
j∈Ek

b j e j‖n

)

=
1
2

k

∑
i=1
‖Ei (∑ b j e j )‖n 6 ‖∑ b j e j‖n+1

The first inequality follows from the inductive hypothesis and the sec-
ond inequality follows from (5). Therefore we have that Pn+1 holds.
Since Pn holds for all n ∈ N, let (a j )

∞
j=1 and (b j )

∞
j=1 be scalar

sequences such that |a j | 6 |b j | for all j ∈ N. By Definition 7,
‖ ∑ a j e j‖T = supn∈N ‖ ∑ a j e j‖n . However, since ∑ a j e j ∈ c00,

sup
n∈N

‖∑ a j e j‖n = max
n∈N

‖∑ a j e j‖n = ‖∑ a j e j‖m
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5.2 applications of proposition 14

for some m ∈ N. Then, we know

‖∑ a j e j‖T = ‖∑ a j e j‖m 6 ‖∑ b j e j‖m 6 ‖∑ b j e j‖T .

The first inequality above comes from our Pn , and the second inequal-
ity above comes from Definition 7. Therefore, the unit vector basis
(e i )

∞
i=1 of T is 1-unconditional, as desired.

Now that we have proved (e i )
∞
i=1 is 1-unconditional, we can suc-

cinctly prove the following remark about the insignificance of the
signs of the a i ’s for a vector (a i ) ∈ c00 when computing the Tsirelson
norm.

Remark 18. Let (a i ) ∈ c00 and E ⊂ N then

‖ ∑
i∈E

a i e i‖T 6 ‖∑ a i e i‖T = ‖∑ |a i |e i‖T .

Proof. Both the inequality and equality follow from the uncondition-
ality of the basis. For the inequality, we replace the coefficient a i
with 0 if and only if i is not in E. For the equality we note that the
coefficient a i and |a i | have the same absolute value.

In addition to helping us prove that the unit vector basis is 1-unconditional,
Proposition 14 can also be applied to give an upper bound on the
Tsirelson norm. We now present this upper bound and prove it using
equations from our proposition.

Lemma 19. For all (a i ) ∈ c00,

‖∑ a i e i‖T 6 ‖∑ a i e i‖0 ∨
1
2 ∑ |a i | .

Proof. Let (a i ) ∈ c00. By (6), we know

‖∑ a i e i‖T = ‖∑ a i e i‖0 ∨ sup
{

1
2

k

∑
j=1
‖E j ∑ a i e i‖T : k ∈ N, (E j )

k
i=1 admissible

}
.

Therefore, it suffices to show that for all (E j )
k
j=1 admissible we have

that

1
2

k

∑
j=1
‖E j ∑ a i e i‖T 6

1
2 ∑ |a i | .
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5.2 applications of proposition 14

Let (E j )
k
j=1 admissible for some k ∈ N. Then

1
2

k

∑
j=1
‖E j ∑ a i e i‖T 6

1
2

k

∑
j=1

∑
i∈E j

‖a i e i‖T

=
1
2

k

∑
j=1

∑
i∈E j

|a i |‖e i‖T

=
1
2

k

∑
j=1

∑
i∈E j

|a i |

6
1
2

∞

∑
i=1
|a i | .

The first inequality follows from the triangle inequality applied to
each ‖E j ∑ a i e i‖T . The first equality follows from the homogeneity
of norms. The second equality follows from the fact that ‖e i‖T = 1
for all i ∈ N. The last inequality follows from the fact that for all
(E j )

k
j=1 admissible, E1 < E2 < · · · < Ek , so we are adding up

various pieces of the sequence (a i )
∞
i=1, not the whole sequence.
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6
E X T R E M E P O I N T S O F B T

This section is devoted to studying the extreme points of B T . We
begin with definition of extreme point of B X .

Definition 20. Let X be a Banach space. A vector x ∈ B X is an extreme
point of B X if there do not exist two vectors x 1 , x 2 ∈ B X with x 1 , x 2 6=
x such that x = 1

2 ( x 1 + x 2 ) . The set of all extreme points of B X is
denoted ext(B X ).

We know there are uncountably many extreme points of B T based on
the following theorem in [7].

Theorem 21. [7, Theorem 1.1 on p.39] If X is a reflexive Banach space,
then the set ext(B X ) is uncountable.

We will not recall the definition of reflexive Banach space here. The
space T is a reflexive space. The standard way to see T is reflexive is
to use a theorem of R.C. James [6] which states that a Banach space
with an unconditional basis not containing isomorphic copies of c 0

or l 1 must be reflexive. As Tsirelson space was constructed as the
first example of a space which does not contain c 0 or l p for 1 6
p < ∞ . In Proposition 17 we proved that the unit vector basis of
T is 1-unconditional. In [7, Theorem 1.1 on p.39] Lindenstrauss and
Phelps, use the Baire Category Theorem to show that ext(B X ) is not
countable. As such they do not give a procedure for constructing
uncountably many elements of ext(B X ). Thus it is desirable to find
a way to exhibit uncountably many elements of ext(B T ) [3]. The first
step in this process was given in [3, Lemma on p.202] where they
show all vectors of the form

ε 1 e 1 + ε 2 e 2 + ε i e i + ε j e j

are extreme points of B T , where 2 < i < j are in N and { ε 1 , ε 2 , ε i , ε j } ∈
{± 1 } . We give self-contained exposition of this proof. In consid-
ering the question of constructing uncountably many elements of
ext(B T ), we attempted to construct an element of ext(B T ) which
was infinitely supported. Generating uncountably many elements
of ext(B T ) would have followed from considering all sign changes
of the coordinates of our infinitely many non-zero coordinates. Al-
though we did not manage to construct such an infinitely supported
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extreme points of b t

element of ext(B T ), we were able to find new examples of extreme
points in B T , which we state in the following theorem. The theorem
has four parts, the first of which comes from [3, Lemma on p.202]
and the remaining of which are original results.

Theorem 22. Let ( η i )
∞
i= 1 ⊂ {− 1 , 1 } . The following vectors are ex-

treme points of B T :

1. Vectors of the form

η 1 e 1 + η 2 e 2 + η i e i + η j e j ,

where 2 < i < j are in N .

2. Vectors of the form

η 1 e 1 + η 2 e 2 +
1
2

8

∑
i= 3

η i e i ,

3. Vectors of the form

η 1 e 1 + η 2 e 2 +
3
5

η 3 e 3 +
2
5

1 0

∑
i= 4

η i e i ,

4. Vectors of the form

η 1 e 1 + η 2 e 2 +
1
2

η 3 e 3 +
1
3

1 2

∑
i= 4

η i e i ,

Notice that each of the above extreme points have ± 1 in the first two
coordinates. This was observed in [3]. Before proving the above main
theorem for this chapter, we will also prove this theorem.

Theorem 23. [3, p.202] If x ∈ ext( B T ) then x ( 0 ) , x ( 1 ) ∈ {± 1 } .

In order to prove the above theorems, we first need the assistance of
some lemmas. Thus, we now prove the below lemma that any vector
with only two non-zero coordinates, both of which are in {± 1 } , has
a Tsirelson norm of 1. This lemma is stated, but not proven, within
[3, Lemma on p.202]. Therefore, we prove this lemma to add clarity
to our exposition of their argument.

Lemma 24. For i , j ∈ N and { ε i , ε j } ∈ {± 1 } , ‖ ε i e i + ε j e j ‖ T =

1 .

Proof. Let i , j ∈ N and let ε i , ε j be signs. We show that ‖ ε i e i +

ε j e j ‖ T = 1. By Remark 18, we know that ‖ ε i e i + ε j e j ‖ T = ‖ e i +

e j ‖ T . Clearly, since the zero norm minorizes the Tsirelson norm,
‖ e i + e j ‖ T > ‖ e i + e j ‖ 0 = 1. Then by Lemma 19, we know

‖ e i + e j ‖ T 6 ‖ e i + e j ‖ 0 ∨
1
2
( 1 + 1 ) = 1 .

So, 1 6 ‖ e i + e j ‖ T 6 1, making ‖ e i + e j ‖ T , and therefore ‖ ε i e i +

ε j e j ‖ T , equal to 1.
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extreme points of b t

Similarly, the below lemma will also be needed in our exposition
of Theorem 22(Item 1). This lemma states that changing the first
coordinate of a norm one vector to one will keep the vector norm
one.

Lemma 25. Let (an) ∈ c00. Then if ‖∑∞
n=1 anen‖T = 1, we have

‖e1 +
∞

∑
n=2

anen‖T = 1.

Proof. Let ∑∞
n=1 anen ∈ c00 be a vector of norm 1. First note that

for all n ∈ N, it must be that |an| 6 1, as a coefficient with ab-
solute value greater than 1 would make the zero norm, and there-
fore the Tsirelson norm, greater than 1. From (6), we have two op-
tions for ‖e1 + ∑∞

n=2 anen‖T. Note that ‖e1 + ∑∞
n=2 anen‖0 = 1, so if

‖e1 + ∑∞
n=2 anen‖T = ‖e1 + ∑∞

n=2 anen‖0 we are done.
Using (8) we suppose that for some k > 3 and for some (Em)k

m=1 admissible
we have

‖e1 + ∑
n>2

anen‖T =
1
2

k

∑
m=1
‖Em ∑ anen‖T.

However, by definition,

1
2

k

∑
m=1
‖Em ∑ anen‖T 6 ‖

∞

∑
n=1

anen‖T = 1.

This is the desired result, since we already know ‖e1 + ∑n>2 anen‖T >
1 by the zero norm.

Based on the above two lemmas and the definition of an extreme
point of BT, we can now say that no norm 1 vector ∑ anen with |a1| < 1
is an extreme point of BT. This idea is still helping us incrementally
build up to prove the main theorems of this chapter.

Lemma 26. Any vector ∑ anen of norm 1 with |a1| < 1 is not an extreme
point of BT.

Proof. Let ∑ anen be a vector of norm 1 with |a1| < 1. We will prove
that ∑ anen is not an extreme point of BT by finding two points x1 and
x2 in BT with x1, x2 6= x such that ∑ anen = 1

2 (x1 + x2).
Case 1: Suppose a1 > 0. Then

∑ anen =
1
2
((1, a2, a3, . . .) + (2a1 − 1, a2, a3, . . .)).

Since ∑ anen has norm 1, Lemma 25 gives that (1, a2, a3, . . .) is in BT.
Then, since |2a1 − 1| 6 1 and the unit vector basis is 1-unconditional,
‖(2a1− 1, a2, a3, . . .)‖T 6 ‖(1, a2, a3, . . .)‖T = 1, making (2a1− 1, a2, a3, . . .) ∈
BT with a norm less than or equal to 1. Therefore, ∑ anen is not an
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extreme point of BT.
Case 2: Suppose a1 < 0. By similar method to above, we see that

∑ anen =
1
2
((−1, a2, a3, . . .) + (2a1 + 1, a2, a3, . . .)),

which makes ∑ anen not an extreme point of BT, as desired.

Now we introduce another lemma that says switching the first two
coordinates of a vector will not change its Tsirelson norm. This idea
is essential to prove Theorem 23.

Lemma 27. Given a vector x = ∑ aiei ∈ T,

‖∑ aiei‖T = ‖a2e1 + a1e2 +
∞

∑
i=3

aiei‖T.

Proof. Let x = ∑ aiei ∈ T. Let y = a2e1 + a1e2 +
∞
∑

i=3
aiei. We have

‖x‖0 = ‖y‖0. Note that Ex = Ey whenever min E > 3. Using (8) we
have that

‖x‖T = ‖x‖0 ∨ sup{
k

∑
i=1
‖Eix‖T : k > 3, (Ei)

k
i=1 is admissible}

= ‖y‖0 ∨ sup{
k

∑
i=1
‖Eiy‖T : k > 3, (Ei)

k
i=1 is admissible} = ‖y‖T

(9)

This is the desired result.

With the above lemmas in place, we now provide our exposition of
Theorem 23 [3, p.202].

Proof. (Theorem 23) Let x = ∑i∈N aiei with either |a1| < 1 or |a2| < 1.
We show that x 6∈ ext(BT). If we can do so, then we are done by con-
trapositive. We know by Lemma 26 that if |a1| < 1 then x 6∈ ext(BT).
Thus, we just need to consider the case when |a2| < 1. Assume via
contradiction that x ∈ ext(BT) when we assume |a2| < 1. Then by
Lemma 26, it must be that x = e1 + ∑i>2 aiei. By Lemma 27, we know
that

‖e1 + ∑
i>2

aiei‖T = ‖a2e1 + e2 + ∑
i>3

aiei‖T.

.
We also know the above norms must equal one, since x ∈ ext(BT)

by assumption and the zero norm is one. For convenience, denote
∑i>3 aiei by x3. So, ‖a2e1 + e2 + x3‖T = 1. Then, using Lemma 25, we
know

‖e1 + e2 + x3‖T = 1.
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Since |a2| < 1 by assumption, we can find an ε > 0 such that |a2± ε| <
1. Then we have

x =
1
2

[(
e1 + (a2 + ε)e2 + x3

)
+

(
e1 + (a2 − ε)e2 + x3

)]
.

Then, since Proposition 17 gives us that (ei)
∞
i=1 is 1-unconditional, we

know
‖e1 + (a2 + ε)e2 + x3‖T 6 ‖e1 + e2 + x3‖T = 1

and
‖e1 + (a2 − ε)e2 + x3‖T 6 ‖e1 + e2 + x3‖T = 1.

Therefore by definition, x 6∈ ext(BT), which contradicts our assump-
tion that x ∈ ext(BT).

We now introduce a lemma that will be necessary to prove Theorem
22 (Item 1). This lemma shows that the signs of a vector’s coordinates
are not significant in determining whether or not it will be an extreme
point.

Lemma 28. Let w = ∑ aiei and x = ∑ |ai|ei. If x ∈ ext(BT), then
w ∈ ext(BT).

Proof. Let w = ∑ aiei and x = ∑ |ai|ei. Suppose there exist w1, w2 ∈ BT

such that w1, w2 6= w and w = 1
2 (w1 + w2). This is equivalent to

supposing w 6∈ ext(BT). We will now show that this supposition
implies x 6∈ ext(BT). To do so, we will define x1, x2 ∈ BT such that
x1, x2 6= x and x = 1

2 (x1 + x2). Let

xk(i) =

{
wk(i) ai > 0

−wk(i) ai < 0

for k ∈ {1, 2} and for all i ∈ N. With this set-up, note that for all
i ∈N with ai > 0,

1
2
(x1(i) + x2(i)) =

1
2
(w1(i) + w2(i)) = w(i) = ai = |ai| = x(i),

and for all i ∈N with ai < 0,

1
2
(x1(i)+ x2(i)) =

1
2
(−w1(i)+ (−w2(i))) = −w(i) = −ai = |ai| = x(i).

Then, x = 1
2 (x1 + x2) for x1, x2 6= x. Also, we know ‖xk‖T = ‖wk‖T 6

1 for k ∈ {1, 2}, where the equality relies on Remark 18 and the
inequality comes from the fact that wk ∈ BT. Therefore, x 6∈ ext(BT).

Now we can more easily provide our exposition of the proof of Theo-
rem 22 (Item 1).
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Proof. (Theorem 22 (Item 1)) Let i, j ∈ N such that 2 < i < j. Let
{ε1, ε2, ε i, ε j} ∈ {±1} and define w = ε1e1 + ε2e2 + ε iei + ε jej. We
show w ∈ ext(BT). To do so, we begin by showing w ∈ BT.

‖w‖T = ‖e1 + e2 + ei + ej‖T

= max{‖e1 + e2 + ei + ej‖0, ‖ei + ej‖T}
= max{1, 1}
= 1.

The first equality above results from Remark 18. The second equality
above uses (8) in combination with (6), while the third equality relies
on Lemma 24. Therefore, we see that w ∈ BT.

Now we will show x = e1 + e2 + ei + ej is an extreme point of BT.
If we can do this, then we know w is also an extreme point of BT by
Lemma 28. Suppose x = 1

2 (y + z) for y, z ∈ BT. For k ∈ {1, 2, i, j}, we
claim y(k) = z(k) = 1. Let k ∈ {1, 2, i, j}. If y(k) < 1, then z(k) > 1
in order to satisfy the equation x(k) = 1

2 (y(k) + z(k)). However, this
makes ‖z‖T > ‖z‖0 > |z(k)| > 1, which contradicts z ∈ BT. Therefore
y(k) > 1, but y(k) = 1 or else we have the same contradiction. Since
y(k) = 1, it must be that z(k) = 1 to make x(k) = 1

2 (y(k) + z(k)).
So, x(k) = y(k) = z(k) = 1 for all k ∈ {1, 2, i, j}. Now we show
that for all ` ∈ N \ {1, 2, i, j} we have y(`) = z(`) = x(`) = 0. Fix
` ∈ N \ {1, 2, i, j}. We already know that x(`) = 0. Now assume via
contradiction that y(`) 6= 0. We know ` > 3, which makes (Er)3

r=1
admissible for E1 = {`}, E2 = {i}, and E3 = {j}, supposing without
loss of generality that ` < i. Thus,

‖y‖T >
1
2

sup

{
k

∑
r=1
‖Ery‖T : k ∈N, (Er)

k
r=1 admissible

}

>
1
2

(
‖E1y‖0 + ‖E2y‖0 + ‖E3y‖0

)
=

1
2
(2 + |y(`)|)

= 1 +
|y(`)|

2
> 1.

The first inequality above comes from (6), and the rest of the above
lines follow easily from there. So, y 6∈ BT if we assume y(`) 6= 0. This
is a contradiction, so y(`) = x(`) = 0 for all ` ∈ N \ {1, 2, i, j}. The
same method works to show z(`) = x(`) = 0 for all ` ∈N \ {1, 2, i, j},
so y = z = x. Therefore, by Definition 20, x is an extreme point of BT,
which gives us that w, or ε1e1 + ε2e2 + ε iei + ε jej, is an extreme point
of BT as explained above.

Now that we have introduced some example extreme points of BT

from [3], we introduce some extreme points of BT of our own by
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proving the other items within Theorem 22. To do so, we begin by
proving the below lemma that gives the Tsirelson norm of a vector of
ei’s.

Lemma 29. Let n ∈N with n > 2. Then

‖
2n−1

∑
i=1

ei‖T = ‖
2n

∑
i=1

ei‖T =
n
2

.

Proof. Let n ∈ N with n > 2. First we show ‖∑2n−1
i=1 ei‖T = n

2 . Note
that

‖
2n−1

∑
i=1

ei‖T >
1
2

2n−1

∑
i=n
‖ei‖T =

n
2

,

where the inequality comes from the fact that {n, n + 1, . . . , 2n − 1}
is a Schreier set and the equality follows from summing up n-many
zero norms of 1.

Let (Ei)
d
i=1 be admissible. That is, d 6 E1 < E2 < · · · < Ed and

each Ei is an interval. Let

D1 =

{
i ∈ {1, 2, . . . , d} : Ei is a singleton

}
and D2 = {1, 2, . . . , d} \ D1. Then, as desired,

‖
2n−1

∑
i=1

ei‖T =
1
2

d

∑
i=1
‖Ei(

2n−1

∑
j=1

ej)‖T

=
1
2

(
|D1|+ ∑

i∈D2

‖ ∑
j∈Ei

ej‖T

)
6

1
2

(
|D1|+ ∑

i∈D2

|Ei|
2

)
=

1
2

(
|D1|+

1
2 ∑

i∈D2

|Ei|
)

6
1
2

(
|D1|+

1
2

(
(2n− 1)− (d− 1)− |D1|

))

=
1
2

(
|D1|+ n− 1

2
− d

2
+

1
2
− |D1|

2

)
=

1
2

(
|D1|

2
− d

2
+ n

)
6

n
2

.

Now we provide reasoning for the above relations. The first line fol-
lows from (6) and our knowledge that ‖∑2n−1

i=1 ei‖T > ‖∑2n−1
i=1 ei‖0 = 1.

The second line follows from our definitions of D1 and D2. By Lemma
19, ‖∑k∈E ek‖T 6 |E|

2 , which explains the third line above. The fourth
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line comes from simplification of the previous line. To explain the
fifth line, we observe that |D1|+ |D2| = d and(

∑
i∈D2

|Ei|
)
+ |D1| 6 (2n− 1)− (d− 1),

making ∑i∈D2
|Ei| 6 (2n − 1) − (d − 1) − |D1|. Lines six and seven

follow from simplifying expressions, while the last line relies on the
fact that |D1| 6 d. Therefore, ‖∑2n−1

i=1 ei‖T = n
2 , as desired.

Now we show ‖∑2n
i=1 ei‖T = n

2 . First note that the same methodol-
ogy used above holds to show ‖∑2n

i=1 ei‖T > n
2 . Now, we use the

same (Ei)
d
i=1, D1, and D2 mentioned above to prove the other direc-

tion. Similar to above, we see that ‖∑2n
i=1 ei‖T 6 1

2

(
|D1|+ ∑i∈D2

|Ei |
2

)
.

If |D1| = d then |D2| = 0, making ∑i∈D2

|Ei |
2 = 0. In this case,

‖∑2n
i=1 ei‖T 6 1

2 (|D1|) = d
2 6 n

2 .
Now assume |D1| 6 d− 1. Then following the above methodology

we get

‖
2n

∑
i=1

ei‖T 6
1
2

(
|D1|+

1
2

(
(2n)− (d− 1)− |D1|

))

=
1
2

(
|D1|+ n− d

2
+

1
2
− |D1|

2

)
=

1
2

(
|D1|

2
− d

2
+ n +

1
2

)
6

1
2

(
d− 1

2
− d

2
+ n +

1
2

)
=

n
2

.

Thus, ‖∑2n
i=1 ei‖T = ‖∑2n−1

i=1 ei‖T = n
2 , as desired.

We will also need the below lemma involving matrices and linear
algebra when proving that our vectors from Theorem 22 are extreme
points.

Lemma 30. For any n ∈ N with n > 2 and ε1, ε2, . . . , εn ∈ {±1}, the
n× n matrix

A =



0 ε2 ε3 . . . εn−1 εn

ε1 0 ε3 . . . εn−1 εn

ε1 ε2 0 . . . εn−1 εn

ε1 ε2 ε3
. . . εn−1 εn

...
...

... . . . 0 εn

ε1 ε2 ε3 . . . εn−1 0


is invertible.
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Proof. Let n ∈N with n > 2 and let ε1, ε2, . . . , εn ∈ {±1}. By factoring
each ε i out of the ith column we have that det(A) = ε1ε2 · · · εndet(Jn−
In) for Jn the n× n matrix of all 1’s and In the n× n identity matrix.
To show that Jn − In has a non-zero determinant, we can equivalently
show that it is invertible. Below we note that (Jn− In)−1 = 1

n−1 Jn− In:

(Jn − In)(
1

n− 1
Jn − In) =

1
n− 1

(Jn)
2 − (1 +

1
n− 1

)Jn + In

=
1

n− 1
(nJn)− (1 +

1
n− 1

)Jn + In

= (−1 +
n− 1
n− 1

)Jn + In

= In.

All equalities above follow from simple matrix multiplication. In par-
ticular, the second equality follows from the fact that (Jn)2 = nJn.
Therefore, Jn − In is invertible, making Jn − In have a non-zero deter-
minant. So, since det(A) = ε1ε2 · · · εndet(Jn − In) and each ε i is also
non-zero, A has a non-zero determinant and so is invertible.

In particular, the above lemma will be used to prove the following
one. We will see a similar pattern when proving that our extreme
points are, in fact, extreme points. Thus, we capture that common
pattern in the below lemma.

Lemma 31. Let x = 2
n ∑2n

i=n ei for some n > 2. If there exist y, z ∈ BT such
that x = 1

2 (y + z), then x(k) = y(k) = z(k) for all k > n.

Proof. Let n > 2. Suppose x = 2
n ∑2n

i=n ei and we can find y, z ∈ BT

such that x = 1
2 (y + z). So, y(k) = x(k) + εkδk and z(k) = x(k)− εkδk

for k ∈ N, εk ∈ {±1}, and δk > 0. Observe that any G ⊆ {n, n +

1, . . . , 2n} with |G| = n is admissible. Therefore

1 > ‖y‖T >
1
2 ∑

k∈G
y(k) =

1
2

(
(∑

k∈G
x(k)) + (∑

k∈G
εkδk)

)
=

1
2

(
n
(

2
n

)
+ ∑

k∈G
εkδk

)
= 1 +

1
2 ∑

k∈G
εkδk.

The first inequality above results from y ∈ BT, and the second inequal-
ity comes from the fact that G is a Schreier set. The rest follows easily,
so it must be that ∑k∈G εkδk 6 0. By similar argument on z, we see
that −∑k∈G εkδk 6 0. Therefore it must be that ∑k∈G εkδk = 0. Since
the above will be true for all possible G and there are (n + 1)-many
options for G, we have the following system of equations:

0δn + εn+1δn+1 + · · ·+ ε2n−1δ2n−1 + ε2nδ2n = 0

εnδn + 0δn+1 + · · ·+ ε2n−1δ2n−1 + ε2nδ2n = 0

· · ·
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· · ·

· · ·

εnδn + εn+1δn+1 + · · ·+ ε2n−1δ2n−1 + 0δ2n = 0.

Rewriting the above system as a matrix equation Ax = 0 yields:

0 εn+1 εn+2 . . . ε2n−1 ε2n

εn 0 εn+2 . . . ε2n−1 ε2n

εn εn+1 0 . . . ε2n−1 ε2n

εn εn+1 εn+2
. . . ε2n−1 ε2n

...
...

... . . . 0 ε2n

εn εn+1 εn+2 . . . ε2n−1 0





δn

δn+1

δn+2
...

δ2n−1

δ2n


=



0
0
0
...
0
0


.

Then, from Lemma 30, we know det(A) 6= 0, which means the matrix
equation Ax = 0 has only the trivial solution. Therefore we know
δk = 0 for all k ∈ {n, n + 1, . . . , 2n− 1, 2n}. Hence, x(k) = y(k) = z(k)
for all k ∈ {n, n + 1, . . . , 2n − 1, 2n}. Now consider y(k) = εkδk for
some k > 2n, εk ∈ {±1}, and δk > 0. Note that {n+ 1, n+ 2, . . . , 2n, k}
is a Schreier set for this choice of k. So, since y must be in BT,

1 >
1
2

(( 2n

∑
j=n+1

y(j)
)
+ y(k)

)
=

1
2

((
n
(

2
n

))
+ y(k)

)
= 1+

1
2
(y(k)).

Therefore y(k) 6 0. So, εkδk 6 0. Using the same methodology for
z, we get that z(k) 6 0, so −εkδk 6 0. Therefore it must be that
εkδk = 0, showing x(k) = y(k) = z(k) = 0 for all k > 2n. Thus,
x(k) = y(k) = z(k) for all k > n.

We are now able to prove the following new result, which is Theorem
22 (Item 2).

Proof. (Theorem 22 (Item 2)) Let x = η1e1 + η2e2 +
1
2 ∑i∈F ηiei, for F =

{3, 4, 5, 6, 7, 8} and signs ηi ∈ {±1}. Using Lemma 28 we can assume
without loss of generality that ηi = 1 for i ∈ F ∪ {1, 2}. First we
show ‖x‖T = 1. Well, since ‖x‖T > ‖x‖0 = 1, we just need to show
‖x‖T 6 1.

‖x‖T = max{‖x‖0, ‖1
2 ∑

i∈F
ei‖T}

= max{1,
1
2
‖∑

i∈F
ei‖T}

6 max
{

1,
1
2

(
4
2

)}
= 1.
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The first equality above follows from (8). The other equalities follow
from simple properties of norms. The lone inequality above results
from Lemma 29.

Now suppose x = 1
2 (y + z) for some y, z ∈ BT. We will prove that

x = y = z. By Lemma 31, we know x(k) = y(k) = z(k) for all k > 4.
Now consider y(3) = x(3) + ε3δ3 and z(3) = x(3) − ε3δ3 for some
ε3 ∈ {±1} and δ3 > 0. Now suppose via contradiction δ3 > 0. Then,
supposing without loss of generality that y(3) = 1

2 + δ3, we see that
the admissible sequence ({3}, {4}, {5, 6, 7, 8}) yields

‖y‖2 >
1
2

((
1
2
+ δ3

)
+

(
1
2

)
+

(
1
2

(
1
2
+

1
2
+

1
2
+

1
2

)))
=

1
2
(2+ δ3) > 1.

This contradicts the fact that y ∈ BT. Therefore, δ3 = 0, and x(3) =

y(3) = z(3). Lastly, arguing as in the proof of Theorem 22 (Item 1),
x(1) = x(2) = y(1) = y(2) = z(1) = z(2) = 1, since any perturbation
of 1 will cause a zero norm to be more than 1. Therefore x = y = z,
and x is an extreme point of BT by Definition 20.

Now we follow the same methodology as above to prove Item 3

within Theorem 22.

Proof. (Theorem 22 (Item 3)) Let F = {4, 5, 6, 7, 8, 9, 10} and let x =

η1e1 + η2e2 +
3
5 η3e3 +

2
5 ∑i∈F ηiei where each ηi ∈ {±1}. Using Lemma

28 we can assume without loss of generality that ηi = 1 for i ∈ F ∪
{1, 2, 3}. First we show ‖x‖T = 1. Well, since ‖x‖T > ‖x‖0 = 1, we
just need to show ‖x‖T 6 1.

By (8), if ‖x‖T 6= ‖x‖0, then ‖x‖T = sup
{

1
2

k
∑

i=1
‖Eix‖T : k ∈ N, k >

3, (Ei)
k
i=1 admissible

}
. So, for some (Ei)

k
i=1 admissible for k > 3, we

have ‖x‖T = 1
2 ∑k

i=1 ‖Eix‖T. Note that if k > 4, we are essentially
working with a vector of all 2

5 ’s with max supp x = 10 and Lemma
29 gives the norm of x as 2

5 (
5
2 ), or 1, so we assume k = 3. Thus,

‖x‖T = 1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
.

By Lemma 19, we know each ‖Eix‖T 6 ‖Eix‖0 ∨ 1
2 ∑j∈Ei

|x(j)|, so
we have two options for each ‖Eix‖T.
Case 1: Suppose ‖Eix‖T 6 1

2 ∑j∈Ei
|x(j)| for all i ∈ {1, 2, 3}. Then

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
1
2

(
3
5
+

14
5

))
=

17
20

< 1.

Case 2: Suppose ‖Eix‖T 6 1
2 ∑j∈Ei

|x(j)| for two i ∈ {1, 2, 3}.
Case 2(a): Suppose ‖E1x‖T 6 ‖E1x‖0 = 3

5 . Then ‖E2x‖T + ‖E3x‖T 6
1
2 (

14
5 ). So,

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
3
5
+

1
2

(
14
5

))
=

3
10

+
7
10

= 1.
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Case 2(b): Suppose ‖E2x‖T 6 ‖E2x‖0 = 2
5 . Then ‖E1x‖T + ‖E3x‖T 6

1
2 (

3
5 +

12
5 ). So,

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
2
5
+

1
2

(
3
5
+

12
5

))
=

1
5
+

3
4
=

19
20

< 1.

Case 2(c): Suppose ‖E3x‖T 6 ‖E3x‖0 = 2
5 . The same argument used

in Case 2(b) works to show ‖x‖T 6 1 in this case.
Case 3: Suppose ‖Eix‖T 6 1

2 ∑j∈Ei
|x(j)| for only one i ∈ {1, 2, 3}.

Case 3(a): Suppose ‖E1x‖T 6 1
2 ∑j∈E1

|x(j)|. To get an upper bound,
we suppose E1x is a vector of 3

5 ’s with max supp E1x = 8 to get
‖E1x‖T 6 3

5 (
4
2 ) = 6

5 . This upper bound holds by Lemma 29. Also,
‖E2x‖T = ‖E3x‖T 6 2

5 , so

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
6
5
+

4
5

)
=

1
2
(2) = 1.

Case 3(b): Suppose ‖E2x‖T 6 1
2 ∑j∈E2

|x(j)|. By Lemma 29, ‖E2x‖T 6
2
5 (

5
2 ) = 1. Also, ‖E1x‖T 6 3

5 and ‖E3x‖T 6 2
5 , so

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
3
5
+ 1+

2
5

)
=

1
2
(2) = 1.

Case 3(c): Suppose ‖E3x‖T 6 1
2 ∑j∈E3

|x(j)|. The same argument
used in Case 3(b) works to show ‖x‖T 6 1 in this case.
Case 4: Suppose ‖Eix‖T 6 ‖Eix‖0 for all i ∈ {1, 2, 3}. Then

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
3
5
+

2
5
+

2
5

)
=

1
2

(
7
5

)
=

7
10

< 1.

Therefore, 1 6 ‖x‖T 6 1 in all cases, so ‖x‖T = 1.
Now suppose x = 1

2 (y + z) for some y, z ∈ BT. We will prove
that x = y = z. Arguing as in the proof of Theorem 22 (Item 1),
we know that x(1) = x(2) = y(1) = y(2) = z(1) = z(2) = 1. By
Lemma 31, x(k) = y(k) = z(k) for all k > 5. Next we want to show
x(4) = y(4) = z(4). We know y(4) = 2

5 + ε4δ4 and z(4) = 2
5 − ε4δ4 for

some ε4 ∈ {±1} and some δ4 > 0. Assume via contradiction δ4 > 0.
Then, supposing without loss of generality that y(4) = 2

5 + δ4, we see
that the admissible sequence ({4}, {5}, {6}, {7, 8, 9, 10}) yields

‖y‖2 >
1
2

((
2
5
+ δ4

)
+

(
2
5

)
+

(
2
5

)
+

(
1
2

(
2
5
+

2
5
+

2
5
+

2
5

)))
=

1
2
(2+ δ4) > 1.

This contradicts the fact that y ∈ BT. Therefore, δ4 = 0, as desired.
Now we want to show x(3) = y(3) = z(3). We know y(3) =

3
5 + ε3δ3 and z(3) = 3

5 − ε3δ3 for some ε3 ∈ {±1} and some δ3 > 0. As-
sume via contradiction δ3 > 0 and suppose without loss of generality
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that y(3) = 3
5 + δ3. Then the admissible sequence ({3}, {4}, {5, 6, 7, 8, 9})

yields

‖y‖2 >
1
2

((
3
5
+ δ3

)
+

2
5
+

1
2

(
5
(

2
5

)))
=

1
2
(2 + δ3) > 1,

which contradicts y ∈ BT. Thus, it must be that δ3 = 0. So, y(3) =

z(3) = 3
5 .

Putting it all together we have x = y = z, as desired. Therefore x is
an extreme point of BT by Definition 20.

Once again, we will follow a very similar methodology to the one
used above when proving the fourth item in our main theorem for
this chapter.

Proof. (Theorem 22 (Item 4)) Let F = {4, 5, 6, 7, 8, 9, 10, 11, 12} and let
x = η1e1 + η2e2 +

1
2 η3e3 +

1
3 ∑i∈F ηiei where each ηi ∈ {±1}. Using

Lemma 28 we can assume without loss of generality that ηi = 1 for
i ∈ F∪{1, 2, 3}. First we show ‖x‖T = 1. Well, since ‖x‖T > ‖x‖0 = 1,
we just need to show ‖x‖T 6 1.

By (8), if ‖x‖T 6= ‖x‖0, then ‖x‖T = sup
{

1
2

k
∑

i=1
‖Eix‖T : k ∈ N, k >

3, (Ei)
k
i=1 admissible

}
. So, for some (Ei)

k
i=1 admissible for k > 3, we

have ‖x‖T = 1
2 ∑k

i=1 ‖Eix‖T. Note that if k > 4, we are essentially
working with a vector of all 1

3 ’s with max supp x = 12 and Lemma
29 gives the norm of x as 1

3 (
6
2 ), or 1, so we assume k = 3. Thus,

‖x‖T = 1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
.

By Lemma 19, we know each ‖Eix‖T 6 ‖Eix‖0 ∨ 1
2 ∑j∈Ei

|x(j)|, so
we have two options for each ‖Eix‖T.
Case 1: Suppose ‖Eix‖T 6 1

2 ∑j∈Ei
|x(j)| for all i ∈ {1, 2, 3}. Then

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
1
2

(
1
2
+

9
3

))
=

7
8
< 1.

Case 2: Suppose ‖Eix‖T 6 1
2 ∑j∈Ei

|x(j)| for two i ∈ {1, 2, 3}.
Case 2(a): Suppose ‖E1x‖T 6 ‖E1x‖0 = 1

2 . Then ‖E2x‖T + ‖E3x‖T 6
1
2 (

9
3 ). So,

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
1
2
+

1
2

(
9
3

))
=

1
4
+

1
4
(3) = 1.

Case 2(b): Suppose ‖E2x‖T 6 ‖E2x‖0 = 1
3 . Then ‖E1x‖T + ‖E3x‖T 6

1
2 (

1
2 +

8
3 ). So,

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
1
3
+

1
2

(
1
2
+

8
3

))
=

1
6
+

1
4

(
19
6

)
=

23
24

< 1.
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Case 2(c): Suppose ‖E3x‖T 6 ‖E3x‖0 = 1
3 . The same argument used

in Case 2(b) works to show ‖x‖T 6 1 in this case.
Case 3: Suppose ‖Eix‖T 6 1

2 ∑j∈Ei
|x(j)| for only one i ∈ {1, 2, 3}.

Case 3(a): Suppose ‖E1x‖T 6 1
2 ∑j∈E1

|x(j)|. To get an upper bound,
we suppose E1x is a vector of 1

2 ’s with max supp E1x = 10 to get
‖E1x‖T 6 1

2 (
5
2 ) = 5

4 . This upper bound holds by Lemma 29. Also,
‖E2x‖T = ‖E3x‖T 6 1

3 , so

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
5
4
+

2
3

)
=

5
8
+

1
3
=

23
24

< 1.

Case 3(b): Suppose ‖E2x‖T 6 1
2 ∑j∈E2

|x(j)|. By Lemma 29, ‖E2x‖T 6
1
3 (

6
2 ) = 1. Also, ‖E1x‖T 6 1

2 and ‖E3x‖T 6 1
3 , so

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
1
2
+ 1+

1
3

)
=

1
2

(
11
6

)
=

11
12

< 1.

Case 3(c): Suppose ‖E3x‖T 6 1
2 ∑j∈E3

|x(j)|. The same argument
used in Case 3(b) works to show ‖x‖T 6 1 in this case.
Case 4: Suppose ‖Eix‖T 6 ‖Eix‖0 for all i ∈ {1, 2, 3}. Then

‖x‖T =
1
2

(
‖E1x‖T + ‖E2x‖T + ‖E3x‖T

)
6

1
2

(
1
2
+

1
3
+

1
3

)
=

1
2

(
7
6

)
=

7
12

< 1.

Therefore, 1 6 ‖x‖T 6 1 in all cases, so ‖x‖T = 1.
Now suppose x = 1

2 (y + z) for some y, z ∈ BT. We will prove
that x = y = z. Arguing as in the proof of Theorem 22 (Item 1),
we know that x(1) = x(2) = y(1) = y(2) = z(1) = z(2) = 1. By
Lemma 31, we know x(k) = y(k) = z(k) for all k > 6. Now we show
x(5) = y(5) = z(5). We know y(5) = 1

3 + ε5δ5 and z(5) = 1
3 − ε5δ5 for

some ε5 ∈ {±1} and some δ5 > 0. Suppose via contradiction δ5 > 0.
Then, supposing without loss of generality that y(5) = 1

3 + δ5, we see
that the admissible sequence ({5}, {6}, {7}, {8}, {9, 10, 11, 12}) yields

‖y‖2 >
1
2

((
1
3
+ δ5

)
+

(
1
3

)
+

(
1
3

)
+

(
1
3

)
+

(
1
2

(
1
3
+

1
3
+

1
3
+

1
3

)))

=
1
2
(2 + δ5) > 1.

This contradicts the fact that y ∈ BT. Therefore, δ5 = 0, as desired.
Now we want to show y(4) = z(4) = 1

3 . We know y(4) = 1
3 + ε4δ4

and z(4) = 1
3 − ε4δ4 for some ε4 ∈ {±1} and some δ4 > 0. Sup-

pose via contradiction δ4 > 0. Then, supposing without loss of
generality that y(4) = 1

3 + δ4, we see that the admissible sequence
({4}, {5}, {6}, {7, 8, 9, 10, 11, 12}) yields

‖y‖2 >
1
2

((
1
3
+ δ4

)
+

(
1
3

)
+

(
1
3

)
+

(
1
2

(
6
(

1
3

))))
=

1
2
(2+ δ4) > 1.
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This contradicts the fact that y ∈ BT. Therefore, δ4 = 0, as desired.
Now we want to show y(3) = z(3) = 1

2 . We know y(3) = 1
2 + ε3δ3 and

z(3) = 1
2 − ε3δ3 for some ε3 ∈ {±1} and some δ3 > 0. Suppose δ3 > 0

and suppose without loss of generality that y(3) = 1
2 + δ3. Then the

admissible sequence ({3}, {4, 5, 6}, {7, 8, 9, 10, 11, 12}) yields

‖y‖2 >
1
2

((
1
2
+ δ3

)
+

1
2

(
3
(

1
3

))
+

1
2

(
6
(

1
3

)))
=

1
2

(
2+ δ3

)
> 1,

which contradicts y ∈ BT. Thus, it must be that y(3) = z(3) = 1
2 .

Putting it all together we have x = y = z, as desired. Therefore x is
an extreme point of BT by Definition 20.
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7

I M P R O V I N G B O U N D S O N j ( n )

In this chapter we improve existing bounds on a quantity j ( n ) intro-
duced in [3].

Definition 32. For n a positive integer, j ( n ) is the smallest non-negative
integer such that for all x ∈ c 0 0 with m a x supp x 6 n we have

‖ x ‖ j ( n ) = m a x
m∈N

‖ x ‖m

In [3] they state that j ( n ) 6 b ( n + 1 ) / 2 c , admitting this is likely
not a sharp upper bound for j ( n ) . In this chapter, we build on this
idea to provide the following upper and lower bounds on j ( n ) .

Theorem 33. The following items provide improved bounds on j ( n ) .

1. For all n ∈ N , j ( n ) > l o g 2 ( n + 1 ) − 4 .

2. For all n ∈ N , j ( n ) 6 2
√

n + 5 .

Before proving this theorem, we clarify what it means for a separate
quantity f ( n ) to be less than j ( n ) or greater than or equal to j ( n ) .
f ( n ) < j ( n ) if there exists a y ∈ c 0 0 with m a x supp y = n such
that ‖ y ‖ f ( n ) < ‖ y ‖ T . On the contrary, f ( n ) > j ( n ) if for all
y ∈ c 0 0 with m a x supp y = n we have ‖ y ‖ f ( n ) = ‖ y ‖ T .

We first prove the lower bound in the above theorem. From the def-
inition of j ( n ) we need to show that for each n ∈ N there is a vec-
tor x n ∈ c 0 0 with m a x supp x n 6 n and ‖ x n ‖ b l o g 2 ( n+ 1 )− 4 c <

‖ x n ‖ T . Such vectors exist within the cascade vectors, which come
from the work of Noah Duncan [4]. We now introduce the following
theorem to specify the cascade vectors we will need.

Theorem 34. For each n ∈ N with n > 3 there exists a vector y n

such that m a x supp y n = 2 n − 1 and there is an f n ∈ W n− 2 such
that f n ( y n ) = ‖ y n ‖ T and for all g ∈ W \ { f n } we have g ( y n ) <

‖ y n ‖ .

The above theorem follows from work in Duncan’s thesis, so we will
just present the definition of the y n ’s. Letting n ∈ N with n > 3,
we will define y n = c ( n − 2 , 4 ) , where c ( n − 2 , 4 ) is notation
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from Duncan’s thesis. Instead of introducing this notation, we just
define the first few y n ’s.

y 3 = ( 0 , 0 , 0 ,
1
2

,
1
2

,
1
2

,
1
2

, 0 , . . . ) =
1
2

7

∑
i= 4

e i ,

y 4 = ( 0 , 0 , 0 ,
1
2

,
1
2

,
1
2

, 0 ,
1
8

,
1
8

,
1
8

,
1
8

,
1
8

,
1
8

,
1
8

,
1
8

, 0 , . . . )

=
1
2

6

∑
i= 4

e i +
1
8

1 5

∑
i= 8

e i ,

y 5 =
1
2

6

∑
i= 4

e i +
1
8

1 4

∑
i= 8

e i +
1

3 2

3 1

∑
i= 1 6

e i ,

and so on. To help clarify what is actually happening as we go from
one y n to y n+ 1 , note that we take off y n ’s last non-zero value and
replace it with (m a x supp y n + 1)-many values that sum to give
a next level norm of that single replaced value, starting at index
m a x supp y n + 1, as a way to keep the norm constant. By design,
m a x supp y n = 2 n − 1.

The next proposition follows easily from the above theorem and
will be useful in proving Theorem 33 (Item 1).

Proposition 35. For each n ∈ N with n > 3 , j ( 2 n − 1 ) > n − 3 .

Proof. Let n ∈ N with n > 3. We show that j ( 2 n − 1 ) > n − 3.
Equivalently, we show that there exists some vector x ∈ c 0 0 with
m a x supp x = 2 n − 1 and ‖ x ‖ n− 3 < ‖ x ‖ T . By Theorem 34, we
know that the vector y n has ‖ y n ‖ n− 3 < ‖ y n ‖ n− 2 = ‖ y n ‖ T , so
y n fits this desired description.

With the above proposition in place, our proof of Theorem 33 (Item
1) does not require much more work, as seen below.

Proof. (Theorem 33)(Item 1) Let k ∈ N . If k 6 7, we are trivially
done, since l o g 2 ( k + 1 ) − 4 < 0. Thus we assume k > 7. Note
that we have 2 n− 1 − 1 6 k < 2 n − 1 for some n > 4. Equivalently,
2 n− 1 6 k + 1 < 2 n . So n − 1 6 l o g 2 ( k + 1 ) < n . Also note that
for all m ∈ N , j (m ) 6 j (m + 1 ) . In other words, j (m ) increases
as m increases. Therefore,

j ( k ) > j ( 2 n− 1 − 1 ) > ( n − 1 ) − 3 = n − 4 > l o g 2 ( k + 1 ) − 4 .

The first inequality follows from the facts that k > 2 n− 1 − 1 and
j (m ) increases as m increases. The second inequality comes from
Proposition 35. The last inequality comes from the fact that l o g 2 ( k +

1 ) < n . Therefore, j ( k ) > l o g 2 ( k + 1 ) − 4, as desired.
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We now consider upper bounds on j ( n ) with the goal of proving
Theorem 33 (Item 2). We introduce the following notation.

Denote N<N = ∪∞
n= 1 N n . For σ ∈ N<N , if σ = ( σ ( 1 ) , . . . , σ ( k ) ) ,

we have | σ | = k and s ( σ ) := σ ( 1 ) + · · · + σ ( k ) = ∑ k
i= 1 σ ( i ) .

We will also say |∅ | = 0.

Definition 36 (Tree Index Set). For each f ∈ W there is a set T f ⊆
N<N ∪ {∅} called the tree index set of f . We set f = f∅.

1. σ ∈ T f is called a terminal node if σ a 1 6∈ T f . If σ is a terminal
node then fσ = ±e∗i for some i ∈N.

2. If σ ∈ T f is not a terminal node, then

fσ =
1
2 ∑
{k:σak∈T f }

fσak,

where {k : σ a k ∈ T f } = {1, . . . , m} for some m ∈N.

As an example to get familiar with the above notation, if f =
1
2 (

1
2 (e
∗
3 + e∗4 + e∗5) + e∗7 + e∗8), we say f(1) = 1

2 (e
∗
3 + e∗4 + e∗5), f(1,1) =

e∗3 , f(1,2) = e∗4 , f(1,3) = e∗5 , f(2) = e∗7 , and f(3) = e∗8 . So, T f =

{∅, (1), (2), (3), (1, 1), (1, 2), (1, 3)}.
With this notation formalized, we introduce the following remark.

Remark 37. For f ∈W, let m = max{|σ| : σ ∈ T f }. Then f ∈Wm.

We introduce the below lemma, whose proof we will postpone until
later.

Lemma 38. For f ∈ W and σ ∈ T f , let ` = min supp f and n >
max supp f . Then

|supp fσ|−min supp fσ 6 n− (|σ|+ 2)(`− 1)−
( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
− 1.

The above lemma will be used to prove the following proposition,
which provides a similar upper bound on j(n) to the one found in [3].
We include the proof of this proposition here because it helped set up
the methodology to find an even better upper bound.

Proposition 39. For x ∈ c00 with max supp x = n and f ∈ W such that
f (x) = ‖x‖T, f ∈Wd n

2 e.

Proof. Let x ∈ c00 with max supp x = n and f ∈ W such that f (x) =
‖x‖T. We begin by showing that |σ| > n

2 − 2 implies fσ ∈ W1. Sup-
pose |σ| > n

2 − 2. By Lemma 38,

|supp fσ|−min supp fσ 6 n− (|σ|+ 2)(`− 1)−
( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
− 1,
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where ` = min supp f . Note that (|σ| + 2)(` − 1) > (n/2)(2) = n,
using our initial assumption about |σ| and the fact that ` > 3 by (8).
Also σ(i)− 1 = 0 is a possibility but |σ|+ 1− i > 0, so we have

|supp fσ| −min supp fσ 6 n− n− 0− 0 = 0.

Then fσ ∈ W1 since |supp fσ| −min supp fσ 6 0 implies this fact by
definition of W1.

Assume via contradiction f 6∈ Wd n
2 e. Now suppose m = max{|σ| :

σ ∈ T f } > d n
2 e. Find σ = (n1, . . . , nk) such that k > d n

2 e. Then k− 2 >
n
2 − 2, which implies f(n1,...,nk−2) ∈ W1, as explained earlier. Therefore,
it cannot be that (n1, . . . , nk) ∈ T f , which contradicts the existence of
a σ ∈ T f such that |σ| = k. Thus, f ∈Wd n

2 e, as desired.

With the above lemma and proposition in place, we now prove a
theorem to allow us to move over functionals’ minimimum supports
as we go deeper into their breaking. To do so, we begin by defining
the following term for a specific type of functional.

Definition 40. Let x ∈ c00. f ∈W is a BH-functional for x if:

1. f (x) = ‖x‖T

2. ‖x|[m+1,∞)‖T < f (x) for m = min supp f .

Theorem 41. Let x ∈ c00 and suppose there is an f ∈ W with (1, 1) ∈ T f
such that f is a BH-functional for x. Then f(1,1) ∈W1.

Proof. Let x ∈ c00(N) and find f ∈ W such that f is a BH-functional
for x, where m = min supp f . Assume that (1, 1) ∈ T f and that
f(1,1) 6∈W1. Then min supp f(1,2) > 2m. Note we assume without loss
of generality that (1, 2) ∈ T f . Let

g =
1
2
( f(1,2) + · · ·+ f(1,m) + f(2) + · · ·+ f(m)),

h =
1
2
( f(1,1) + f(2) + · · · f(m)).

Note that g, h ∈ W. By definition f(1)(x) = 1
2 ( f(1,1)(x)) + 1

2 ( f(1,2) +

· · · + f(1,m))(x). By assumption, g(x) 6 ‖x|[m+1,∞)‖T < f (x). Thus
( f(1,2) + · · · + f(1,m))(x) < f(1)(x), which implies f(1,1)(x) > f(1)(x).
However, this yields h(x) > f (x), which cannot happen since h ∈ W
and f (x) = ‖x‖T. This is the desired contradiction.

Before proving Theorem 33 (Item 2), we introduce the following lemma.

Lemma 42. Let x ∈ c00. Then we can find f ∈ W such that for all σ ∈ T f
we have fσ as a BH-functional for Eσx where Eσ = supp fσ.

We will not prove this lemma, but it follows from induction on the
height of the tree. We are now ready to prove the main theorem of
this chapter.
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Proof. (Theorem 33)(Item 2) Recall that our goal is to show j(n) 6
2
√

n + 5 for all n ∈ N. Let n ∈ N. If n 6 3, we know from (8) that
the zero norm will norm all vectors with maximum support of n, so
we assume n > 4. Let x ∈ c00 with max supp x = n. Find f ∈W such
that for all σ ∈ T f we have fσ as a BH-functional for Eσx. We know
we can do this by Lemma 42. Then for m = max{|σ| : σ ∈ T f } we
have f ∈Wm by Remark 37. Let ` = min supp f and n > max supp f .

By Lemma 38, we know that for all σ ∈ Tn

|supp fσ|−min supp fσ 6 n− (|σ|+ 2)(`− 1)−
( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
− 1.

Now we would like to get a good lower bound for the term ∑|σ|i=1[|σ|+
1− i][σ(i)− 1]. To do so we need to exclude the possibility of σ(i) = 1
for all i or σ = (1, . . . , 1). We will show that for all σ ∈ T f( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
>
(
|σ| − 3

2

)2

,

which will give us the following:
For |σ| > 2

√
n + 3,

|supp fσ| −min supp fσ 6 n− (|σ|+ 2)(`− 1)−
( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
− 1

6 n− 0−
(
|σ| − 3

2

)2

− 0

6 n−
(

2
√

n + 3− 3
2

)2

6 0.

Thus fσ ∈W1.
Then since |σ| > 2

√
n + 3 implies fσ ∈ W1, we can prove that

f ∈Wd2√n+5e. Assume via contradiction f 6∈Wd2√n+5e. Now suppose
m = max{|σ| : σ ∈ T f } > 2

√
n + 5. Find σ = (n1, . . . , nk) such that

k > 2
√

n + 5. Then k− 2 > 2
√

n + 5− 2, which implies f(n1,...,nk−2) ∈
W1, as explained earlier. Therefore, it cannot be that f(n1,...,nk) ∈ T f ,
which contradicts the existence of a σ ∈ T f such that |σ| = k. Thus,
f ∈Wd2√n+5e, as desired.

It remains to prove that for all σ ∈ T f( |σ|
∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
>
(
|σ| − 3

2

)2

,

To do so, we will need the following claim.

Claim 43. If σ ∈ T f and there is a j ∈ N such that σ(j) = σ(j− 1) = 1,
then |σ| 6 j + 1.
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improving bounds on j(n)

As a result of the above claim, if a pair of consecutive 1’s exists within
a σ, the 1’s have to be in the third-to-last and second-to-last positions
within σ and/or in σ’s last two positions. Denote the set of all σ’s in
N<N ∪ {∅} that do not contradict the above condition as Tbig. Then

min
{ |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1] : σ ∈ T f

}
> min

{ |σ|
∑
i=1

[|σ|+ 1− i][σ(i)− 1] : σ ∈ Tbig

}
> [|σ|][0] + [|σ| − 1][1] + [|σ| − 2][0]

+ [|σ| − 3][1] + · · ·+ [4][1] + [3][0] + [2][0] + [1][0]

= 2 + 4 + 6 + 8 + · · ·+ (|σ| − 1)− 2

= 2
(

1 + 2 + 3 + 4 + · · ·+ |σ| − 1
2

)
− 2

= 2

(
( |σ|−1

2 )( |σ|−1+2
2 )

2

)
− 2

=
(|σ| − 1)(|σ|+ 1)

4
− 2

=
|σ|2 − 9

4

>
(
|σ| − 3

2

)2

.

The first inequality above follows from the facts that T f ⊆ Tbig and
taking a minimum over a smaller set of σ’s will result in a minimum
at least as big as the minimum over the larger set. The second rela-
tion above results from considering the σ ∈ Tbig yielding the smallest
possible summation of [|σ| + 1 − i][σ(i) − 1]’s, which occurs when
we have as many 1’s as possible in σ and the rest as 2’s. In particu-
lar, this σ = (1, 2, 1, 2, . . . , 1, 1, 1). By assuming |σ| is odd, we ensure
the fourth-to-last coordinate in our σ and our summation is non-zero.
This estimate is good enough, since adding in another coordinate to
make |σ| even would just result in a non-zero fifth-to-last coordinate
and a zero fourth-to-last coordinate.

The third relation above follows from adding and subtracting 2

to our summation, and the fourth relation simplifies our expression.
The fifth relation relies on the fact that summing the first n natural
numbers yields n(n+1)

2 . Note that we can count on |σ|−1
2 being a natu-

ral number here, since |σ| is assumed to be odd. The next two lines
involve simplifying expressions, while the last relation uses the fact
that |σ|2− 9 = (|σ| − 3)(|σ|+ 3) > (|σ| − 3)(|σ| − 3). This proves that
for all σ ∈ T f ( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
>
(
|σ| − 3

2

)2

,

which finishes the proof.
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improving bounds on j(n)

Now we finally get around to proving Lemma 38, which was essential
to proving the above main theorem for this chapter.

Proof. (Lemma 38) Recall that our goal is to prove

|supp fσ|−min supp fσ 6 n− (|σ|+ 2)(`− 1)−
( |σ|

∑
i=1

[|σ|+ 1− i][σ(i)− 1]
)
− 1,

where ` = min supp f and n > max supp f . To do so, we will need
the following inequalities, which we will prove hold.

min supp fσ > `+ s(σ)− |σ| (10)

|supp fσ| 6 n− (|σ|+ 1)(`− 1)−
|σ|−1

∑
i=1

[|σ| − i][σ(i)− 1], (11)

To prove (10), we let |σ| = k and use induction on k. Let σ|k−1 =

(n1, . . . , nk−1) if σ = (n1, . . . , nk−1, nk). In the base case of |σ| = 1, we
know min supp fσ > `+ s(σ)− 1, since there are at least (s(σ)− 1)-
many values from ` to fσ’s beginning index (assuming all prior func-
tionals gσ with the same |σ| are all e∗i ’s). Now we assume min supp fσ >
` + s(σ) − |σ| for some |σ| = k ∈ N and show the same inequality
holds for |σ| = k + 1.

min supp fσ > min supp fσ|k + σ(k + 1)− 1

> `+ s(σ|k)− |σ|k|+ σ(k + 1)− 1

= `+ s(σ)− (k + 1).

The first inequality relies on the fact that fσ can have the same min-
imum support value as fσ|k if σ(k + 1) = 1. The second inequality
above follows from the inductive hypothesis. The lone equality above
follows from the facts that s(σ|k) + σ(k + 1) = s(σ) and |σ|k| = k.
Thus, (10) holds.
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improving bounds on j(n)

To prove (11), we let |σ| = k and use induction on k. Let σ|k−1 =

(n1, . . . , nk−1) if σ = (n1, . . . , nk−1, nk). It follows that

|supp fσ| 6 |supp fσ|k−1
| − (min supp fσ|k−1

) + 1

6 n− k(`− 1)−
( k−2

∑
i=1

[(k− 1)− i][σ(i)− 1]
)
− `− s(σ|k−1) + (k− 1) + 1

6 n− (k + 1)(`− 1)−
( k−2

∑
i=1

[(k− 1)− i][σ(i)− 1]
)
−

k−1

∑
i=1

σ(i) +
k−1

∑
i=1

1

6 n− (k + 1)(`− 1)−
( k−2

∑
i=1

[(k− 1)− i][σ(i)− 1]
)
−

k−1

∑
i=1

[σ(i)− 1]

6 n− (k + 1)(`− 1)−
( k−2

∑
i=1

[
[(k− 1)− i][σ(i)− 1] + [σ(i)− 1]

])
− [σ(k− 1)− 1]

= n− (k + 1)(`− 1)−
( k−2

∑
i=1

[k− i][σ(i)− 1]
)
− [σ(k− 1)− 1][k− (k− 1)]

= n− (k + 1)(`− 1)−
k−1

∑
i=1

[k− i][σ(i)− 1].

The first line above is clearly true. The second line relies on our
inductive hypothesis for k − 1 in combination with (10). The third
line follows from our definition of the sum function s. The remaining
lines above follow from simplifying expressions.

Now,

|supp fσ| −min supp fσ 6 n− (k + 1)(`− 1)−
( k−1

∑
i=1

[k− i][σ(i)− 1]
)

− `− s(σ) + |σ|

= n− (k + 1)(`− 1)−
( k−1

∑
i=1

[k− i][σ(i)− 1]
)
− (`− 1)

−
( k

∑
i=1

σ(i)
)
+ k− 1

= n− (k + 1)(`− 1)−
( k−1

∑
i=1

[k− i][σ(i)− 1]
)
− (`− 1)

−
( k

∑
i=1

[σ(i)− 1]
)
− 1

= n− (k + 2)(`− 1)−
( k−1

∑
i=1

[(k− i) + 1][σ(i)− 1]
)
− [σ(k)− 1]− 1

= n− (k + 2)(`− 1)−
( k

∑
i=1

[(k + 1)− i][σ(i)− 1]
)
− 1.

The first line above comes from applying (10) and (11). The second
line involves adding and subtracting 1 in addition to simplifying ex-
pressions, and the rest of the above relations result from algebra.
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8
H E L P F U L C O D E

While working on this thesis, we had to perform many difficult com-
putations involving norms. To expedite the computational process,
we created the below Python files, whose purposes are laid out. Click
on the links to see the code.

1. norm plus breakings.py
Given a vector and a norm level n, this program finds the vec-
tor’s n-level norm value and the breakings that yield this value.
https://github.com/holtm16/HonorsThesis/blob/master/norm_

plus_breakings.py

2. extreme pts.py
Given a vector and a norm level n, this program finds the vec-
tors that differ from the input vector by one or more slightly-
altered coordinates and maintain the same n-level norm value.
https://github.com/holtm16/HonorsThesis/blob/master/extreme_

pts.py

3. just norm value.py
Given a vector and a norm level n, this program simply finds
the vector’s n-level norm value.
https://github.com/holtm16/HonorsThesis/blob/master/just_

norm_value.py

4. breaking possibilities.py
Given a vector length n with n > 7, this program finds all pos-
sible ways to break a vector of length n.
https://github.com/holtm16/HonorsThesis/blob/master/breaking_

possibilities.py

For an explanation of how to run the above Python programs, down-
load the Microsoft Word document from the below URL (click ”View
Raw” on the page to begin the download).
https://github.com/holtm16/HonorsThesis/blob/master/README.docx

47

https://github.com/holtm16/HonorsThesis/blob/master/norm_plus_breakings.py
https://github.com/holtm16/HonorsThesis/blob/master/norm_plus_breakings.py
https://github.com/holtm16/HonorsThesis/blob/master/extreme_pts.py
https://github.com/holtm16/HonorsThesis/blob/master/extreme_pts.py
https://github.com/holtm16/HonorsThesis/blob/master/just_norm_value.py
https://github.com/holtm16/HonorsThesis/blob/master/just_norm_value.py
https://github.com/holtm16/HonorsThesis/blob/master/breaking_possibilities.py
https://github.com/holtm16/HonorsThesis/blob/master/breaking_possibilities.py
https://github.com/holtm16/HonorsThesis/blob/master/README.docx


B I B L I O G R A P H Y

[1] Albiac, Fernando; Kalton, Nigel J. Topics in Banach space theory.
Graduate Texts in Mathematics, 233. Springer, New York, 2006.

[2] Banach, Stefan. Theorie des operations lineaires. Chelsea Publishing
Co., New York, 1955.

[3] Casazza, Peter G.; Shura, Thaddeus J. Tsirelson’s Space. With an
appendix by J. Baker, O. Slotterbeck and R. Aron. Lecture Notes
in Mathematics, 1363. Springer-Verlag, Berlin, 1989.

[4] Duncan, N; Extreme Points in Combinatorial Banach Spaces and Sta-
bilization of the Tsirelson Norm, Undergraduate Honors Thesis at
Washington and Lee University 2016.

[5] Gowers, W. T. Recent results in the theory of infinite-dimensional Ba-
nach spaces. Proceedings of the International Congress of Mathe-
maticians, Vol. 1, 2 (Zrich, 1994), 933942, Birkhuser, Basel, 1995.

[6] James, Robert C. Uniformly non-square Banach spaces. Ann. of
Math. (2) 80 1964 542550. 46.10.

[7] Lindenstrauss, Joram; Phelps, R. R. Extreme point properties of con-
vex bodies in reflexive Banach spaces. Israel J. Math. 6 1968 3948.

48


	Introduction
	Introduction to Banach Spaces and Preliminaries in Notation
	Tsirelson Space Definition
	Understanding Tsirelson Space

	Norming Sets
	Properties of Tsirelson Space
	Alternate Ways To Compute the Tsirelson Norm
	Applications of Proposition 14

	Extreme Points of BT
	Improving Bounds on j(n)
	Helpful Code

