$$
V
$$

$$
\begin{aligned}
& y=\text { saduie hexagon } \\
& { }_{11}=1 \text { sidr }
\end{aligned}
$$

. Hlatuds Aricungh $={ }^{\frac{y}{2}} \sqrt{y^{2}-\frac{y^{2}}{x}}=\frac{\sqrt{3}}{2} y$.

$$
\begin{aligned}
& \frac{\sqrt{3}}{2} y \cdot \frac{y}{2}=\frac{\sqrt{3}}{4} y^{2}=\text { arsa } 1 \text { taminglr } \\
& 3 / \sqrt{3} y^{2}=6 \text { facee } \quad x^{2}+y^{2}=a^{2} . \\
& r=3 / 2 \sqrt{3} \int_{0}^{a}\left(a^{2}-x^{2}\right) d x \quad=3 / 2 \sqrt{3} / a^{2} x-\frac{x^{3}}{3} /=\sqrt{3} a^{3}
\end{aligned}
$$

$$
\text { (13) } \sqrt{3} a^{3} \cdot 2=2 \sqrt{3} a^{3}
$$

$$
\begin{aligned}
& x h=\left[(a+b) \cos \theta-6 \operatorname{ars} \frac{a+b}{6} \theta\right]\left[(a+b)\left(\cos R-\cos \frac{a+b}{b}\right) d \theta\right. \\
& =\left[(a+b)^{2} \cos ^{2} t-b(a+b) \operatorname{arc} \cos \frac{a+b}{b} \theta-(a+b)^{2} a \cos \theta+\frac{a+b}{b} \theta\right. \\
& \left.+t(a+b)^{2} a^{2} \cdot \frac{2 k+6}{b} 4\right] \text { ds } \\
& 3 \pi_{x}=\left[(a+b) \sin b-b \sin \frac{a}{\theta}{ }^{2} \theta\right]\left[(a+b)\left(-\sin \theta+\sin \frac{a+b}{d x}\right)\right] d \theta \\
& =\left[(a+b)^{2}\left(-\sin ^{2} q\right)+b(a+b) \sin \theta \sin \frac{a+b}{b} \theta-b(a+b) \sin ^{2} a+b a d d 0\right. \\
& +(a+b)^{2} \sin \phi \sin ^{2} \frac{x b}{6} \theta \\
& x \sin -3 x=\left(a^{2}+b\right)^{2}-2 b b a+b\left(\cos \theta \cos \frac{a+b b}{b}+\sin \theta \sin \frac{a+b}{b} b\right) \\
& -(a+b)^{2}\left(\cos \theta \cos ^{a} \frac{x}{b} x+\sin b \sin \frac{a+b}{b} f\right)+b\left(a^{2}+b\right) \\
& =\left[(a+b)(a+2 b)-l\left(\frac{a+b)}{d} \operatorname{ars} \frac{a \theta}{b}-(a+b)^{2} \cos \frac{a b}{b} \theta a\right.\right. \\
& =\left[(a+b)(a+2 b)-(a+b)(a+2 b) \cos \frac{a b}{b}\right] i \theta \\
& =(a+b)(a+2 b)\left[1-\cos \frac{a \theta}{b} d \theta\right. \\
& \int \rho^{2} q \varphi=(a+b)(a+2 b)\left(1-\cos \frac{a d}{b}\right) d x \\
& \int \varphi^{2} \theta=\left.(a+b)(a+2 b)\left(\theta-\frac{b}{a} \sin \frac{a \theta}{b}\right)\right|_{0} ^{\frac{2 \pi b}{a}} \\
& =(a+b)(a+2 b)\left(\frac{2 \pi l}{a}-\frac{l}{a} \sin 2 \pi l\right) \\
& =(a+b)(a+2 b) \frac{2 \pi b}{a} \\
& \frac{1}{2} \int \varphi^{2} \theta \theta=(a+b)(a+2 b) \pi \frac{b}{a}-H^{+} a^{a} \pi b \\
& =\pi b\left[\frac{(a+b)(a+2 b)}{a}-a\right. \text {. } \\
& =\frac{\pi b}{a}\left[(a+b)(a+2 b)-b^{2}\right] \\
& =\frac{\pi b}{a}\left[b^{2}+a b+2 a b+2 b^{2}-b^{2}\right] \\
& =\frac{\pi b}{a}\left(3 a l+2 b^{2}\right)=\frac{b^{2}}{a}(3 a+2 b) \pi
\end{aligned}
$$

