$$
\begin{aligned}
& 2=2 x \sqrt{x^{2}-x^{2}}+x^{2}-x^{2} \\
& \frac{\partial r}{\partial x}=2 \sqrt{r^{2}-x^{2}}-x\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}(2 y)-2 x=3 \\
& \sqrt{r^{2}-x^{2}}-x^{2}\left(x^{2}-x^{2}\right)^{-\frac{1}{2}}-x \rightarrow 0 \\
& \sqrt{x^{2}-x^{2}}-\frac{x^{2}}{\sqrt{5^{2}-x^{2}}}-x=0 \\
& 1^{2}-x^{2}-x^{2}-x \sqrt{r^{2}-x^{2}}=0 \\
& r^{2}-2 x^{2}=x \sqrt{r^{2}-x^{2}} \\
& r^{4}-4 r^{2} x^{2}+h x^{4}=r^{2} x^{2}-x^{4} \\
& 5 x^{4}-5 x^{2} x^{2}=-4 \\
& x^{4}-r^{2} x^{2}=-\frac{r^{4}}{5} \\
& x^{2}=\frac{r^{2}}{2} \pm \sqrt{\frac{r^{4}}{4}-\frac{r^{4}}{1}} \\
& x^{2}=\frac{r^{2}}{2} \pm \sqrt{\frac{r^{4}}{20}} \\
& x^{2}=\frac{r^{2}}{2}+\frac{r^{2}}{2 \sqrt{5}} \\
& x^{2}=r^{2}\left(\frac{1}{2} \pm \frac{1}{2 \sqrt{5}}\right) \\
& x= \pm \sqrt{\frac{1}{2} 2 \frac{t}{2 \sqrt{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}\left(x^{2}+a^{2}\right)=a^{2} x^{2} \\
& x^{2} y^{2}-a^{2} x^{2}=-a^{1} y^{2} \\
& x^{2}=\frac{a^{2} y^{2}}{a^{2}-y^{2}} \quad y^{2}=\frac{a^{2} x^{2}}{a^{2}+x^{2}} \\
& x=\frac{a y}{\sqrt{a-y^{2}}} \\
& A=\int x \theta=a \int \frac{\eta}{\sqrt{a^{2}-y^{2}}}+x \\
& A=\frac{a}{-2} \int\left(a^{2}-y^{2}\right)^{-\frac{1}{2}(-2 y b)} \\
& =\frac{a}{2}\left(a^{2}-y^{2}\right)^{\frac{2}{2}}+b \\
& = \\
& =-a\left(a^{2}-y^{2}\right)^{\frac{1}{2}+b}
\end{aligned}
$$

$A=0$ whin $\eta=0, \therefore=a^{2}$ Fintur $y=a$

$$
\begin{aligned}
& t=a^{2} \\
& 2 \Delta=1 a^{2}
\end{aligned}
$$

$\frac{2+\left(\frac{2}{4} a\right)}{4}=3=6$

