$\left.-\frac{1}{2} x^{2} f \theta=\frac{4}{2} a^{2}-4 a^{2}+a^{2} \operatorname{sn}^{2} \theta\right) \partial \theta$

$$
=2 a^{2} \theta-4 a^{2} \theta+
$$

$$
r^{2}=4 a^{2} \cos ^{2} R-4 a^{2}+a^{2} \varepsilon^{2} c^{2} \theta
$$

$$
\frac{1}{2} f^{2} \partial \theta=2 a^{2} \int\left(\operatorname{cs}^{2} \theta-24\right.
$$

$$
\left.\frac{1}{2} r^{2} \theta \theta=2 a^{2} a s^{3} \phi-2 a^{2}+\frac{a^{2}}{2}\right) \theta \theta
$$

$$
=2 a^{2}\left(\theta+\frac{\sin \theta \cos \theta}{2}\right)-2 a^{\prime} \theta
$$

$-1 a^{2}\left(1-\frac{\pi}{r}\right)$

$$
\begin{aligned}
& r \cos \theta=\operatorname{acs} 2 \theta \\
& r=\frac{a \operatorname{asc} \theta}{\operatorname{ars} t}
\end{aligned}
$$

$$
\theta=\frac{\pi}{2} \quad r=\frac{a \cos \pi}{a \cdot \frac{\pi}{2}}=-s
$$

$r \cos \theta=a \cos 2 \theta=a\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$r=a \frac{\left(\cos ^{2} \theta-\cos ^{2} U\right)}{\cos \theta}$
$\sqrt{x^{2}+h^{2}}=a \operatorname{as} \theta-a \frac{\operatorname{sen}^{2} \theta}{\cos \theta}$
$\sqrt{x^{2}+b^{2}}=x-a \sin \theta \tan 8$
$=x-4 \cdot \tan 8=x-4 \frac{4}{x}$
$=x-x^{2}-x^{2}-4^{2}$
$=x-\frac{y^{2}}{x}=x^{2} \frac{-4^{2}}{x}$
$x^{2}+x^{2}=\frac{\left(x^{4}-2 x^{2} x^{2}+4^{4}\right)}{x^{2}}$
$\left.x^{2}\left(x^{2}+4^{2}\right)=x^{2}-x^{2}\right)^{2}$
$x^{4}+x^{2} 4^{2}=x^{\prime}=2 x^{2} x^{2}+4$

$$
\begin{gathered}
x^{2}-y^{2}= \\
3 x^{2} y^{2}=y^{7} \\
3 x^{2}=y^{2}
\end{gathered}
$$

