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1 Introduction

The study of graph theory has a long tradition in mathematics. With the
publication of the Seven Bridges of Königsberg in 1736, L. Euler proved that it
was impossible to devise a walk that started and ended at the same place while
crossing the seven bridges exactly one time. His discovery marked the beginning
of graph theory and its endless applications. It followed that mathematicians
such as A.L. Cauchy (1789-1857) and A. Cayley (1821-1895) utilized graphs to
solve problems in other areas of mathematics. In an effort to study the intrinsic
properties of these graphs, scientists and mathematicians looked for ways to
describe the connectivity of a graph or network. In our research we continue
the study of graph connectivity, continuing on ideas from earlier research by
K. Menger (1902-1985), F. Harary (1921-2005), and most specifically F. T.
Boesch and C. L. Suffel, [4] and [5], who realized graphs with given connectivity
parameters. We will begin with a few definitions.

Definition 1. A graph is a set of vertices and edges, denoted G = (V,E).
The vertices are a specific set V = {v1, . . . , Vn}, while the edges are 2-element
subsets of V , E = {e1, . . . , em} where each ek = vivj for some vi, vj ∈ V .

Definition 2. The degree of a vertex is the number of edges that are incident,
or connected, to it. The minimum degree of a graph G is denoted δ(G), and the
maximum degree of the graph is denoted ∆(G).

Definition 3. A loop is an edge whose endpoints are the same vertex, ek ∈ E
such that ek = vivi.

Definition 4. A simple graph is a graph with no loops or multiple edges
between two vertices. In this study we only consider simple graphs.
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Definition 5. A path is a trail from one vertex to another in which all vertices
are distinct.

Definition 6. A connected graph is a graph where there is a path between
any pair of vertices.

Definition 7. The vertex connectivity of a graph, G, is the smallest number
of vertices that when removed disconnects the graph, denoted κ(G). The edge
connectivity is the smallest number of edges that when removed disconnects
the graph, denoted λ(G).

Given a graph G, we can compute the values of κ, λ, δ, and ∆. This research
investigates the converse: given a 4-tuple of these parameters, is there a graph
G that realizes those specific values? This 4-tuple of parameters will be ordered
appropriately by Whitney’s theorem [7] that states

κ(G) ≤ λ(G) ≤ δ(G) ≤ ∆(G). (1)

In previous research W. Dymacek and other have completed a system of cases
that realize a graph given any parameters and size. These realizations create
graphs to satisfy the parameters, but are not unique. This research was started
by L. Steiner working with W. Dymacek. In the first paper, A. Hardnett worked
to realize parameters with κ = 1 and for κ+∆ ≥ λ+δ. In the most recent publi-
cation, C. Bethea and W. Dymacek realized the 4-tuples in the form (κ, λ, δ,∆)
where κ + ∆ < λ + δ and λ < δ. With the compilation of all previous re-
search, we study the final case of this project, (κ, δ, δ,∆), where κ > 1 and the
edge connectivity is equal to the minimum degree. Furthermore, in this case all
parameters satisfy κ+ ∆ < λ+ δ, and since we study λ = δ,

κ+ ∆ < 2δ.

This paper will realize a given (κ, δ, δ,∆) for any possible size, with κ > 1 where
κ+ ∆ < 2δ.

2 Preliminaries

Given a 4-tuple of positive integers (κ, δ, δ,∆), we begin with a realization func-
tion that produces the set of all orders for which we can realize a graph. This
realization function, F : N4 → 2N, is the set of all n for which there exists
a graph of n vertices which realizes (κ, λ, δ,∆). We find that this realization
function is not one-to-one. Before we can examine this function we will discuss
common notation used to describe these realizations.

In this paper, we will refer to the number of vertices in the graph as the order
of the graph. For simplicity |G| = n will define this order, so that |G| = |V |.
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Given two subgraphs H and G, we denote the set of connecting edges be-
tween H and G as [H,G]. For example, for a single u ∈ H where u /∈ G where
G = {s1, s2}, [u,G] is the set of two edges us1 and us2. In our realizations we
will use ≡ to represent the set of connecting edges visually as G ≡ H. We will
provide in depth descriptions of these edge sets. We will often let the size of
[H,G] also be denoted by [H,G].

We let rm be a binary variable depending on the parity of m. Hence, rm ∈
{0, 1} is given by

rm =

{
1 if m is odd,
0 if m is even.

For example, if our parameters are (4, 7, 7, 8), then rδ = 1 since δ is odd.

Definition 8. A complete graph of size n represents a graph of n vertices,
where each vertex is connected to every other vertex. We denote the complete
graph of n vertices as Kn. This notation will commonly be used to describe
subgraphs of our realizations. For Kn, there are n vertices and each vertex will
have degree n− 1.

For non-negative integers k and n with k < n, the vertices of the Harary
graph, Hn,k, are V = {v0, v1, . . . , vn − 1} and for k even, the edges are E ={
{i, i ± j} : 0 ≤ i < n, 0 < j ≤ k

2

}
where all arithmetic is done modulo n. If

n is even and k is odd, to E we add the edges
{
{vi, vi+n

2
} : 0 ≤ i < n

2

}
. If

nk is odd, then we add the following edges to E,
{
{vi, vi+n−1

2
} : 0 ≤ i < n

2

}
.

The vertex and edge connectivity and the minimum degree of Hn,k are k. The
maximum degree of Hn,k is k + rnk and if nk is odd, there is only one vertex
of degree k + 1, the others have degree k. Note that Hn,0 = Nn, Hn,n−1 = Kn,
Hn,2 = Cn, and Hn,1 is n

2 copies of K2 if n is even and n−3
2 copies of K2 and a

P3 if n is odd. We call the Harary graph irregular if nk is odd.

Definition 9. For a Harary graph of order n, we define H`
n,k to be Hn,k with

an additional ` edges so that no vertex has degree larger than k+ 1. Thus H`
n,k

has 2`+ rnk vertices of degree k + 1 and the rest of degree k.

To show our definition is well defined we note the following proof.

Proof. We can certainly add up to bn2 c edges to Hn,k if k is even for that
is how we create Hn,k+1. If n is even and k is odd, we can add the edges{
{i, i + n−2

2 } : 0 ≤ i < n−2
2

}
to form H`

n,k for 0 < ` ≤ n−2
2 and if nk is

odd, we can add the edges
{
{i, i + n−2

2 } : 0 ≤ i < n−1
2

}
to form H`

n,k for

0 < ` ≤ n−1
2 .
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With this notation, we create a system to realize (κ, δ, δ,∆). For the remain-
der of the paper, every realization will be composed of three subgraphs H, L,
and M with |L| ≤ |M |, visualized as

L ≡ H ≡M.

In this representation, H is the set of cut vertices, so it follows that |H| = κ.
Visually we can see that [L,M ] = ∅ and L and M are the remaining subgraphs
after removing the cut vertices. For consistency we denote the vertices in L by

{ui}|L|−1
i=0 , the vertices in M by {vi}|M |−1

i=0 , and the vertices in H by {si}|H|−1
i=0 .

3 Basic Results

In this section we prove facts about realizing our graphs. Given any 4-tuple
we wish to answer if the parameters are realizable for any order n, create an
algorithm to produce a graph of that order, and explain the relationships where
our realizations can be made for small n. We will begin with parameters for
which no realization exists.

Theorem 3.1. There is no possible realization for (2, δ, δ, δ) where δ is odd.

Proof. Given a graph G with κ = 2 and λ = δ = ∆ all odd, let H = {s1, s2}
and |[s1, L]| = a, |[s1,M ]| = b, |[s2, L]| = c, and |[s2,M ]| = d. Since s1s2 may
be an edges and ρ(s1) = ρ(s2) = δ,

a+ b ≤ δ,

c+ d ≤ δ.

But δ is odd so either, a ≤ δ−1
2 or b ≤ δ−1

2 . Likewise, c ≤ δ−1
2 or d ≤ δ−1

2 .

Thus, we can find x ∈ {a, b} and y ∈ {c, d} where x ≤ δ−1
2 and y ≤ δ−1

2 . Then
x+ y ≤ δ− 1, but with the corresponding vertices removed G is a disconnected
graph. Therefore, these parameters are not realizable.

Given any other (κ, δ, δ,∆) we can realize a graph for any n ≥ 2δ + 2. An
exception to this assertion is when the degree of our graph is odd for all vertices,
where δ = ∆ and δ is odd. Because of the Handshaking Lemma, we can realize
our graph only for even n ≥ 2δ + 2.
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Theorem 3.2. Given κ, δ, δ,∆ with κ + ∆ < 2δ, our realization function that
determines the possible range of n for realizing our parameters is

F (κ, δ, δ,∆) =


n ≥ 2δ + 2 if ∆ < δ

κ + 1 + δ − κ,
n ≥ 2δ + 2− κ+m if δ+κ+κδ+κ2

κ ≤ ∆ < 2(δ + 1− κ),
n ≥ 2δ + 2− κ if 2(δ + 1− κ) ≤ ∆,
∅ if (2, δ, δ, δ),where δ-odd,

where m is the ceiling of the solution to the quadratic equation f(x) = κ(∆ +
κ− δ − 1)− (δ + 1)x+ x2.

Our paper will be organized as follows. In Section 4 and Section 5, we will
describe how to realize graphs with order n ≥ 2δ + 2. This will be the basis
of our paper since we will show that any (κ, δ, δ,∆) is realizable in this range.
After the main analysis, in Sections 6 and 7 we will elucidate situations where
there are possible realizations smaller than n = 2δ + 2. In Section 5, We will
prove that for any given 4-tuple, the smallest possible realization of a graph is
n = 2δ+2−κ. Our algorithms that realize the minimum values of n will examine
the range from n = 2δ+ 2−κ to n = 2δ+ 2. In section 6, for any (κ, δ, δ,∆) we
will determine the possible minimum realization, and then will have a complete
algorithm for any size, n, greater than or equal to the smallest realization. With
multiple cases we will partition the entire set of 4-tuples (κ, δ, δ,∆).

4 Realizing Parameters of Size n ≥ 2δ + 2

In this section we realize any (κ, δ, δ,∆) for size n = 2δ+2+c with c ≥ 0, where
c is even if δ = ∆ and δ is odd. For any given parameters we realize a graph as

L ≡ H ≡M,

with L = Kδ+2−κ, H = Hr
κ,q, and M = Hβ

δ+c,δ−1 where q < κ and 0 ≤ r < κ
2 .

Note that for any parameters, L remains a fixed order while M is varied based
on c. To define q, r, and β we consider the two cases δ = ∆ and δ < ∆.

Given these cases, we will look at the relationship of δ + c to determine a
possible realization by defining the unknown variables in our algorithm. Note
that δ + c is the number of vertices in M .

Edge Connectivity

We will first show that for all of our realizations the edge connectivity is δ. For
our realization

Kδ+2−κ ≡ Hr
κ,q ≡ H

β
δ+c,δ−1,
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we attach each ui ∈ L to κ − 1 vertices in H, to force ρ(ui) = δ. Then the
number of edges connecting L to H is (δ + 2− κ)(κ− 1). Since for κ > 2,

(δ + 2− κ)(κ− 1)− δ = δ(κ− 2) + (κ− 1)(κ− 2)),

it follows that (δ + 2− κ)(κ− 1) ≥ δ.

This proves that there are sufficient edges connecting L and H. We will
now consider the connections between H and M . The minimum number of
edges that can be connected to H is κδ, so we must show that the cut vertices
have enough space to attach at least δ vertices from M after attaching L. The
remaining number of connecting edges is at least

κδ − (κ− 1)(δ + 2− κ) = (κ− 1)(κ− 2) + δ ≥ δ.

Thus we have enough vertices in H to guarantee that we can successfully attach
L and M while satisfying our minimum edge connectivity.

The Regular Case: δ = ∆

In this regular case, we consider the relationship of δ+ c and (κ− 1)(κ− 2) + δ.

4.1 c < (κ− 1)(κ− 2)

When the number of vertices in M is less than (κ− 1)(κ− 2) + δ, we let β = 0
and our realization is

Kδ+2−κ ≡ Hr
κ,q ≡ Hδ+c,δ−1,

where
(κ− 1)(κ− 2)− c+ rc(δ+1) = κq + 2r

with 0 ≤ 2r < κ.

We obtain this equality by determining the edge set connecting L and M .
Since the graph is regular, the total number of degrees in our cut vertices must
be κδ. When we connect L and M to the cut vertices each ui ∈ L is connected
to κ − 1 vertices in H and each vi ∈ M is connected to 1 vertex in H, which
gives us ρ(ui) = ρ(vi) = δ. In the case where δ is even and c is odd, then we do
not attach v0 to H since M is an irregular Harary graph with ρ(v0) = δ. These
edges are attached to H evenly. Since we have δ + c < κ(κ − 3) + δ + 2, the
edges connecting L and M to H is less than κδ since

κδ− (δ+ c)− (κ− 1)(δ+ 2− δ) ≥ κδ−κ(κ− 3) + δ+ 2− (κ− 1)(δ+ 2− δ) ≥ 0.
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Thus the remaining edges in H needed to give our graph regular degree are
given by q and r. Since

κδ − (δ + c)− (κ− 1)(δ + 2− δ) + rc(δ+1) = κ(κ− 3) + 2− c+ rc(δ+1),

our equation κ(κ − 3) + 2 − c + rc(δ+1) = κq + 2r gives us the conditions for
the remaining edges of the cut vertices. Note that κ(κ− 3) + 2− c+ rc(δ+1) is
always even, for if c is odd, then δ must be even. So there will always exist a q
and r to satisfy the remainder, where κ > q.

4.2 c ≥ (κ− 1)(κ− 2)

For this case the number of vertices in M are sufficiently large so we let q = r = 0
and realize our parameters as

Kδ+2−κ ≡ Hκ,0 ≡ Hβ
δ+c,δ−1,

where

β =
c− (κ− 1)(κ− 2)− rc(δ+1)

2
.

The utility of β is to determine the number of remaining vertices in M that are
not connected to H. Similarly to the δ + c < κ(κ− 3) + δ + 2 case, each ui ∈ L
is connected to κ− 1 cut vertices defined as [ui, H

u
i ] where

Hu
i = {sκ−i, . . . , s2κ−i−2}.

We connect each vj ∈ M , where j ∈ {1, . . . , (κ− 1)(κ− 2)} to a single sk ∈ H
where

k = (δ + 2− κ)(κ− 1) + j − 1.

The remaining edges in M of degree δ − 1 we connect together with the edges
counted by β. We are assured that β is always a positive whole number since
c − (κ − 1)(κ − 2) − rc(δ+1) is always even. When δ is odd, our Harary graph
is regular with an even number of vertices to connect. If δ is even, we note
that when c is odd we have an irregular Harary graph with ρ(v0) = δ. Note
that rc(δ+1) forces c − (κ − 1)(κ − 2) − rc(δ+1) to be even and we connect the
remaining vertices.

4.3 Example: (4, 6, 6, 6) for n = 19

We first note that the parameters (4, 6, 6, 6) can be realize for size n = 2δ+2+c =
14 + c. For n = 19, c = 5,

5 = c < (κ− 1)(κ− 2) = 6,
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so from (4.1), we realize (4, 6, 6, 6) with n = 19 as

K4 ≡ H+
4,0 ≡ H11,5.

This represents the graph in Figure 1.

Figure 1

5 Realizing parameters for n ≥ 2δ+2 given δ < ∆

For realizing n = 2δ+2+c, we recall that |L| = δ+2−κ and |M | = δ+c. When
δ < ∆, we have two cases that determine the number of edges in H and [H,M ].
In every case we evenly attach each ui ∈ L to κ− 1 cut vertices. Subsequently

|[L,H]| = (δ + 2− κ)(κ− 1) = δ(κ− 1)− (κ− 1)(κ− 2)

is constant with respect to the order of the graph. Therefore, while presenting
these cases we will describe the set of connecting edges [H,M ], any q, r edges
that we may add to H, and the addition of β edges to M if necessary. The first
case examines small δ + c which breaks into two subcases. The second case is
for large δ+ c, where in our analysis we must add edges to M for some vertices
not adjacent to H.

5.1 Case 1: κ(∆−δ)+δ+(κ−1)(κ−2)
δ+c

> 1

Given κ(∆−δ)+δ+(κ−1)(κ−2)
δ+c > 1, there are edges that must be added to H or

[H,M ] to guarantee minimum and maximum degree. In this case β = 0. We

examine this case by analyzing the relationship between ∆+1(κ−1)(κ−2)
δ+c and ∆−

δ + 1.
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5.1.1 ∆+(κ−1)(κ−2)
δ+c > ∆− δ + 1

In the first subcase the nontrivial variables are q and r. We attach each uj ∈ L
to κ− 1 cut vertices so that each ρ(ui) has degree δ. We realize our parameters
as

Kδ+2−κ ≡ Hκ,q ≡ Hδ+c,δ−1.

In this case we will explain how to add edges to H and [H,M ]. This subcase
gives two possibilities.

(i) ∆− δ + 1 < κ

In this case our quotient is different than the other cases we have experienced.
We realize our parameters as

Kδ+2−κ ≡ Hκ,δ−q ≡ Hδ+c,δ−1,

where 0 ≤ q and 0 ≤ 2r < κ are given by

(κ− 1)(δ + 2− κ) + (∆ + 1− δ)(δ + c)− rc(δ+1) = κq + r.

We wish to force each ui ∈ L to have degree δ and each vi ∈ M to have
degree ∆. To do this, each ui is connected to κ − 1 cut vertices and each
vi is connected to ∆ + 1 − δ cut vertices with modular arithmetic. We have
(κ− 1)(δ + 2− κ) + (∆ + 1− δ)(δ + c)− rc(δ+1) edges connecting L and M to
our cut vertices. Our quotient used to define the degree of H determines the
number of edges to which each vertex in H is attached from L and M , and δ−q
denotes the remainder of edges to ensure minimum degree. Therefore, there will
be κ− r vertices in H with degree δ and r vertices of degree δ + 1.

(ii) ∆− δ + 1 ≥ κ

In this case we realize our parameters as

Kδ+2−κ ≡ Hκ,q ≡ Hδ+c,δ−1,

where 0 ≤ q and 0 ≤ 2r < κ are given by

∆ + (κ− 1)(κ− 2)− κ(δ + c) = κq + r.

In this case we attach each vi ∈ M to each cut vertex. The quotient defines
the remaining edges needed in H to give one vertex degree ∆ and the others
minimum degree. We can show that after attaching L and M to H, our q is less
than κ. After connecting M , each vi has degree δ − 1 + κ which is less than ∆.
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5.1.2 ∆+(κ−1)(κ−2)
δ+c ≤ ∆− δ + 1

For this case, let q = r = β = 0. Our realization is

Kδ+2−κ ≡ Hκ,0 ≡ Hδ+c,δ−1.

First note that in this case we have δ+c ≤ [H,M ] ≤ (δ+c)·min{∆−δ+1, κ}. To
realize our parameters we manipulate the size of [H,M ] so that for any sk ∈ H,
ρ(s0) = ∆, δ ≤ ρ(sk) ≤ ∆ for k 6= 0, and δ ≤ ρ(vj) ≤ ∆ for any vj ∈ M . We
connect M to H until our cut vertices have the desired degree, and it follows
that for any vj , vk ∈M , both δ ≤ ρ(vj) ≤ ρ(vk) ≤ ∆ and |vj−vk| ≤ 1. We must
analyze two subcases here. In both cases we will show that the edges [H,M ]
can be large enough to satisfy maximum and minimum degree in both H and
M .

Case 1: ∆+(κ−1)(κ−2)
δ+c < 1

In the special situation where ∆+(κ−1)(κ−2)
δ+c < 1, each vj ∈ M is connected to

a single vertex so that [H,M ] = δ + c. These δ + c edges are connected evenly
over H such that for any sk ∈ H, ρ(s0) = ∆ and ρ(sk) = δ where k 6= 0. There
are sufficient edges given ∆+(κ−1)δ− [L,H] = ∆+(κ−1)(κ−2) < δ+c. The
remaining edges are attached evenly over sk where k 6= 0. These cut vertices
will not exceed the maximum degree since

κ∆− [L,H]− (δ + c) = κ(∆− δ) + δ + (κ− 1)(κ− 2)− (δ + c)

and in Case 1, κ(∆−δ)+δ+(κ−1)(κ−2)
δ+c > 1. Thus the connecting edges between

H and M give each vertex in M degree δ, and for any sk ∈ H, ρ(s0) = ∆ and
δ ≤ ρ(sk) ≤ ∆ for k 6= 0.

Case 2: ∆+(κ−1)(κ−2)
δ+c ≥ 1

In the general case we have ∆+(κ−1)(κ−2)
δ+c ≥ 1. We must attach M to H in the

following manner. For sk ∈ H, we wish to make ρ(s0) = ∆ and ρ(sk) = δ where
k 6= 0. After attaching L to H, the edges needed to attach to H to guarantee
these degrees is

∆ + (κ− 1)δ − (δ + 2− κ)(κ− 1)
= ∆ + (κ− 1)δ − κδ + δ + κ2 − 3κ+ 2
= ∆ + (κ− 1)(κ− 2).

Since we are assuming ∆+(κ−1)(κ−2)
δ+c ≥ 1, there is room in H such that we

can attach each vj ∈ M to H giving vj degree δ. We will continue connecting
H to M evenly over both H and M until [H,M ] = δ + (κ − 1)(κ − 2), and
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after each cut vertex has degree δ, attach ∆ − δ more edges to s0 to give
[H,M ] = ∆ + (κ − 1)(κ − 2) and ρ(s0) = ∆. We will show that there are
sufficient edges for the cut vertices to have the desired degree.

Suppose that ∆− δ + 1 < κ. Hence it is possible to attach each vj ∈ M to
at most ∆ − δ + 1 cut vertices in H. This proves to be sufficient since by our
inequality:

∆ + (κ− 1)(κ− 2)

δ + c
≤ min{∆− δ + 1, κ}

∆ + (κ− 1)(κ− 2)

δ + c
≤ ∆− δ + 1

∆ + (κ− 1)(κ− 2) ≤ (δ + c)(∆− δ + 1).

Suppose that κ < ∆ − δ + 1. Now, when we attach a single vj ∈ M to the
cut vertices, because we can maximally attach vj to κ vertices, ρ(vj) < ∆. With
the same steps we show

∆ + (κ− 1)(κ− 2)

δ + c
≤ min{∆− δ + 1, κ}

∆ + (κ− 1)(κ− 2)

δ + c
≤ κ

∆ + (κ− 1)(κ− 2) ≤ (δ + c)κ.

Therefore, for whichever value min{∆−δ+1, κ} takes, we can connect M to
H in a way that gives ρ(s0) = ∆ and ρ(sk) = δ for k 6= 0. We also are assured
that δ ≤ ρ(vj) ≤ ∆ for any vj ∈M .

5.2 Case 2: 1 ≥ κ(∆−δ)+δ+(κ−1)(κ−2)
δ+c

In this case, c is large enough so that after evenly attaching each vertex in M to
H, [H,M ] ≥ κ∆− [L,H]. This implies that some cut vertex would exceed the
maximum degree, so every vertex in M cannot be attached to H. To begin, we
set q = r = 0. We attach M to H so that each cut vertex has degree ∆, which
gives us that

[H,M ] = κ∆− [L,H] = κ(∆− δ) + δ + (κ− 1)(κ− 2).

We attach all edges and then must account for the extra vi ∈M that exceed this
amount. Each vj ∈M with j ∈ {0, . . . , κ(∆−δ)+δ+(κ−1)(κ−2)−1} is attached
to H to give each cut vertex degree ∆. The remaining edges are attached by
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the β edges added to M . Since there are δ + c− κ(∆− δ)− δ − (κ− 1)(κ− 2)
vertices in M with degree δ − 1, the number of edges we must add is

β =

⌈
δ + c− κ(∆− δ)− δ − (κ− 1)(κ− 2)

2

⌉
.

After adding β edges to M , each vj ∈M has degree δ or δ + 1.

6 Minimum Realizations of (κ, δ, δ,∆)

The first theorem we need is well-known but we also give a proof.

Theorem 6.1. Given any (κ, δ, δ,∆), we cannot realize a graph of order n <
2δ + 2− κ.

Proof. If we have a graph of order n < 2δ+2−κ, then |L| ≤ δ−κ, since |H| = κ
and |L|+ |M | ≤ 2(δ − κ) + 1. This means that each ui ∈ L has at most degree
δ − κ − 1. Since L is only adjacent to H, it can only connect to the set of cut
vertices H. Hence we cannot satisfy the minimum degree δ for the vertices in L,
since there are κ cut vertices. Therefore, any adjacent graph to the cut vertices
must have at least order δ + 1− κ.

To determine the smallest possible realization for (κ, δ, δ,∆), we will be an-
alyzing the relationship between ∆ and f(κ, δ), where f will be a function of
κ and δ. There are three cases. We note that our possible realizations become
smaller for relatively small δ−κ and relatively large ∆− δ. In the first case, we
can realize a minimum n = 2δ + 2− κ. In the second case, there is a quadratic
equation that presents the minimum m for which we can realize our graph of
size n = 2δ + 2 − κ + m, for m ∈ {1, . . . , κ − 1}. The final case is (κ, δ, δ,∆)
with no realization smaller than n = 2δ + 2. Given the minimum realization as
n = 2δ + 2 − κ + m, we then can find the c ∈ {0, . . . , κ − 1 −m} that we can
realize the parameters for size n ∈ {2δ + 2− κ+m, . . . , 2δ + 1}.

6.1 ∆ ≥ 2(δ + 1− κ): Realizing n = 2δ + 2− κ

In this case we can realize (κ, δ, δ,∆) for n = 2δ+2−κ. Given ∆ ≥ (2δ+1−κ),
we will consider realizations in the interval 2δ+ 2− κ ≤ n < 2δ+ 2. To analyze
the minimum case we will consider δ = ∆ and δ < ∆.
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6.1.1 δ = ∆

We first note that when δ = ∆, our inequality to denote possible minimum
realizations becomes

2κ− 2 ≥ δ.

Since the degree is regular in our realizations, if δ is odd, we only consider even
n. Furthermore, if κδ is odd, then 2δ + 2 − κ is odd, which is not realizable.
We will now show how to realize the range of minimum n for parameters that
satisfy our inequality.

Theorem 6.2. Given (κ, δ, δ, δ) that satisfy

2κ− 2 ≥ δ,

and given some c ∈ {0, ..., κ − 1 − rκδ}, we can realize our parameters of size
n = 2δ + 2− κ+ c where c is the same parity as κδ, as

Kδ+1−κ ≡ Hr
κ,q ≡ Kδ+1−κ+c+rκδ

where 0 ≤ 2r < κ such that

κ(κ− 1)− (δ + 1− κ+ c)(κ− c) = κq + 2r.

We attach L to H by connecting each ui ∈ L to each cut vertex in H and
connect each vj ∈M to κ− c distinct vertices in H, such that after connecting
M to H, for any two s`, sk ∈ H, |ρ(s`)− ρ(sk)| ≤ 1. Our equation to determine
q and r is the quotient of edges remaining in H to guarantee that for all sk ∈ H,
ρ(sk) = δ. To derive the equation for q and r, we note that we need κδ edges
in H to satisfy regular degree. After connecting L and M we see that

κδ − (δ + 1− κ)κ− (δ + 1− κ+ c)(κ− c)

= κ(κ− 1)− (δ + 1− κ+ c)(κ− c).

Thus, this is the number of edges we must fill in H to force the degree to be
regular. Our equation

κ(κ− 1)− (δ + 1− κ+ c+)(κ− c) = κq + 2r

designates these remaining edges. We note that the number of edges remaining
is always even for whatever the parity of κ and δ. We can also show that
κ(κ− 1)− (δ+ 1− κ+ c)(κ− c) is always positive. Let f(c) denote the number
of edges attached from M to H. If

f(c) = (δ + 1− κ+ c)(κ− c),

then differentiating with respect to c gives

f ′(c) = 2κ− δ − 1− 2c.
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Hence the critical number occurs when

c =
δ + 1− 2κ

2
.

Since 2κ− 2 ≥ ∆ in this case, this value is at most 1
2 . So the most edges must

be attached when |M | = δ+ 1− κ. We can show that this is less than κ(κ− 1);

κ(κ− 1) ≥ (δ + 1− κ)κ

κ(κ− 1) ≥ κδ − κ(κ− 1)

2κ(κ− 1) ≥ κδ
2κ− 2 ≥ δ.

Thus, our q will always be positive.

6.1.2 δ < ∆

For δ < ∆ with ∆ ≥ 2δ + 1 − κ, we can realize our parameters in the range
n = 2δ+ 2−κ+ c for c ∈ {0, . . . , κ−1}. Unlike the regular case, our realization
changes given the size of c.

Theorem 6.3. Given (κ, δ, δ,∆) that satisfy

∆ ≥ (2δ + 1− κ),

and given some c ∈ {0, . . . , κ − 1}, we can realize our parameters of size
n = 2δ + 2− κ+ c in two cases.

Case 1: If
κ(2δ + 1− κ−∆) ≥ c(δ + 1− 2κ+ c),

then we realize our parameters as

Kδ+1−κ ≡ Hr−rκq
κ,q ≡ Kδ+1−κ+c,

where

κδ − (δ + 1− κ)κ− (δ + 1− κ+ c)(κ− c) = κq + 2r + rcδ(1+κ).

Case 2: If
κ(2δ + 1− κ−∆) ≥ c(δ + 1− 2κ+ c),

then we realize our parameters as

Kδ+1−κ ≡ Kκ ≡ Kδ+1−κ+c.

The second case is sometimes not applicable for any c. Its utility comes
when c becomes large enough and there are so few edges that q becomes larger
than κ. We will begin by analyzing the first case.

14



Case 1: κ(2δ + 1− κ−∆) ≥ c(δ + 1− 2κ+ c)

Given the parameters and c that satisfy this equation, we connect L and M
to H to guarantee that all vertices in L and M have degree δ. To attach each
ui ∈ L, we attach ui to every cut vertex in H guaranteeing that ρ(ui) = δ.
We then connect each vj ∈ M to κ − c distinct vertices in H, such that after
connecting M to H, for any two s`, sk ∈ H, |ρ(s`)−ρ(sk)| ≤ 1. Thus all vertices
in L and M have degree δ.

After connecting L and M , q and r are used to force each sk ∈ H to have
degree ∆. We will show that q ≤ κ− 1. We define q and r by

κδ − (δ + 1− κ)κ− (δ + 1− κ+ c)(κ− c) = κq + 2r + rcδ(1+κ).

We show that the remaining edges needed to guarantee maximum degree in H
after connecting L and M (the left side of the equation) is less than κ(κ − 1)
and so it follows that q ≤ κ− 1. Therefore

κ(κ− 1) ≥ κδ − (δ + 1− κ)κ− (δ + 1− κ+ c)(κ− c),

κδ − κ∆ ≥ −(δ + 1− κ+ c)(κ− c),

κδ − κ∆ ≥ (δ + 1− κ+ c)(c− κ),

κδ − κ∆ ≥ c(δ + 1− κ+ c)− κ(δ + 1− κ)− cκ,

κδ − κ∆ + κ(δ + 1− κ+ c) ≥ c(δ + 1− κ+ c)− cκ,

κ(2δ + 1− κ−∆) ≥ c(δ + 1− 2κ+ c).

Thus, our q will exist to satisfy the equation. Also, note that if H is a Harary
graph with κq odd, then rκq takes one degree away from the vertex of degree ∆+
1 and another vertex so our maximum degree holds. The number of remaining
edges κδ − (δ + 1− κ)κ− (δ + 1− κ+ c)(κ− c) is odd only if c and δ are odd
and κ is even, so rcδ(1+κ) guarantees that that the equation is satisfied.

Case 2: κ(2δ + 1− κ−∆) < c(δ + 1− 2κ+ c)

For this case we must keep our edges in H constant. We attach L to H in a
similar manner, so each ui connects to all of H so that each ui is given degree
δ. We then note that each sk ∈ H has degree κ − 1 + δ + 1 − κ = δ. We wish
to give each sk degree ∆. So we need κ(∆ − δ) edges from M to attach to H.
We first find 0 ≤ ar < δ + 1− κ+ c such that

ar ≡ κ(∆− δ)( mod δ + 1− κ+ c),

and then find aq such that

κ(∆− δ) = (δ + 1− κ+ c)aq + ar.
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We partitionM into two sets, Maq+1 = {v0, . . . , var−1} andMaq+1 = {var , . . . , vδ−κ+c}
such that the vi ∈ Maq+1 are attached to aq + 1 vertices in H in a modular
fashion and vi ∈ Maq are attached to aq vertices in the same way. Thus each
sk ∈ H has degree ∆. We will now prove two things. First, we will show that
in H, there are enough vertices to attach to each vj ∈ M so we can satisfy the
minimum degree. Second, we will show that there are enough edges in M to
ensure that each cut vertex will have degree ∆.

Proof. Minimum Degree in M
We first note that there are a maximum of κ(∆ − δ) edges in [M,H] bounded
by our maximum degree, since our maximum is∑

si∈H
(∆− ρ(si)) = κ(∆− (κ− 1 + δ + 1− κ)) = κ(∆− δ).

To prove our claim, we must show that κ(∆− δ) is greater than the number of
edges needed to satisfy the minimum degree in M . We can show that

κ(∆− δ) ≥ (δ + 1− κ+ c)(κ− c)

κ(∆− δ) ≥ κ(δ + 1− κ) + cκ− (δ + 1− κ+ c)c

κ(∆ + κ− 2δ − 1) ≥ (2κ− δ − 1− c)c

and finally multiplying through by −1 we see that

κ(2δ + 1− κ−∆) < c(δ + 1− 2κ+ c).

Therefore, each uj ∈M has at least degree δ.

We will now show that there are enough edges in [M,H] so that each si ∈ H
has degree ∆.

Proof. Maximum Degree in H
We have shown in the previous proof that we need κ(∆− δ) edges to guarantee
that each sk ∈ H has degree ∆. We now note that each vertex in M can be
attached to a maximum of ∆− δ + κ− c vertices in κ. So we can show that

κ(∆− δ) ≤ (δ + 1− κ+ c)(∆ + κ− δ − c),

c(δ + 1− κ+ c)− c(∆ + κ− δ) ≤ (δ + 1− κ)(∆ + κ− δ)− κ(∆− δ),

c(2(δ +
1

2
− κ)−∆)) ≤ (δ + 1− κ)(∆ + κ− δ)− κ(∆− δ).

Since ∆ ≥ 2(δ + 1− κ), we have

0 ≤ (δ + 1− κ)(∆ + κ− δ)− κ(∆− δ).
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Hence we must show that the right-hand-side of the above is positive. To that
end, note that

(δ + 1− κ)(∆ + κ− δ)− κ(∆− δ)
= δ∆ + ∆− 2κ∆ + 3κδ − δ − δ2 + κ− κ2

= (δ + 1)(∆)− 2κ∆ + 3κδ − δ(δ + 1)− κ(κ− 1)

= (δ + 1)(∆− δ)− 2κ∆ + 3κδ − κ(κ− 1).

Since 2δ > κ+ ∆ it follows that

(δ + 1)(∆− δ)− 2κ∆ + 3κδ − κ(κ− 1)

< (δ + 1)(∆− δ)− 2κ∆ + κδ(κ+ ∆)− κ(κ− 1)

= (δ + 1)(∆− δ) + κ(δ(κ+ ∆)− 2∆− κ+ 1),

which is clearly positive. Thus, we have proven that there are enough edges.

Through these proofs, we have shown that after attaching M to H the degree
of the vertices in M are in the range of δ and ∆, and before that we spelled out
what the exact degrees were.

7 Parameters with minimum realizations of or-
der n > 2κ+2−κ: 2(δ+1−κ) > ∆ ≥ δ

κ +1+ δ−κ

In this section we will be looking at (κ, δ, δ,∆) that satisfy 2(δ + 1− κ) > ∆ ≥
δ
κ + 1 + δ − κ. In this case there exists some m ∈ {1, . . . , κ} for which we can
realize (κ, δ, δ,∆) of minimum order n = 2δ + 2 − κ + m. We will begin by
showing that given parameters that satisfy 2(δ + 1 − κ) > ∆, then there is no
realization of order 2δ + 2− κ.

Theorem 7.1. If 2(δ + 1 − κ) > ∆, then no realization exists of size
n = 2δ + 2− κ.

Proof. By the proof of Theorem 6.1, we know that δ+ 1− κ ≤ |L| ≤ |M |. If we
assume n = 2δ + 2− κ, we realize our parameters as

Kδ+1−κ ≡ Hr
κ,q ≡ Kδ+1−κ,

for some 0 ≤ q < κ and 0 ≤ 2r < κ
2 . We note that the maximum number

of edges we can connect to H is κ∆ and this occurs when q = r = 0. To
satisfy the minimum degree in L and M , the connecting sets of edges have size
|[L,H]|+ [M,H]| = κ(δ+ 1−κ) +κ(κ+ 1− δ) = 2κ(δ+ 1−κ). This contradicts

κ∆ < 2κ(δ + 1− κ)

∆ < 2(δ + 1− κ).

Thus, given 2(δ + 1− κ) ≥ ∆, we have n > 2δ + 2− κ.
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We will now show how we attain the minimum realization given (κ, δ, δ,∆)
with 2(δ+ 1−κ) > ∆. We wish to find a and b that will realize our parameters
as

Ka ≡ Hk,q ≡ Kb

minimally. To minimize n, we find that |L| = a = δ + 1− κ.

Theorem 7.2. For any (κ, δ, δ,∆), the smallest possible n is realized
when |L| = δ + 1− κ.

Proof. Let (κ, δ, δ,∆) be realized minimally by

Ka ≡ Hr
k,q ≡ Kb

where a ≤ b and a + b + κ = n. We wish to find a and b such that there are
the fewest edges connected to H. The number of edges adjacent to L and M to
satisfy the minimum degree is

(δ − (a− 1))a+ (δ − (b− 1))b.

Let α = δ + 1 and β = n− κ. Then b = β − a, and we can rewrite the number
of edges as a function g that is the number of edges adjacent to H in terms of
a such that

g(a) = β(α− β) + 2βa− 2a2.

It follows that
g′(a) = 2β − 4a

g′(a) = 2n− 2κ− 4a

g′(a) = 2b− 2a ≥ 0.

Thus, g is increasing for all a, so the smallest possible realization is for minimum
a which means that |L| = δ + 1− κ.

We have now shown that the smallest realization occurs when we realize our
parameters as

Kδ+1−κ ≡ Hκ,q ≡ Kb,

for some b ∈ {δ + 2− κ, . . . , δ}. The number of edges we connect to H from L
and M so that any vertex in L ∪M has minimum degree is

κ(δ + 1− κ) + (δ − b+ 1)b.

To minimize our realization we need to find the minimum b that after connecting
L and M to H cannot exceed κ∆, where the cut vertices are all of maximum
degree. We wish to find the minimum b that satisfies

0 ≤ κ∆− (δ + 1− c)κ− b(δ − b+ 1).
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This inequality gives us a quadratic equation that finds b = |M |. We define the
function

Mmin(x) = κ(∆ + κ− δ − 1)− (δ + 1)x+ x2.

We note that M ′min(x) = 2x− δ−1, so Mmin(x) is increasing for all x since our
range of values we consider are in the interval [δ + 2− κ, δ]. We also note that

Mmin(δ + 1− κ) = κ(∆ + κ− δ − 1)− (δ + 1)(δ + 1− κ) + (δ + 1− κ)2

= κ∆ + 2κ2 − δ2 − 2κδ − κ

< 2κ(δ + 1− κ) + 2κ2 − δ2 − 2κδ − κ = κ− δ2 < 0.

This follows from our proof, since if |M | = δ+ 1−κ, then we cannot realize our
parameters. We can also show that

Mmin(δ) = κ(∆ + κ− δ − 1)− (δ + 1)δ + δ2 = κ∆ + κ2 − κδ − κ− δ

< κ(2(δ + 1− κ)) + κ2 − κδ − κ− δ = δ(κ− 1)− κ(κ− 1),

which is positive. Since Mmin(δ + 1− κ) < 0 < Mmin(δ), we know that on the
interval there must exist some x∗ such that Mmin(x∗) = 0 by the Intermediate
Value Theorem. We use this to determine the minimum b = |M |. We can
determine the size of M as

b = dx∗e.

This is the smallest possible size of M that satisfies our inequality. At this
point, we note that there exist (κ, δ, δ, δ) with odd δ that satisfy 2(δ + 1− κ) >
∆ ≥ δ

κ + 1 + δ − κ, but after solving the quadratic equation for the size of M ,
b = δ. This gives n = 2δ + 1 which is not realizable for odd regular degree. For
such (κ, δ, δ, δ), there is no realization with n < 2δ + 2. We will now state our
theorem to find the minimum realization and to realize it from the minimum to
n = 2δ + 1.

Theorem 7.3. Minimum Realizations of (κ, δ, δ,∆) given 2(δ + 1− κ) >
∆ ≥ δ

κ + 1 + δ − κ

Given (κ, δ, δ,∆) that satisfy

2(δ + 1− κ) > ∆ ≥ δ

κ
+ 1 + δ − κ,

then we can find the minimum realization of our parameters of size n = 2δ +
2− κ+m where m is defined as

m =

⌈
δ + 1 +

√
(δ + 1)2 − 4κ(∆ + κ− δ − 1)

2

⌉
− δ + κ− 1.

We then realize (κ, δ, δ,∆) of order n = 2δ+2−κ+m+c, where c ∈ {0, . . . , κ−
m− 1} in two cases.
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Case 1: If
(κ−m− c)(δ + 1− κ+m+ c) ≥ κ(∆− δ),

then we realize our parameters as

Kδ+1−κ ≡ Hr−rκq
κ,q ≡ Kδ+1−κ+m+c,

where q ≤ κ− 1 and 0 ≤ 2r < κ
2 , defined by

κ∆− (δ + 1− κ)κ− (δ + 1− κ+m+ c)(κ−m− c) = κq + 2r + r∗

where

r∗ =

{
1 if κ is even and c 6≡ m( mod 2),
0 otherwise.

Case 2: If
(κ−m− c)(δ + 1− κ+m+ c) < κ(∆− δ),

then we realize our parameters as

Kδ+1−κ ≡ Kκ ≡ Kδ+1−κ+m+c,

The two cases are contingent on the number of edges needed in [H,M ] to give
each vertex in M degree δ. We note that |[L,H]| is constant and the number of
edges is κ(δ + 1− κ), so each ui ∈ L has degree δ.

In Case 1, we attach H and M with q ≤ κ − 1 and 0 ≤ 2r < κ
2 , for which

we attach each vj ∈ M to κ − m − c vertices in H which forces ρ(vj) = δ.
In H, q and r give each sk ∈ H degree ∆. We can show that such q and r
exist. After attaching L and M to H, to give each sk ∈ H degree ∆, there
are κ∆ − (δ + 1 − κ)κ − (δ + 1 − κ + m + c)(κ −m − c) remaining degrees in
H. We have already shown that m gives us the smallest order of L so that the
remaining degrees needed is positive, and also that the number of edges from
L that give each vertex in M degree δ, decreases with c. Since q ≤ κ − 1, it
suffices to show that κ(κ − 1) is greater than the remaining degrees in H. To
that end note

κ(κ− 1) ≥ κ∆− (δ + 1− κ)κ− (δ + 1− κ+m+ c)(κ−m− c),

(δ + 1− κ+m+ c)(κ−m− c) ≥ κ∆− (δ + 1− κ)κ− κ(κ− 1),

(δ + 1− κ+m+ c)(κ−m− c) ≥ κ(∆− δ).

Thus, when c is small enough to satisfy this inequality, there will exist q ≤ κ−1
and 0 ≤ 2r < κ

2 that satisfy κ∆− (δ+ 1−κ)κ− (δ+ 1−κ+m+ c)(κ−m− c) =
κq + 2r + r∗. Recall that

r∗ =

{
1 if κ is even and c 6≡ m( mod 2),
0 otherwise,

,
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so r∗ will guarantee that κq+2r+ r∗ can satisfy any remainder in {0, . . . , κ(κ−
1)}. If κ is odd, then q and r can be found such that κq + 2r can be to equal
any amount of degrees remaining, and if κ is even, then the parities of m and c
must differ for the remaining degrees to be odd. Note r∗ will force q and r to
satisfy the equation.

In Case 2, when (δ + 1 − κ + m + c)(κ − m − c) < κ(∆ − δ), there are
not enough edges that can be added to H to satisfy degree ∆. After attaching
(δ + 1− κ)κ+ (δ + 1− κ+m+ c)(κ−m− c) edges from L and M ,

κ(κ− 1) < κ∆− (δ + 1− κ)κ− (δ + 1− κ+m+ c)(κ−m− c).

In this case, we attach L to H in the same way, and fix our cut vertices as a
complete graph. To give each vertex in H degree ∆, |[H,L]| = κ(∆−δ) since for
any sk ∈ H, ρ(sk) = κ−1+δ+1−κ = δ. Since (κ−m−c)(δ+1−κ+m+c) <
κ(∆−δ), there are sufficient edges so that each vertex in L has degree δ. Hence,
we will prove that we can satisfy the maximum degree in H by showing that
by attaching κ(∆ − δ) edges evenly over M to H, for any vj ∈ M , we have
ρ(vj) ≤ ∆.

Proof. The maximum number of edges we can connect from H to L to ensure
that ρ(vj) ≤ ∆ is (δ+1−κ+m+c)(∆+κ−δ−1−m−c). The set of connecting
edges of size |[H,L]| = κ(∆− δ), must be less than this. To show that

(δ + 1− κ+m+ c)(∆ + κ− δ − 1−m− c) ≥ κ(∆− δ),

we use the fact that 0 < m+ c ≤ κ− 1. It follows that

(δ + 1− κ+m+ c)(∆− δ) ≥ κ(∆− δ),

δ + 1− κ+m+ c ≥ κ,

δ + 1− κ ≥ κ,

δ + 1− 2κ ≥ 0,

2(δ + 1− κ) ≥ δ + 1.

This must follow since by Theorem 3.4,

2(δ + 1− κ) > ∆ ≥ δ + 1.

Thus each cut vertex in H will be given degree ∆, and for each vj ∈ M ,
δ ≤ ρ(vj) ≤ ∆.
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Example: Realizing (3, 9, 9, 12) Minimally

Given the parameters (3, 9, 9, 12), we can see that with ∆ = 12,

2(δ + 1− κ) = 14 > ∆ ≥ 10 =
δ

κ
+ 1 + δ − κ.

By Theorem 7.3, the minimum size is n = 2δ+ 2−κ+m where m is defined by

m =

⌈
δ + 1 +

√
(δ + 1)2 − 4κ(∆ + κ− δ − 1)

2

⌉
− δ + κ− 1,

which gives us m = 2 and our minimum n = 19. To determine q and r we can
solve the equation

κ∆− (δ + 1− κ)κ− (δ + 1− κ+m+ c)(κ−m− c) = κq + 2r + r∗

and find that q = 2 and r = 0. Therefore, we realize (3, 9, 9, 9) minimally as

K7 ≡ H3,2 ≡ K9,

which is the graph given in Figure 2.

Figure 2

8 ∆ < δ
κ + 1 + δ− κ: No realizations smaller than

n = 2δ + 2

For ∆ < δ
κ + 1 + δ− κ, we can only realize our graph for n ≥ 2δ+ 2. To realize

(κ, δ, δ,∆) that satisfy this inequality we must return to Section 1. We will now
show that this inequality provides us with no minimum realization.
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Theorem 8.1. Given (κ, δ, δ,∆) that satisfy ∆ < δ
κ+1+δ−κ, the smallest

realization is n = 2δ + 2.

Proof. Assume that we are given ∆ < δ
κ + 1 + δ−κ. We will show that there is

no realization with n < 2δ+ 2. To do this we will prove that for any (κ, δ, δ,∆)
that satisfy the stated inequality, it is impossible to realize the parameters for
n = 2δ + 1. If it were possible to realize n = 2δ + 1, then we could realize our
graph in the form:

Kδ+1−κ ≡ Hr
κ,q ≡ Kδ,

since the smallest realizations are of this form, by Theorem 7.2. To attach edges
to our cut vertices, Hr

κ,q, we notice that if q = r = 0, then the maximum number
of edges equally connected to the cut vertices,

∑
s∈S ρ(s) ≤ κ∆. Using the

inequality with our parameters we can rewrite this as
∑
s∈S ρ(s) < δ+κ+κδ−κ2.

This means that the maximum number of the edges needed to connect both L
and R must be less than δ + κ + κδ − κ2. Since our minimum degree of the
graph is δ, each u ∈ L needs κ edges since they have degree δ − κ and each
v ∈ M needs 1 edge since they each have degree δ − 1. Therefore, the total
number of edges to guarantee that for all w ∈ (L ∪M), ρ(w) = δ, there must
be a total of (δ+ 1−κ)κ+ δ edges. This simplifies to κδ+κ−κ2 + δ which is a
contradiction since

∑
s∈H ρ(s) < δ+κ+κδ−κ2. This means that to connect L

and M to H to guarantee that all vertices have degree δ, there must be s ∈ H
where ρ(s) > ∆. Therefore, we cannot realize a graph of size n < 2δ + 2 given
parameters that satisfy ∆ < δ

κ + 1 + δ − κ.
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9 Conclusion

In conclusion, for κ > 1 and ∆ +κ < 2δ, we can realize (κ, δ, δ,∆) for any given
parameters excluding (2, δ, δ, δ) where δ is odd. For any parameters we can find
the minimum realization to be n = 2δ+2−κ+m, for some m ∈ {0, . . . , κ}, and
given such m we can realize any n ≥ 2δ+2−κ+m. This is the fourth and final
thesis that concludes Professor Wayne M. Dymacek’s research project Realizabil-
ity of n-Vertex Graphs with Prescribed Vertex Connectivity, Edge Connectivity,
Minimum Degree, and Maximum Degree. With the completion of this project,
working through hundreds of cases, Professor Dymacek’s students have success-
fully completed an exhaustive system to determine the realizability of any given
parameters and produce these simple and undirected graphs for any possible
order that is desired. The complete project can be attributed to the hard work
by the following graduates and faculty of Washington and Lee University:

• Dr. Wayne M. Dymacek, Professor of Mathematics

• Louis Joseph Steiner, Class of 2008

• Alyssa P. Hardnett, Class of 2014

• Candace Bethea, Class of 2015

With this complete system of algorithms, our only future work is looking for
possible connections between distinct cases to simplify the extensive nature of
this project.
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