

$$
\begin{aligned}
& y^{2}=\frac{x^{2}(a+x)}{a-x} \quad y=x^{\prime}-a \\
& y^{2}=\frac{(x-a)^{2}(x)}{2 a-x} \\
& 2 a x^{2}-x x^{2}=\left(x^{2}-2 a x+a^{2}\right) x \\
& 2 a y^{2}-x y^{2}=x^{3}-2 a x^{2}+a^{2} x \\
& 2 a\left(x^{2}+x^{2}\right)=x^{3}+x x^{2}+a^{2} y . \\
& x=\operatorname{rase} \quad \quad \quad u=r \sin 4 \\
& 2 a\left(r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi\right)=r^{3} \cos ^{2} \varphi+r^{3} \cos ^{2} \varphi \sin ^{2} \varphi+a^{2} \tan \varphi \\
& 2 \operatorname{ars}^{2}=r^{3} \cos ^{3} \varphi+r^{3} \operatorname{ars} \varphi \sin ^{2} \varphi+a^{2} n \cos \varphi \\
& \operatorname{zar}=r^{2} \cos ^{3} \varphi+r^{2} \cos \varphi \sin ^{2} \varphi+a \cos \varphi \\
& 2 a n=b^{2} \cos \varphi(1)+\cos \varphi \\
& \text { 2arcan } \varphi \sin ^{2} \cos ^{2} \varphi+\cos ^{2} \varphi \\
& r^{2} \cos ^{2} \varphi-2 \operatorname{arcscos} \varphi+a^{2}=a^{2}\left(1-\cos ^{2} \varphi\right) \\
& r \cos \varphi-a= \pm(a \sin -\varphi) \\
& \operatorname{rcos} \varphi=a \pm a \sin \varphi \\
& r=\frac{a}{\cos 4} \pm a \frac{\sin \varphi}{\cos \varphi} \\
& r=a(\sec \varphi \pm \sin \varphi)
\end{aligned}
$$

