Prou (2) page 111 Byertys Int Cal

$$
\begin{align*}
& \frac{x^{2}}{a^{4}}+\frac{u^{2}}{b^{4}}=\frac{1}{c^{2}}\left(\frac{x^{2}}{a^{2}}+\frac{h^{2}}{b^{2}}\right)^{2} \quad \text { pass } t \text { poler civis } \\
& r^{2}=c^{2} \frac{b^{4} \cos ^{2} \varphi+a^{4} \sin ^{2} \varphi}{\left(b^{2} \cos ^{2} \varphi+a^{2} \sin ^{2} \varphi\right)^{2}} \\
& A=\frac{1}{2} \int r_{i} \varphi=\frac{1}{2} c^{2} \int \frac{\left(4 \cos ^{2} \varphi+a^{4} \sin ^{2} \varphi\right.}{\left(b^{2} \cos ^{2} \varphi+a^{2} \sin ^{2} \varphi\right)^{2}} \\
& =\frac{1}{2} c^{2} \int \frac{6^{4} \cos ^{2} \varphi}{\left(b^{2} \cos ^{2} \varphi+a^{2} \sin ^{2} \varphi\right)^{2}}+\frac{1}{2} c^{2} \int \frac{a^{4} \sin ^{2} \varphi d \varphi}{6 \cos ^{2} \varphi+a^{2} \sin ^{2} \varphi} \\
& =\frac{1}{2} \int c^{2} \int \frac{\sec ^{2} \varphi d \varphi}{\left(1+\frac{a^{2}}{b^{2}} \operatorname{lan}^{2} \varphi\right)^{2}}+\frac{1}{2} c^{2} \int \frac{\operatorname{cosec}^{2} \varphi b}{\left(1+\frac{b^{2}}{a^{2}} \cos ^{2} \varphi\right)^{2}} \tag{4}
\end{align*}
$$

yo intigrate (1) place $z=\frac{\alpha}{6} \operatorname{lan} 4$

$$
\begin{aligned}
& -S=\frac{1}{2} c^{2} \iint \frac{\frac{c}{c} \partial z}{\left(1+z^{2}\right)^{2}}-\frac{1}{2} c^{2} \int \frac{-\operatorname{cosec}^{2} \varphi \partial p}{\left(1+\frac{b^{2}}{c^{2}} \cot ^{2} \varphi\right)^{2}} \\
& =\frac{1}{2} c^{2} \int \frac{\frac{b}{c} D z}{\left(1+z^{2}\right)^{2}}-\frac{1}{2} c^{2} \int \frac{\frac{a}{a} \theta z^{1}}{\left(1+z^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} c^{2} \frac{b}{a} \frac{1}{2} \int \frac{D z}{1+z^{2}}-\frac{1}{2} c^{2} \frac{a}{b} \frac{1}{c} \int \frac{D z^{\prime}}{1+z^{2}} \\
& =\frac{1}{4} c^{2} \frac{b}{a} \tan ^{-1} z+\frac{1}{4} c^{2} \frac{a}{b} \cos ^{-1} z^{1} \\
& =\frac{1}{4} c^{2} \frac{b}{a} \operatorname{lan}^{-1}\left(\frac{a}{b} \operatorname{lin}-\varphi\right)+\frac{1}{4} c^{2} \frac{a}{b} \cdot \operatorname{art}^{-1}\left(\frac{b}{a} \cot -6\right) \\
& =\frac{1}{4} c^{2} \frac{b}{a} \varphi+\frac{1}{4} c^{2} \frac{a}{b} \varphi
\end{aligned}
$$

Between the hinets $\varphi=0$ + $\varphi=\frac{\pi}{2}$

$$
\begin{aligned}
& A=\frac{1}{4} c^{2} \frac{\pi}{2}\left(\frac{b}{a}+\frac{a}{b}\right)=\frac{1}{4} \frac{\pi c^{2}}{2 a b}\left(a^{2}+b\right) \\
& \quad A 4=\frac{\pi}{2 a b}\left(c^{2}+b^{2}\right)
\end{aligned}
$$



$$
\begin{aligned}
& \frac{1}{4} c^{2} \cdot \frac{a}{a} \tan ^{-1} z \\
& \frac{1}{4} c^{2} \frac{b^{2}}{a^{2}} \cdot \frac{a}{b} \tan ^{-1} \frac{a}{6} \operatorname{cap}
\end{aligned}
$$

$$
\frac{3}{4} \sqrt{2}
$$

$$
b+n=\frac{b=c}{h \cos }
$$

4
$\frac{z^{2}+1}{2 b} \int^{\frac{2}{1}}+\frac{(z+1)=}{z}=\frac{10}{x(2)+1) z} \cdot$

$$
\begin{aligned}
& \frac{\frac{2}{c^{2}}}{\operatorname{an}} \frac{2}{6^{3}}= \\
& \text { dexp h2 as } d x+x y \frac{2}{2^{0}} \text {. }
\end{aligned}
$$



$$
\begin{aligned}
& Y^{\prime} b=c+x^{\prime} \\
& y^{\prime} K=\frac{c+x^{\prime}}{2} \\
& O K=\frac{e^{\prime}+x^{\prime}}{2}-c=\frac{x^{\prime}-c}{2} \\
& 6 K=\frac{y^{\prime}}{2} \\
& y_{1} P=a+2 x^{\prime} \\
& 6 P=\frac{a+2 x^{\prime}}{2}
\end{aligned}
$$

$$
\frac{x^{\prime}}{a^{2}}+\frac{b^{\prime}}{b^{2}}=1
$$

Eqvalin of circle $\left(x-\frac{x^{\prime}-c}{2}\right)^{2}+\left(y-\frac{b^{\prime}}{2}\right)^{2}=\left(\frac{a+2 x^{\prime}}{2}\right)^{2}$

$$
\begin{align*}
& \left(2 x-x^{\prime}+c\right)^{2}+\left(23-y^{\prime}\right)^{2}=\left(a+2 x^{\prime}\right)^{2}  \tag{1}\\
& -2(2 x-x+c)-2\left(2 y-y^{\prime}\right) \frac{8 y^{\prime}}{x^{\prime}}=2 \sum\left(a+2 x^{\prime}\right) \\
& \frac{\partial y^{\prime}}{\partial x^{\prime}}=\frac{b^{2} x^{\prime}}{a^{2} y^{\prime}} \\
& -2 x+x^{\prime}-c+\frac{2 b^{2} y x^{\prime}}{a^{2} y^{\prime}}-\frac{b^{2} y^{\prime}}{a^{2}}=\varepsilon a+\varepsilon^{2} x^{\prime} \\
& -2 x+\frac{a^{2}-L^{2}}{a^{2}} x^{\prime}-c+\frac{2 y b^{2} x^{\prime}}{a^{2} y^{\prime}}=2 a+\varepsilon^{2} x^{\prime} \\
& -2 x+\frac{2 b^{2} 3 x^{\prime}}{a^{2} y^{\prime}}=2 c \\
& -x+\frac{b^{2} y x^{\prime}}{a^{2} y^{\prime}}=c \\
& y^{\prime}=\frac{6^{2} 3 x^{\prime}}{a^{2}(c+x)}, \frac{y^{\prime}}{6^{2}}=\frac{b^{2} 3^{2} x^{\prime}}{a^{4}(c+x)^{2}} \\
& \frac{x^{\prime 2}}{a^{2}}=1-\frac{b^{2} y^{2} x^{\prime 2}}{a^{4}(c+x)^{2}} \\
& x^{\prime^{2}}=a^{2}-\frac{b^{2} y^{2} x^{\prime 2}}{a^{2}(c+x)^{2}} \\
& x^{\prime 2}=\frac{a^{4}(c+x)^{2}}{a^{2}(c+x)^{2}+b^{2} y^{2}} \\
& x^{\prime}=\frac{a^{2}(c+x)}{\sqrt{a^{2}(c+x)^{2}+b^{2} y^{2}}}+\eta^{\prime}=\frac{b^{2} y}{\sqrt{a^{2}(c+x)^{2}+b^{2} y^{2}}}
\end{align*}
$$

Substitite this values of $x^{\prime} x y^{\prime}$ in (1)

$$
\left(2 x+c-\frac{a^{2}(c+x)}{\sqrt{a^{2}(c+x)^{2}+b^{2} y^{2}}}\right)^{2}+\left(2 y+\frac{b^{2} y}{\sqrt{a^{2}(c+x)^{2}+b^{2} z^{2}}}\right)^{2}=a+\frac{\sqrt{a^{2}(c+x)}}{\sqrt{c^{2}(c+x)^{2}+b^{2} z^{2}}}
$$

this equation teonees to $x^{2}+y^{2}=a^{2}$ Make the reouction.

$$
\begin{aligned}
& c y^{2}+26 x y=1-a x^{2} \\
& y^{2}+\frac{2 b}{c} x y=\frac{1-a x^{2}}{c} \\
& y=-\frac{G x}{2} \pm \sqrt{\frac{1-a x^{2}}{c}+\frac{c^{2} x^{2}}{c}} \\
& y=-\frac{b y}{c} \pm \frac{1}{c} \sqrt{c-\left(a c-b^{2}\right) x^{2}}
\end{aligned}
$$

