$$
\begin{aligned}
& \text { 4. } \left.\begin{array}{rl}
4\left(x^{2}+y\right.
\end{array}\right)=17 x^{2} y^{2} \\
& \text { v. } \quad \frac{x}{20}=\text { dumei } \\
& y_{4}=\text { gruarters } \\
& \frac{z}{2}=\text { Layo } \\
& \frac{4}{20}+\frac{y}{4}+\frac{z}{2}=5.10 \\
& \frac{x}{20}=0.10 \\
& x=2 w \frac{1}{2}
\end{aligned}
$$

6

OLauc nither given or reciua acersturce on thes Exam.

$$
\begin{aligned}
& \int \frac{\left(a^{2}-x^{2}\right)^{-\frac{1}{2}} x}{a^{2}+x^{2}} \\
& y=a \sin y \\
& \int\left(a^{2}-a^{2} \sin \varphi\right)^{2^{\prime}} \operatorname{sog} \varphi b=a \cos \varphi \operatorname{ta} \\
& a^{2}+a^{2} \sin \varphi \\
& \int \frac{(1-\sin \varphi)^{2} \cos \varphi}{1+\sin ^{2} \varphi} d \varphi=\int \frac{1-\sin ^{2} \varphi}{1+\operatorname{cin}^{2} \varphi} \theta \\
& \sin \varphi\left(\sin ^{2} \varphi+1\right. \\
& \sin ^{2} p+1 \quad 1-1 \\
& \sin ^{2} \varphi 1+\sin ^{1} \varphi \\
& \frac{1+\sin ^{2} 41}{\frac{-1}{1+\sin 4}} \\
& \text { (at } \\
& 7^{9-2} \int^{7} x=k \\
& \frac{8}{y 2-}=s^{3} \frac{x 8}{7}-= \\
& \int_{-1}^{\frac{1}{2}}\left(2 x-2 x^{2}\right) \frac{x^{8}}{2}-=
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2}(\alpha-7) \times \frac{13}{7}=4
\end{aligned}
$$

