Prathematier II
P1. P. Prove.
2: Fimed the equatorn of the evicle which circumserfer the triangle orhose sider oue refurinted fy the ethathous $y=0 \quad y-x=1$ and $x=3$ Srow the figme.

$$
\left.\begin{array}{cc}
y=0 \\
y=x+1
\end{array} \quad \begin{array}{c}
x=3 \\
x=-1 \\
y=0
\end{array} \quad \begin{array}{l}
-1+1+1=0 \\
-y=3+104 \\
y x=3
\end{array} \quad \begin{array}{l}
y=0 \\
x=3
\end{array} \quad \text { (Combining }\right)
$$

then min the afove co-ordenates the hamegle in constucted ar frloms.

thor having found the foink of the thangle we niel mel the equation 8^{-a} bine farsing thorugh inv-gren forilh li find the strpe to that Ne caul find the equathoie $y_{\text {the }} A$ miduray felmem $B C$, and is like manuer 18 .
then by geomeny the 1 eneted at the mudde fout of AC wisl intusset. She 1 eveted at the madidey Be and $A B$, and there senter viree be the einter y the evich.
Then fureercling me harz, the ryuation g'a hine hassing through hio give Groids: the Band c fusti.
$\operatorname{Sin} 22 \frac{1}{2}^{\circ} i \sin 67^{\frac{1}{2}}=\frac{1^{\prime}}{4}: O B$

$$
O B=\frac{5}{4} \frac{\sin 67 \frac{1}{3^{2}}}{\sin 22 \frac{3}{2}^{\circ}}
$$

$$
\frac{\sin 3 x}{\sin 4}=\frac{3 \sin x-4 \sin ^{3} x}{\sin y}
$$

$$
=3-4 \sin ^{2} x
$$

$\quad \frac{X \sin C 72^{\circ}}{\sin 22^{\frac{1}{0}}}=3-4 \sin ^{2} 22^{\frac{1}{2}}$
$\therefore O H=\frac{5}{4}\left(3-4 \sin ^{\circ} 22 \frac{1}{2}^{\circ}\right)$
$B_{3}+4 \sin ^{2} 222_{2}{ }^{\circ}=2\left(1-\cos 45^{\circ}\right)$

$$
\therefore O B=\frac{5}{4}\left[3-2\left(1-\cos 45^{-5}\right)\right]
$$

$$
\theta B=\frac{5}{4}\left(1+2 \cos 45^{-}\right)
$$

$$
\cos 45^{\circ}=\frac{1}{2} \sqrt{2}
$$

$O B=\frac{5}{4}(1+\sqrt{2})$
$O G^{2}=O B^{2}+G B$
$\overline{\sigma t}^{2}=\frac{25}{16}(1+\sqrt{2})^{2}+\left(\frac{3}{4}\right)^{2}$
$\overline{O G}^{2}=\frac{25}{16}[1+2 \sqrt{2}+2+1]$
$O 6^{2}=\frac{25}{16}[4+2 \sqrt{2}]$
$O b=\frac{5}{4} \sqrt{4+2 \sqrt{2}}$
$O D=O 6-\frac{5}{4}$
$\therefore O D=\frac{5}{4}\left[\frac{5}{4+2 \sqrt{2}}-1\right]$
$4 O \varepsilon=\frac{5}{4}[\sqrt{4+2 \sqrt{2}}+1]$

Oricamifnemer of miser crich

$$
\begin{align*}
& \left.=2 \pi \cdot \frac{3}{4} \sqrt{4+2 \sqrt{2}}-1\right] \\
& =\frac{5}{2} \pi[\sqrt{4+2 \sqrt{2}}-1]
\end{align*}
$$

Priranm-bramer of onter circe

$$
\begin{equation*}
=\frac{5}{2} \pi[\sqrt{4+2 \sqrt{2}}+1] \tag{B}
\end{equation*}
$$

$\sqrt{2}=1.416$ approxamuation

$$
\begin{aligned}
& 2 \sqrt{2}=2.832 \\
& 4+2 \sqrt{2}=6.893 \\
& \sqrt{4+2 \sqrt{2}}=2.412
\end{aligned}
$$

(Ai) bearmios

$$
\begin{array}{r}
\begin{array}{r}
3.1416 \\
4.03 \\
984248 \\
125664
\end{array} \frac{1660648}{166}
\end{array}
$$

on $5 \pi(0.806)$
or $\pi(4.03)$
or 12.660648 moles
(B) bearms

$$
\frac{5}{2} \pi(3.612)
$$

or $\pi(9.03)$

$$
\begin{array}{r}
3.1416 \\
9.03 \\
\hline 94248 \\
282744 \\
28,368648
\end{array}
$$

or 28.368645 nioheo

Ot oongtion - Criemme if inower eriok $12 \frac{2}{3}$ incher \cdots ontio $\sim 28 \frac{1}{3} \cdots$

