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Abstract

I present a traffic model inspired by the motion of molecular motors along microtubules,
represented by particles moving along a one-dimensional track of variable length. As the particles
move unidirectionally along the track, several processes can occur: additional particles can attach
at an unoccupied site, particles already on the track can move to the next open site, or particles on
the track can detach. I study the model using mean-field theory and Monte Carlo simulations, with
a focus on the steady-state properties and the time evolution of the particle density and particle
currents. I then expand the model to include two-dimensional side-stepping along a cylindrical
microtubule, as well as bidirectional movement of two different species of motors along tracks of
fixed and variable length. Though each model expansion adds complexity, I keep the model general
to allow for versatile applications throughout non-equilibrium statistical physics and biology.
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Chapter 1

Introduction and Background

1.1 Applications of Non-Equilibrium Systems

Traffic models have been of interest to physicists and mathematicians for a very long time
for their versatile interdisciplinary applications. For biophysicists, it is interesting to study how
traffic jams at the intracellular level may result in severe disruptions in the well-functioning of the
human body. Stochastic processes driving traffic jam formation appear in many physical systems
and have been thoroughly studied in physics, chemistry, biology and social sciences using a variety
of stochastic models. One category of models that lead to useful quantitative results for different
traffic-type models is the totally asymmetric exclusion process (TASEP), studied by itself to isolate
edge effects in smaller systems [1] or coupled with Langmuir kinetics to model bulk dynamics [2, 3].
Most traffic models assume tracks with fixed length over time, but there are processes in nature
for which these tracks have variable length. The most common example in biology is the traffic of
molecular motors [4, 5] on cellular tracks called microtubules [6, 7].

Interest in molecular motor dynamics increased greatly with the realization that the proper
functioning of cells depends on the active, directed transport of macromolecules at the intracellu-
lar level. Analogous to vehicles, molecular motors experience traffic jams on cytoskeletal tracks,
observable as a rapid increase in density and decrease in speed, leading to a blockage that pre-
vents additional motor proteins from traveling. From the perspective of a physicist, the traffic of
molecular motors represents an interesting non-equilibrium system directly amenable to analysis
using methods of non-equilibrium statistical physics. In the past twenty years, the non-equilibrium
physics community demonstrated an increased interest in modeling molecular motors using the
driven lattice gas approach, with many studies using the TASEP model as a paradigm [8, 9, 10].
These models were studied using both computer simulation techniques and analytical means [11, 12].
A special interest was shown in describing the movements of molecular motors on cytoskeletal fil-
aments as random walks on a track [13].

Not only are the motors by themselves intricate biological machines, but also the system
increases in complexity through dynamic interactions between motors and their cellular tracks.
Before proceeding into an explanation of the stochastic model, it is necessary that I provide a brief
background on microtubule dynamics, motor proteins, and the biochemistry that relates them. I
will then explain how the biology applies to the TASEP model.
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1.2 Biological Background

1.2.1 Microtubule Dynamics and Motor Molecules

In eukaryotic cells, microtubules are linear, polarized polymers that contribute to intracellu-
lar transport, cell motility, division and differentiation [14, 15]. Microtubules are formed from the
polymerization of alpha-beta tubulin dimers (Fig. 1), which combine linearly to form a protofil-
ament. An average of thirteen protofilaments interact longitudinally to form a cylindrical shape
characteristic of microtubules [15].

Figure 1.1: Electron diffraction of alpha-beta tubulin dimer. Alpha tubulin depicted in orange,
beta tubulin depicted in green [16].

Figure 1.2: Basic structure of a microtubule. Alpha tubulin (orange) and beta tubulin (green)
dimerize (top) to form the base subunit of a protofilament (middle). Protofilaments interact to
form a cylindrical microtubule (bottom).

The polarity of a microtubule arises from the consistent alignment of dimers, with the beta-
tubulin forming the more dynamic positively charged end [17]. The dynamic end experiences more
rapid attachment of guanosine triphosphate (GTP), forming a GTP cap that regulates the polymer-
ization of additional dimers [18]. Conversely, GTP hydrolysis weakens the adjacent protofilaments’
affinity for new tubulin dimers, thus increasing the rate of depolymerization and shrinking the
microtubule [19]. Lateral interactions between protofilament tips coupled with variable stability
from GTP caps causes each protofilament to polymerize at slightly different rates [20, 21]. The con-
sequences of these variable polymerization rates are discussed in further in Section 3.2. Frequent

2



Figure 1.3: Structure of microtubule in growth phase. As above, orange circles are alpha-tubulin
and green circles are beta-tubulin. Blue circles represent GTP molecules, creating a cap that
provides microtubule stability and permits growth. Addition of tubulin dimers occurs on the
positive end (right side).

transitions between polymerization and depolymerization, with periodic growth and shrinkage,
are referred to as dynamic instability [22, 23, 24, 25]. At an extreme state of instability, the re-
moval of the stabilizing GTP cap results in rapid dissociation known as microtubule catastrophe
[18, 19, 22, 23]. Understanding microtubule dynamics could help explain the role of malfunction-

Figure 1.4: Microtubule shrinking rapidly, as in catastrophe.

ing microtubules in the development of diseases, providing new potential treatments for cancer or
neurodegenerative conditions [26, 27, 28].

Aside from their role in cell division, I draw attention to the contributions of microtubules in
the transport of organelles, protein complexes, and other macromolecules across a cell, made pos-
sible through interactions between microtubules and motor molecules [6, 29, 30]. Motor molecules,
like kinesin, dynein and myosin, utilize adenosine triphosphate (ATP) hydrolysis to “walk” in a
hand-over-hand fashion along actin filaments or microtubule tracks, carrying with them cargo vesi-
cles [31]. Biological data have now reached a stage of quantitative and reproducible detail, which
allows for theoretical modeling of motor behavior, including step size, frequency, and direction that
aligns with experimental evidence [28, 32, 33]. Interest in molecular motor dynamics increased
greatly with the realization that the behavior of the cell and its structure depends on the active,
directed transport of macromolecules at the intracellular level, including, but not limited to, the
delivery messenger RNAs during RNA localization, axonal transport of proteins and membranes
to synaptic terminals, or the dispersion of large membrane organelles [6, 25, 30, 34].

Just as a disruption of traffic hurts the functioning of a city, ineffective molecular transport
can result in a variety of diseases. For example, defective motor molecules reduce efficiency of axonal
transport, leading to the neurodegenerative disease amyotrophic lateral sclerosis [35]. Analogous to
a traffic jam of vehicles, motor molecules experience traffic jams on cytoskeletal tracks, observable
as a rapid increase in density and decrease in speed, forming a blockage that prevents additional
motor proteins from traveling [27, 36]. These traffic jams of motor molecules are thought to be
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either density-induced, in which the density of motor molecules exceeds a threshold, or bottleneck-
induced, in which low detachment rates at microtubule ends cause pileups [36]. Processivity of
motor molecules as well as conditions that affect attachment and detachment rates, such as tem-
perature or ATP concentration, contribute to the frequency of traffic jams. Research supports that
motor proteins may have adapted to reduce jams [36]. Consequently, modeling density and current
of motor molecules on a dynamic microtubule is of interest to biologists and physicists alike and
could help shed light on the development of traffic jams in neurodegenerative patients.

Microtubule stability, interactions with motor molecules, and subsequent intramolecular
transport are heavily influenced by microtubule associated proteins (MAPs). Table 1.1 summarizes
MAPs with critical functions in human health.

Table 1.1: Functions of critical MAPs. Functions that each MAP exhibits are highlighted in
black. ASPM: abnormal spindle-like protein, microencephaly-associated. DCX: doublecortin. LIS1:
lissencephaly-1. CLIP-115: cytoplasmic linker protein-115. Adapted from Craddock 2011 [37]

Though MAPs are not a focus of this model, they are an emerging topic of biological study.
A future direction of this project may be to introduce the effect of variable concentrations of MAPs
on dynamic instability and neurodegenerative disease.

Further still, interactions between motor molecules and microtubules change not only the mi-
crotubule’s affinity for the attachment of more motor molecules, but also the polymerization rates
associated with dynamic instability [29, 38]. There is evidence that when kinesin-1, a member of
the kinesin superfamily, is in its strong binding state, it changes the structure of its microtubule
track to inhibit shrinking and increase stability [38]. Additionally, attractive interactions between
kinesin-1 neighbors influences dynamic instability. The binding of kinesin-1 has been demonstrated
to change a microtubule lattice into a high-affinity state that promotes additional binding of ki-
nesin [29]. These attractions between kinesin-1 motors increase their duration of attachment to the
microtubule, resulting in clusters [39]. Clustering at the end of a microtubule then alters dynamic
instability by decreasing the rate of depolymerization [23, 57].

This model focuses on the movement of kinesin along a dynamic microtubule. Kinesins are a
superfamily of proteins which step hand-over-hand toward the positive end of a microtubule. The
next section will describe the kinesin stepping mechanism along cytoskeletal filaments, as driven
by hydrolysis of ATP.
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1.2.2 Biochemistry of Stepping Mechanism: Kinesin Superfamily of Proteins

Before further investigating motor molecule dynamics, it is important to understand the bio-
chemistry underlying the kinesin stepping mechanisms. The kinesin superfamily proteins (KIFs)
fulfill a variety of roles in the cell, including intracellular transport, morphogenesis (cell develop-
ment), and basic functioning, and more recent research reveals their roles in cognitive functions like
memory and learning, asymmetrical developmental processes, and tumorigenesis suppression [40].

The speed of ATP hydrolysis determines the speed of kinesin translocation. KIFs are divided
into subfamilies, whose variations in structure alter the efficiency of the ATP cycle. Though there
is 50% sequence identity conserved betweeen KIFs, high diversity between subfamilies results in a
variety of properties and subsequent functions. As a useful reference, I provide a table of kinesin
subfamilies and associated properties in Table 1.2.

Table 1.2: Description of KIF subfamilies and associated properties. Properties that kinesins
demonstrate are highlighted in blue [41].

All kinesins express a highly conserved motor domain (Fig. 1.5), serving as a switch triggered
by the bound nucleotide: ATP, ADP in complex with inorganic phosphate, ADP, or no nucleotide
bound (empty). Each nucleotide conformation regulates binding affinity to the microtubule and
transitions from low to high affinity. In a chemically and mechanically coupled cycle, the binding
of a nucleotide triggers its hydrolysis as the binding of the kinesin motor domain causes a change in
motor domain kinetics, reciprocally triggering a conformational change. In its simplest form, this
process is known throughout molecular biology as the ATP turnover cycle (Fig. 1.6).

Differences in structures of subfamilies within KIFs change the dynamics of the cycle. Kinesin
motor domains (or heads) are attached to a neck linker and neck, connected to a stalk and tail,
which can carry molecular cargo. Variations in neck effects between subfamilies alter processivity,
how many steps a motor takes before dissociating from the microtubule. Further, some proteins
have longer necks that increase probability for side stepping in the two dimensional model, explained
in Chapter 3.
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Figure 1.5: Highly conserved KIFs motor domain [42].

Figure 1.6: Simplest version of the ATP turnover cycle. There are four nucleotide states: ATP, ADP
in complex with inorganic phosphate, Pi, ADP, and empty, Φ. Transition rates are represented by
kon values with positive subscripts and koff values with negative subscripts.

1.2.3 A note on ATP, Equilibrium, and Phase Transitions

At chemical equilibrium, the ratios of local binding and detachment rates remain fixed, re-
sulting in no net movement of a motor molecule. In the cell, however, the ATP hydrolysis reaction
is maintained out of equilibrium. The net motion of the molecular motors along the filaments
happens above a critical concentration of ATP, for which the rate of stimulated detachment is
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Figure 1.7: Kinesin stepping mechanism using the ATP turnover cycle. Kinesin heads are depicted
in purple and yellow. The purple coil represents the kinesin stalk and blue lines represent the
neck linkers. Red discs represent tunnel magnetoresistance probes, a tool for measurement used by
Toprak et al. 2009 and not a natural part of kinesin structure [43]. In their experiment, Toprak
et al. measured changes in kinesin confirmation as it moved along the microtubule (gray) by rays
emitted from the probes when they the neck linkers for each head were associated (red glow).
ATP is represented by the blue sphere, ADP is represented by the green sphere, and inorganic
phosphate is represented by the orange sphere. Steps 1, 2, and 3 of the ATP turnover cycle help
the kinesin move toward the positive end of the microtubule. Step four returns kinesin to its original
confirmation, ready to take another step. Image created by Ahmet Yildiz [43].

.

sufficiently high. This situation is analogous to phase transitions in condensed matter physics [3].
In para– to ferromagnetic transitions, for example, cooperative behavior can align spins, even in
the absence of external magnetic fields [45]. Indeed, the general mathematical properties at the
critical point are closely related in both systems. However, there are significant differences: the
team of motors is a non-equilibrium system that is controlled by chemical kinetics, as opposed to
an equilibrium system that is controlled by temperature [45].
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1.3 TASEP models with Langmuir Dynamics

In the one-dimensional non-equilibrium system, movement of particles is driven by two
stochastic processes. At the boundaries, entrance and exit of particles is driven by the totally
asymmetric exclusion process (TASEP). In the bulk resevoir of the one-dimensional lattice, the
attachment and detachment of particles is driven by Langmuir dynamics (also referred to in liter-
ature as Langmuir kinetics).

In its most basic terms, TASEP is a stochastic model beginning with a one-dimensional lattice
of integer N sites. Each site can can be either occupied or unoccupied by a particle, modeled by a
1 or 0 [44]. Particles enter and exit the lattice exclusively on the boundaries, entering the lattice
at rate α and exiting at the opposite boundary at rate β. To move along the lattice, a particle
at site n hops right to the next unoccupied site, n + 1 with probability p. If the site adjacent
to the particle is occupied, the particle becomes immobilized due to exclusion [45]. In the totally
asymmetric exclusion process, particle motion is constrained to one direction only, such that the
probability of a particle moving to the left, q, is 0. The asymmetric condition, by comparison,
results in two-dimensional motion and particle drift, such that q > p results in drift to the left and
q < p results in drift to the right.

Figure 1.8: Schematic of TASEP on a one-dimensional lattice. Particles are introduced to the
system at rate α and exit at rate β . Particles transition to the next unoccupied site at rate p = 1.
For TASEP, particles can only hop in one direction, such that q = 0. In this example, one of the
particles in the bulk of the lattice is held immobile by the particle occupying the adjacent site.

Classical TASEP displays a complex phase diagram for the total particle current that has
three phases: low-density, high-density, and a maximal current. These results are well established
and widely applicable throughout non-equilibrium physics research and are explained for reference
in Appendix A.

In comparison to TASEP where attachment only occurs at boundaries, Langmuir dynamics
allows for stochastic attachment and detachment in the bulk of the one-dimensional lattice at rates
ωA and ωD, representing adsorption and desorption, respectively. By microscopic reversibility, the
kinetic rates of attachment and detachment will cause the system to evolve into equilibrium [3].

For systems in the thermodynamic limit, with both TASEP and Langmuir dynamics, the
latter dominates particle behavior. As a result, statistical physics requires that Langmuir-driven
systems evolve into a steady state. By contrast, TASEP driven systems evolve into stationary,
non-equilibrium states [3]. The limit case occurs in large, yet finite systems in which TASEP and
Langmuir kinetics compete. The study of such systems resuls in the observation of particle behavior
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Figure 1.9: Schematic visualization of TASEP and Langmuir kinetics along a one-dimensional
lattice. ωA represents bulk attachment and ωD represents bulk detachment.

distinct from either paradigm, resulting in phase separation [3]. While phase diagrams related to
the movement of motor molecules along a microtubule lattice are beyond the scope of this thesis,
they are a potential future expansion of the stochastic unidirectional model.

1.3.1 TASEP Applications to Biology

TASEP is a highly versatile model with many biological applications. An early application
of TASEP was in modeling translation, the process in which transfer RNAs read messenger RNA
transcripts and convert sequences of three-base codons into an amino acid chain [44, 46, 47, 48].
The mRNA serves as a one-dimensional lattice, and ribosomes, complexes of ribosomal RNA that
provide a site for translation, move unidirectionally 5’ to 3’ along the lattice [44]. Each site on the
lattice is represented by a codon. A ribosome attaches to one site at a time, n, but blocks sites n−1
and n+1 from attachment by another ribosome. In a reading frame of N codons, a ribosome begins
at the start codon and elongates a polypeptide as it moves toward the 3’ end, adding a new amino
acid at each codon (that is, at each site of the lattice). The addition of the last amino acid in the
polypeptide occurs at site N − 1, as the N th site is designated by the stop codon, which does not
code for an amino acid. TASEP can be used to model two scenarios, including a uniform-density
state, where ρ(t) = ρ, as well as a steady state, where dρ(t)/dt = 0 and there is an upper limit to
the range of rates at which new amino acids can be added to the chain (Fig 1.10) [49].

A similar application can be made to the central dogma, through the movement of RNA
polymerase (RNAP) and the displacement of histones during transcription [51]. RNAP is respon-
sible for the initiation of transcription by binding to the promoter at the beginning of a gene, as
well as the elongation of the pre-mRNA transcript. Using DNA as its one-dimensional lattice,
RNAP moves down a gene in the 5’ to 3’ direction by hopping along and elongating the transcript
with the complement of each base in the sequence. RNAP does not move unobstructed, but rather
competes for binding sites with histones [51]. Histones are protein complexes that DNA wraps
around, changing what sequences of DNA are available for RNAP to transcribe, thus playing a
critical role in gene expression. At the end of a gene, RNAP detaches from the lattice, known as
termination. TASEP can be used to model both RNAP’s stochastic initiation of transcription as
well as the displacement of histones from the lattice during elongation [51].

Yet another application of TASEP can be found in gel electrophoresis, a technique in molec-
ular genetics for separating DNA fragments by length using electric current [47, 52, 53, 54]. The
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Figure 1.10: Example of TASEP in protein translation. Each box on the mRNA transcript lattice
represents a three-base codon. A ribosome, rRNA in light blue, attaches to the mRNA transcript
and scans for the start codon to begin translation. Aminoacylated tRNAs (blue boxes with navy
circles) align their anti-codon to the codon, and attach their amino acid to the growing chain to form
a polypeptide. The ribosome moves 5’ → 3’ direction, demonstrating a probability of movement
in only one direction. Further, the ribosome occupies three codons at a time, preventing other
ribosomes or proteins from attaching to the mRNA transcript at that time. Adapted from [50].

gel through which DNA fragments diffuse can be represented by a square lattice, where each site
is a pore in the gel. Each DNA fragments represents a traditional TASEP particle, with only one
fragment occupying one pore at a time [52]. In an idealized, pure system, all particles would re-
spond the same to the applied electric field, with identical bond lengths and equal transition rates
as they move through the gel asymmetrically [52]. In the presence of impure segments, the TASEP
model can be adapted, as different segments associate with different charges, leading to different
bond lengths and non-uniform transition rates [52]. Essentially, impurities in gel electrophoresis
that lead DNA to behave differently to the electric field corresponds to a TASEP system in which
each particle follows different attachment rates at each site in the lattice [52].

Animal behavior can also be modeled with TASEP. Using ant trails as a one-dimensional lat-
tice, ants move down the trail and lay pheromones, neurochemical signals used for communication,
as they go [55]. These pheromones increase the probability of an ant hopping to the next unoccu-
pied site on the lattice [55]. The system is dependent on both the probability of ant motion and
the evaporation of pheromones, and their dynamics can be modeled either in parallel or randomly
(Fig 1.11) [55].

The extent of biological applications of TASEP speaks to its relevance and demonstrates the
versatility of the present model of kinesin on a dynamic microtubule.

1.4 Thesis Structure

Building on previous models, I begin by presenting a general, versatile model in which the
motors travel along a one-dimensional track of variable length. The change in length captures
microtubule instability and rescue, the transition between polymerization and depolymerization.
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Figure 1.11: Example of TASEP to the unidirectional motion of ants as they move along a trail,
where probabilities of stepping forward change with pheromones. Ants, A, with unoccupied sites
in front of them move forward with probability q. Ants with pheromones, P , in front of them move
forward with probability Q, and pheromones evaporate at rate f . Ants with another ant in front
of them do not move forward. While simplified, this is highly analogous to the motion of kinesin
along a microtubule introduced in Chapter 2. Adapted from [56].

Usually this process is caused by the loss of the GTP cap, but it is occasionally triggered by de-
polymerizing motors at the end of the microtubules, particularly kinesins 4, 5, 8, and 13 (Table
1.2) [23, 57]. For example, when Kinesin-13 reaches the end of the microtubule, the motor stalls in
a state prior to ATP hydrolysis, during which the tubulin subunit bends. The bent conformation
of tubulin is more prone to catastrophe, increasing the frequency of depolymerization [57, 58]. The
model can be adapted for members of the kinesin-8 subfamily, which has a higher processivity than
kinesin-13 and depolymerize multiple microtubule subunits before detaching [59, 60]. The model
becomes more complex as kinesins can also attach and detach as they travel along the track. I
employ the mean-field method to study the model analytically and complement it with Monte Carlo
simulations.

In the first chapter, I introduce the general model in the context of the traffic of kinesin
motors on microtubules. This simplified system includes unidirectional movement and bulk at-
tachement and detachment, without regard to concentration of ATP, temperature, impacts of
other microtubule associated proteins, interactions between motors, or lateral interactions between
protofilaments. It also assumes rate of polymerization for each protofilament in the microtubule
to be the same, which is again an oversimplification necessary for the introduction of basic model
rules. I highlight some interesting results for special cases, and discuss the general case. I then
acknowledge the limitations of the mathematical techniques employed in the development of the
general model.

In the following chapter, I introduce layers of complexity by allowing for side-stepping motion
in two dimensions between protofilaments. As an aside, I present the lateral interactions between
protofilaments as an interesting application of a coupled harmonic oscillator. Returning to the
unidimensional track with time and length dependency, I then consider the bidirectional motion,
anterograde and retrograde toward either tip of the microtubule, representative of different types
of motor molecules.

Given the number of parameters in the fully expanded model, it would be nearly impossible
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to run by hand every combination of parameters, understand their physical meaning, and interpret
their biological applications. Instead, I suggest machine learning algorithms as a potential method
for TASEP modeling, which can be employed in a sensitivity analysis in future iterations of the
project.

Though any model struggles to capture the complex (and yet to be fully understood) biolog-
ical phenomena, the general model, special cases, and subsequent expansions attempt to capture
the dynamic conditions, emulate empirical results from experimental literature, and provide a foun-
dation for advanced model development.
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Chapter 2

Unidirectional Stochastic Model in
One-Dimension

2.1 Model Rules

Inspired by coupled dynamics of the motors motion and the microtubules, I define the model
on a one-dimensional lattice of variable length (the microtubule) with N sites. N is not constant.
Each site can be empty or occupied by a particle (the representation of our molecular motor) and
is described by an occupation number ni = 0 for empty and ni = 1 for occupied. The right end is
fixed (site N), and the left end (site 1) can extend, remain the same, or contract. Following the
same method as in [61, 62], I choose a reference frame attached to the growing tip of the filament,
with site 1 defined as the leftmost site. Any site “i” measures the distance of that site from the
fluctuating tip. When the lattice grows or shrinks due to the attachment or detachment of a new
site at the tip, all the site labels are updated i → i± 1.

The traffic of particles happens from right to left. I assumed unidirectionality as a first ap-
proximation. Almost all kinesins undergo unidirectional motion, as interactions of polar structures
between kinesins and microtubule subunits energetically favor the microtubule plus-end [63]. This
phenomenon is not consistent through all molecular motors, evident by the bidirectionality of some
fungal members of the kinesin-5 subfamily and the dynein family of motors [64]. Retrograde mo-
tion (toward the negatively charged end of the microtubule) characteristic of the dynein family
of motors is introduced in Chapter 4, but the current model focuses strictly on the anterograde
(positive-end) motion of most kinesins.

The system evolves according to the following rules (depicted in Fig. 2.1):

At sites 1 and 2:

� 10 → 00 with rate β: particles leave the track with exit rate β;

� 01 → 10 with rate 1: particles move from right to left if the neighboring site is empty;

� 00 → 000 with rate γ: the length of the track increases by one unit when the two first sites
are empty; this is equivalent to spontaneous polymerization of a microtubule;
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� 11 → 0 with rate δ: the length of the track decreases by one unit when two particles
(occupying site 1 and 2) are present; at the same time, the particles leaves the track; this is
equivalent to motor-induced depolymerization for a microtubule;

Two terminal tubulin dimers are depicted as unoccupied to demonstrate that spontaneous
polymerization is a motor-independent process made possible by stability provided by the GTP
cap. The mechanism of the motors’ steps is electrostatically dependent on the tubulin dimers [60].
Consequently, during spontaneous polymerization, the presence of the GTP cap prevents motors
from occupying terminal sites of the microtubule.

Depolymerization of the microtubule can occur due to the loss of the GTP cap (a motor-
independent process) or from stimulation by depolymerizing motors (a motor-dependent process).
In Fig. 1(c), I depict motor-induced depolymerization with the terminal sites of the microtubule
occupied by depolymerizing motors. In the case of spontaneous depolymerization, (often referred
to as catastrophe) the loss of tubulin subunits is attributed to instability from the loss of the GTP
cap, not the presence of kinesins, and thus would occur with terminal sites vacant.

In bulk (sites ni = 3...N − 1):

� 01 → 10 with rate 1: particles move to the left with rate 1 as long as the neighbor to the
left is empty;

� 1 → 0 with rate ωD: if site is occupied, remove particle with rate ωD;

� 0 → 1 with rate ωA: if site is empty, add particle with rate ωA;

At site N:

� 00 → 01 with rate α: particles enter the track with entrance rate α;

� 01 → 10 with rate 1: diffusion to the left with rate 1;

2.2 Mean Field Method

A common strategy in statistical physics for the analysis of a stochastic model is to study
a simpler model. Consequently, I apply mean field theory and approximate the stochastic model
by averaging over the degrees of freedom. This reduces a multi-body problem to a single-body
problem, allowing for analytically solvable solutions.

I present below the evolution equations for the site occupation numbers. For boundary sites
1, 2, 3 and N the equations are:
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(a) Motors leave track with rate β (b) Unidirectional diffusion of motors

(c) Motor-induced depolymerization with
rate δ

(d) Spontaneous polymerization with rate
γ

(e) Langmuir Kinetics: motor attachment
with rate ωA and motor detachment with
rate ωD

Figure 2.1: Model Rules

dn1

dt
= −βn1(1 − n2) + n2(1 − n1) − δn1n2 (2.1)

dn2

dt
= n3(1 − n2) − n2(1 − n1) − δn1n2 + δn1n2n3

dn3

dt
= n4(1 − n3) − n3(1 − n2) − ωDn3 + ωA(1 − n3) − γ(1 − n1)(1 − n2)n3 + δn1n2(n4 − n3)

dnN

dt
= α(1 − nN) − nN(1 − nN−1)
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The evolution of occupation of sites “1” and “2” in time is dictated by the exit of particles
with rate β, the diffusion of particles from site “2” into site “1” with rate 1, the spontaneous poly-
merization of the microtubule with rate γ and the motor-induced depolymerization of the tubule
with rate δ. For example, if both sites (1 and 2) are occupied, the microtubule may shrink due
to depolymerization, with the loss of both sites reflected in the “–” sign of the δ terms. Similarly,
the γ term in the evolution equation for site 3 captures the spontaneous polymerization of the
microtubule if the first two sites are empty. In this case, site “3” becomes site “4” due to the
lengthening of the track and this is counted with a negative sign in the equation.

And for the bulk sites, ni = 4...N − 1:

dni

dt
= ni+1(1−ni)−ni(1−ni−1)+γ(1−n1)(1−n2)(ni−1−ni)+δn1n2(ni+1−ni)−ωDni+ωA(1−ni)

(2.2)

In the bulk, the additional processes considered are the attachment and detachment of par-
ticles with rates ωA and ωD, according to Langmuir dynamics.

In analyzing these equations, I use the mean-field method presented in [2, 3, 61, 62]. I start
by defining the mean local densities as the mean ensemble values of the site occupation numbers
ρi =< ni > and I replace the mean correlations between site occupation numbers with the
product of their averages: < ninj >= ρiρj . With these assumptions in mind, the equations
above become:

dρ1

dt
= −βρ1(1 − ρ2) + ρ2(1 − ρ1) − δρ1ρ2 (2.3)

dρ2

dt
= ρ3(1 − ρ2) − ρ2(1 − ρ1) − δρ1ρ2 + δρ1ρ2ρ3

dρ3

dt
= ρ4(1 − ρ3) − ρ3(1 − ρ2) − ωDρ3 + ωA(1 − ρ3) − γ(1 − ρ1)(1 − ρ2)ρ3

+ δρ1ρ2(ρ4 − ρ3) (2.4)

The evolution equation for site N is:

dρN

dt
= α(1 − ρN) − ρN(1 − ρN−1) (2.5)

And for the bulk sites, ni = 4...N − 1:

dρi

dt
= ρi+1(1−ρi)−ρi(1−ρi−1)+γ(1−ρ1)(1−ρ2)(ρi−1−ρi)+δρ1ρ2(ρi+1−ρi)−ωDρi+ωA(1−ρi)

(2.6)

16



In order to extract information about the system’s behavior, I study the system in the ther-
modynamic limit, N → ∞. Based on the Monte Carlo simulation results that I will discuss later
in the paper, it is worth noting that the system is mostly in a growth phase, unless the shrink
rate δ > 0.1. Sites 1, 2 and 3 are the sites affected by the particle dynamics at the fluctuating
tip. The approximation ρ4 = ρ3 serves two purposes: it permits an analytical solution for the
four densities (ρ1, ρ2 and ρ3 = ρ4) by closing the system of equations and it also captures the
behavior of the system in the thermodynamic limit of N → ∞, when the bulk phase adjoining
the fluctuating tip is a high-density phase. The analytical expressions for ρ1, ρ2 and ρ3 = ρ4 are
too complicated to report here, so I will continue our analysis using these symbols as placeholders
for densities obtained numerically for specific sets of parameters.

To obtain a continuous equation for the bulk density (ni = 4...N −1), I follow the standard
method presented in [10, 2]. I define the following variables: ϵ = L

N
, the spacing of the lattice given

the length of the lattice L and the number of sites N ; and x = iϵ
L
, which measures the relative

position of the particle in the variable lattice (measured with respect to the left end). The lattice
length L and the number of lattice sites N both increase or decrease due the polymerization/de-
polymerization processes which occur at tip of the filament (the left end) in such a way that their
ratio ϵ remains constant. I also introduce the reduced rates, ΩA = NωA and ΩD = NωD as
the total bulk attachment and detachment rates of particles for the entire system. I use the series
approximation: ρ(x ± ϵ) = ρ(x) ± ϵ∂xρ(x) ± 1

2
ϵ2∂2

xρ(x) + O(ϵ3) and will keep just the two
first terms in the series.

The continuous expression of Eq. 5 for the steady state becomes:

(C − 2ρ(x))

(
dρ(x)

dx

)
− (ΩA + ΩD)ρ(x) + ΩA = 0 (2.7)

where C = γ(1− ρ2)(ρ1 − 1) + δρ1ρ2 + 1. This constant will have a numerical value for every
set of parameters.

This equation can be rewritten as a continuity equation:

dJ(x)

dx
− (ΩA + ΩD)ρ(x) + ΩA = 0 (2.8)

where the particle current is defined as J(x) = ρ(C − ρ).

The continuous version of the evolution equation for the fixed tip (re-scaled as x = 1 with
the approximation N − 1 ≈ N in the thermodynamic limit) is:

dρ(1)

dt
= α(1 − ρ(1)) − ρ(1)(1 − ρ(1)) (2.9)

I now study in more detail the general equation for the bulk density in the steady-state case,
Eq. 6. With the notations: u(x) = C − 2ρ(x) and Ω = ΩA + ΩD, the equation becomes:
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u(x)

(
du(x)

dx
− Ω

)
= 2ΩA − ΩC (2.10)

For clarity, I will first discuss special cases of this equation, which lead to other interesting
applications of this model. I study these special cases using the mean field method in conjunction
with the Monte Carlo simulations. Before I discuss these cases, I will briefly present in the following
section the Monte Carlo method implemented in Python.

2.3 Monte Carlo Methods

2.3.1 Introduction to Monte Carlo Simulations for Non-Equilibrium Systems

Monte Carlo methods include a variety of computational algorithms that implement repeated
random sampling to produce numerical solutions. Monte Carlo uses randomness to solve determin-
istic problems, which is especially useful in optimization, numerical integration, and probability
distribution contexts when master equations are not otherwise analytically solvable.

In probability, a Markov process is a distribution of random states. In Monte Carlo simu-
lations, the transition probabilities of switching from one state to the next is dependent on the
distribution of random states [65]. This is in direct contrast with mean-field theory, in which tran-
sition probabilities depend on sequential interacting particles [65].

Markov Chain Monte Carlo (MCMC) is a class of algorithms for sampling a probability dis-
tribution and is highly versatile in non-equilibrium statistical physics. A common application is in
the discussion of phase transitions. At critical points, the particles in a system slow to the point
where they do not relax to equilibrium in the thermodynamic limit [66]. Analysis of these systems
in non-equilibrium evolution can include correlation functions, scaling functions and amplitude ra-
tios, which are all well suited to Monte Carlo methods [66].

Though molecular dynamics simulations are common for sampling complex multidimensional
systems [67], these simulations are not perfect. Local changes in configuration result in highly
correlated samples, which slows the convergence of estimated expectations and requires the use of
small time steps to provide numerical stability [67]. This problem, known as critical slowing down,
is combated by non-local, or cluster, methods. Non-local methods make changes over large subdo-
mains of the configuration, making cluster methods especially effective at reducing critical slowing
down in large systems near their critical points [65, 68]. Consequently, MCMC is a powerful tool
in the study of non-equilibrium systems, and will be an asset in the analysis of motor molecule
dynamics.

2.3.2 Methods for Monte Carlo Analysis

To begin the Monte Carlo analysis, I first defined the parameters for track control using pa-
rameters for site length (the size of the tubulin binding site), average microtubule length, step size,
and duration of time step as guided by empirical evidence from biological literature [28, 32, 33].
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Track parameters were held constant for all simulations (Table 2.1).

Table 2.1: Track control parameters for the unidirectional, one-dimensional model. Biological
parameters were introduced from experimental data [28, 32, 33] and remained constant while pa-
rameters for motors, such as attachment and detachment rates, were manipulated.

Motor parameters for ΩA and ΩD were defined relative to site length. Injection and ejection
rates for motors, as well as growth and shrinkage rates at the left-most boundary varied depending
on the desired simulation.

To model the system, an array was initially populated with zeros, representative of all empty
sites. Then, particles were either injected at rates defined by the parameters, or assigned to random
sites in the array. A random number generated between 0 and 1 was then multiplied by the number
of sites in the array. This determined on which site the first particle attempted to attach. For ex-
ample, in a lattice of 100 sites, if the random number generated is 0.2, the first site a particle would
attempt new attachment would be site 20. Given this site, probability of attachment (dictated by
the given parameters, occupation of the site, and occupation of its neighbors) was compared to
another random number generated between 0 and 1. If the random number generated was higher
than the probability of attachment, then the particle attached to the track. After updating the
population of the lattice, these runs were repeated for at least as many sites existed in the initial
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lattice. Often, the number of runs were double the number of sites in the lattice to ensure that no
sites in the lattice were skipped by random chance.

Simulations for the density and current of motors along the lattice were generated in a method
similar to [2], with the notable exception that in this simulation, motor dynamics alter track length
(representative of phenomena observed with microtubule instability from the biological literature).
To account for a dynamic track with time and length dependency, the structure of the simulation
relied on arrays to store indices of first and last active sites of the track, as well as the total length
of the track at each time step.

Data was processed in Microsoft Excel to extract trends. Code was run by varying at first
one, then multiple parameters at a time, and plots were analyzed side by side in Excel to determine
the emergence of patterns by parameter. Here, I present a collection of special and interesting cases
from the Monte Carlo simulation. In the interest of reproducibility, I provide screenshots of the
Python code employed in Appendix D.1.

2.4 Special cases

The first special case that I discuss is the equivalent of a TASEP model defined on a track
of variable length. The attachment and detachment rates are set to zero ΩD = ΩA = 0, so there
are no coupled Langmuir dynamics. One end is fixed, while the other one can undergo growth or
shrinkage. The growth and shrinkage of the tracks are triggered by the presence of pairs (dimers)
of either empty of full sites, consistent with the biological literature on polymerization and depoly-
merization of microtubules [6].

Under the assumption that there are no attachment and detachment rates along the track,
ΩA = ΩD = 0, the steady-state equation (Eq. 9) simplifies to:

(C − 2ρ(x))

(
dρ(x)

dx

)
= 0 (2.11)

with C = γ(1 − ρ2)(ρ1 − 1) + δρ1ρ2 + 1.

The solution for the density is not dependent on x; it is a constant that incorporates the
densities of boundary sites 1 and 2. Specifically, the bulk solutions for the steady state particle
density and current are equal to:

ρ(x) =
C

2
=

γ(1 − ρ2)(ρ1 − 1) + δρ1ρ2 + 1

2
(2.12)

J(x) = ρ(C − ρ) =
C2

4
=

(γ(1 − ρ2)(ρ1 − 1) + δρ1ρ2 + 1)2

4

If the length is constant (γ = 0 and δ = 0), I recover the well-known TASEP result of a bulk
density equal to 0.5 and a constant current of 0.25 for the maximum current phase, as reported in
[10].
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For the right boundary, the constant of integration is equal to α, the entrance rate, as derived
from Eq. 8 for the steady state. For the left boundary, the density is equal to ρ3, considered as
the boundary site. Given the high correlation between sites 1 and 2, they can be seen, intuitively,
as one unit, a dimer.

To summarize, the density profile is a piece-wise function as follows:

ρ(x) =


ρ3 at the left boundary (position of the moving tip)
γ(1−ρ2)(ρ1−1)+δρ1ρ2+1

2
in the bulk

α at the fixed right boundary

(2.13)

And for the steady-state current:

J(x) =


ρ3(C − ρ3) at the left boundary (position of the moving tip)
(γ(1−ρ2)(ρ1−1)+δρ1ρ2+1)

2

4
in the bulk

α(C − α) at the fixed right boundary

(2.14)

The discussion of density and current profiles in the parameter space becomes very compli-
cated with so many parameters in play. For specific sets of parameters, I can find the numerical
values for densities ρ1, ρ2 and ρ3, which in return lead to numerical values for the steady-state
bulk densities and currents . I will not discuss here the whole phase diagram for the model and the
identification of domain walls. Instead, I opt to present some special cases in the hope that they
will lead to a more profound and intuitive understanding of the complexities of this model and may
be used as templates for practical applications in modeling traffic at the cellular level.

2.4.1 δ = 0

The first case that I discuss is δ = 0 (no shrinkage allowed when the first two sites are
occupied). This describes a microtubule in the growth (polymerization) phase for which a cap of
motors at the moving tip does not trigger a shortening of the microtubule. In this situation, the
mean-field solutions for the first three site densities have more manageable expressions obtained by
solving Eq. 3 for the case δ = 0 and no Langmuir dynamics (ΩA = ΩD = 0):

ρ1 =
γ −

√
βγ(1 − β)

β2 − β + γ
(2.15)

ρ2 =
βρ1

1 − ρ1(1 − β)

ρ3 = βρ1

Interestingly, if γ = 0 as well (no polymerization allowed), I recover again the well-known
TASEP result of a bulk density equal to 0.5 and a constant current of 0.25 for the classical TASEP
maximum current phase [10], regardless of the values of α and β. However, from the equations
above it can be seen that if γ = 0, ρ1 = ρ2 = ρ3 = 0. So, there is a cap of three empty sites
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followed by a jump in density to 0.5, and the fixed end will be at a density dictated by the entrance
rate α.

The Monte Carlo simulations tell a different story, as presented in Fig. 2.2. Due to the strong
correlations between the first two sites at the moving tip, particles leave the track only when the
first site is occupied and the second site is empty, and they are forbidden to leave (due to δ = 0)
when both sites are occupied. Therefore, the steady-state density is close to 1 even in the case of
β > α, which is different from the classic TASEP model result.

This strong correlation is not captured in the mean-field equations, and it leads to drastically
different results. The bulk density is constant for α ≥ β, but it settles at almost double the mean-
field value. The track is almost full, which leads to a small current along the track. For α < β,
the average site density has a linear dependence on the position, with a corresponding decreasing
current. In the time-dependent graphs, there is an interesting feature of a maximum in current,
with the peak shifted to the right for α < β.

Another interesting case worth mentioning for the growing regime (δ = 0, γ ̸= 0) is the case
of β = γ, for which the first three densities simplify to:

ρ1 =
1 −

√
1 − β

β
(2.16)

ρ2 =
β
(√

1 − β − 1
)

(β − 1)
√
1 − β − 2β + 1

ρ3 = 1 −
√

1 − β

When β = γ → 1, the tip has a cap of densities ρ1 = ρ2 = ρ3 = 1 and the bulk density
settles at 0.5. When β = γ → 0, ρ2 = ρ3 = 0 but ρ1 = 0.5, leading to a bulk density of again
0.5. The dependence of the bulk density and the bulk current on β in comparison with the Monte
Carlo simulations are presented in Fig. 2.3. As can be seen from the graphs, contrasted with the
simplicity of the mean-field solutions, the Monte Carlo simulations show a more complex behavior
of the system that merits a more in-depth analysis. The mean-field solutions are somewhat close
to the simulations results for a very small interval around β = γ = 0.3.

In Fig. 2.4 I present sample Monte Carlo data for the polymerization case (δ = 0 and
β ̸= γ). Again, I observe a discrepancy between the mean-field theory and the simulations. The
qualitative solution of constant bulk density is captured by MC simulations for values of β > γ,
where the density is constant between x ∈ (0, 0.15) and then it drops to 0. Although for the small
interval of x the density is constant in MC simulations, the value is twice the mean-field value of
0.42. The corresponding MC current has a peak of 0.125, close to the mean-field value of 0.17. For
β ≤ γ the MC bulk density displays a linear decrease along the track. The mean-field solution for
the density does not capture this decrease, as it is a constant equal to 0.48. The MC current is
close to the mean-field solution of 0.23 for x ∈ (0, 0.1).

Given the mean-field solutions (Eq. 13 and Eq. 14), by placing the condition ρleft = ρmiddle,
ρright = ρmiddle, one can easily find the boundary curves β = f(γ) and α = f(γ) along which
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(a) (b)

(c) (d)

Figure 2.2: The case of constant length tracks: (a) average steady-state site density along the track;
(b) average steady-state current along the track; (c) the time evolution of the total density; (d) the
time evolution of the total current.

the solutions are equal to each other. The analysis can be extended much further toward finding
a full phase diagram for this special case. However, given the effect of the strong correlations that
are not captured in the mean-field solutions, such a diagram will not reflect correctly the parameter
domains for this model. I propose that a better approach would be a more in-depth MC analysis
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(a) (b)

Figure 2.3: Special case of polymerization regime: Comparison between mean-field and the MC
results for bulk densities (a) and currents (b) as functions of β = γ, with α = 0.5.

(a) (b)

Figure 2.4: Monte Carlo results for the polymerization regime δ = 0, α = 0.5, and initial length
N = 100:(a) average density along the track; (b) average current along the track.

in conjunction with a modified mean-field approach with some correlations built-in.

2.4.2 γ = 0

The other limit case is γ = 0, for which the track can only shrink when the two sites at the
tip are occupied. This describes the motor-induced depolymerization for a microtubule [11]. In
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this case, the expressions for ρ1, ρ2 and ρ3 are:

ρ1 =
β + δ − 1

δ2 + β − 1
(2.17)

ρ2 = ρ3 =
β + δ − 1

β − 1
(2.18)

and they are confined to β + δ < 1 to maintain their values between zero and 1.

It is interesting to see that if I set δ = 0, the first three sites have a density equal to one.
In the previous case, which started with the solution for δ = 0 and then turned off γ as well, the
cap was all empty sites. Overall, when the track is not allowed to shrink or expand, ρ1, ρ2, ρ3 are
all 0 or 1, forming a cap of empty sites that will tend to polymerize or a cap of full sites that will
trigger depolymerization.

Fig. 2.5 shows the average site density and the current density along the track, as well as
the total density and current for two cases of β < δ and β > δ. The mean-field theory predicts
a constant bulk density and current for a given set of parameters. A qualitative agreement holds
for the current in the case of β = 0.8, δ = 0.1 for a small portion of the track x ∈ (0, 0.04),
with JMC = 0.25 and JMF = 0.267 (a 6.8% difference). The densities compare well for the
beginning of the track: 3.4% difference for β = 0.8, δ = 0.1, but the trend shown in Monte
Carlo simulations is not the one predicted by the mean-field theory. For the β = 0.1, δ = 0.8
case, the system doesn’t reach a steady-state. It is interesting to see the unusual behavior of the
total density and total current as functions of time. From the plots, I can identify the position of
the domain walls where the current suddenly drops to a lower value, then continues to decrease
linearly, signaling the presence of traffic jams. Because there is no steady-state, Fig. 2.5 (a)
and Fig. 2.5 (b) represent the average site density and average site current along the track after
the system underwent a set number of Monte Carlo steps. It is a snapshot of the system, but not
its steady-state. These unusual features deserve a further systematic investigation in future studies.

I finish the section with a sample set of data for the case of γ ̸= δ ̸= 0: α = 0.8, β = 0.1,
γ = 0.07 and δ = 0.95 and an initial number of 100 sites and a maximum number of 500 sites
(Fig. 2.6). This sample case captures the switch between growth and shrinkage for the micro-
tubules, known in literature as the microtubule instability. For the Monte Carlo simulations I ran
a whole range of track sizes, from 100 to 5000 initial number of sites. The main results remain
qualitatively the same.

The mean field predicts in this case a bulk density of ρ = 1−γ
2

, the Monte Carlo simulations
give us a value of approximately 0.46, and the mean-field current has a value of 0.25. Although
the mean-field results for the bulk density and current seem to agree with the simulations, this
comparison doesn’t take into account the time scale of the track length fluctuations and the time
it takes for the system to reach steady state. In our model they are on the same order. If the time
scale of the track length fluctuations were much smaller than the time needed to reach steady state,
one may consider the track to be of essentially constant length.
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(a) (b)

(c) (d)

Figure 2.5: Monte Carlo results for the depolymerization regime γ = 0 and initial lengthN = 100:
(a) average site density along the track; (b) average site current along the track; (c) the time
evolution of the total density; (d) the time evolution of the total current.
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2.4.3 Time-Dependent Solutions

The time-dependent solution of the dynamic TASEP model is very similar to the one pre-
sented, for example, in [10]. The time-dependent continuous equation can be written as:

∂ρ(x, t)

∂t
+ (C − 2ρ(x, t))

(
∂ρ(x, t)

∂x

)
= 0 (2.19)

The transformation u = C − 2ρ recasts the equation into the inviscid Burgers equation [10]:

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= 0 (2.20)

The characteristic for this first order nonlinear partial differential equation is a straight line
in the the x − t plane with a slope given by:

dx

dt
= C − 2ρ (2.21)

Compared to the TASEP model defined on a fixed length for which the slope is 1− 2ρ, here
the slope is C−2ρ. I invite the reader to revisit the time-dependent solution of the TASEP model
defined on a constant-length lattice as presented in [10], as the theory applies here as well, with the
appropriate adjustments for γ and δ. The change in the slope due to the increasing or decreasing
rates γ and δ is incorporated in the factor C.

2.5 General case

I now return to the original case of the coupled TASEP-dynamics with Langmuir kinetics
defined on the one-dimensional lattice with variable length. The governing equation for the steady-
state in the hydrodynamic approximation is:

u(x)

(
du(x)

dx
− Ω

)
= 2ΩA − ΩC (2.22)

with u(x) = C − 2ρ(x) and Ω = ΩA + ΩD.

If I introduce the extra constraint 2ΩA − ΩC = 0, the equation above leads to solutions
similar to the ones presented in [2]. The correction due to variation in length represented by δ and
γ affects the bulk density, which is still a constant for a given set of parameters.

ρ(x) =


Ωx + ρ3 if 0 ≤ x ≤ xleft
γ(1−ρ2)(ρ1−1)+δρ1ρ2+1

2
if xleft ≤ x ≤ xright

Ω(x − 1) + α if xright ≤ x ≤ 1

(2.23)

And for the steady-state current:

J(x) =


(Ωx + ρ3)(C − Ωx − ρ3) if 0 ≤ x ≤ xleft

(γ(1−ρ2)(ρ1−1)+δρ1ρ2+1)
2

4
if xleft ≤ x ≤ xright

(Ω(x − 1) + α)(C − Ω(x − 1) − α) if xright ≤ x ≤ 1

(2.24)
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A specific set of parameters for which the extra constraint 2ΩA − ΩC = 0 is obeyed is:
β = 0.5, δ = 0.5, α = 0.5, ΩA = ΩD = 0.5, γ = 0.25. The mean-field predicts the fol-
lowing numerical values: ρ1 = 0.439, ρ2 = 0.392, ρ3 = 0.440 and ρbulk = 0.5. The xleft

and xright boundaries are found by equating the left and the bulk solutions and the right and the
bulk solutions. These boundaries will change with the change of the parameters. For this special
case, xleft = 0.06 and xright = 1, which means that the bulk solution for the density is a good
approximation for the whole system. Because of the multitude of parameters, building a phase
diagram for the general case becomes a messy endeavor. [2] is a good resource that outlines the
steps one needs to follow in order to identify the regions of high and low density, the maximum
current phase and the position of the domain walls (found by matching Jleft = Jright). I would
like to emphasize, however, that due to the effect of correlations between sites at the tip of the
microtubule, the mean-field solutions are able to qualitatively match the Monte Carlo solutions
only for specific cases, as seen in some examples earlier in the paper.

The Monte Carlo simulations for densities and currents are presented in Fig. 2.7 for the two
cases of systems with and without parameters obeying the constraint. It can be observed from the
plots that the behavior of the system is very different for the two situations. When the constraint
is obeyed, the system is in a growing regime, as opposed to a switch between growth and shrinkage
as seen in Fig. 2.7(e).

If I don’t introduce the extra constraint 2ΩA −ΩC = 0, I solve the general equation using
separation of variables methods. The integration of this equation leads to:

K ln(K − Ωu(x)) + Ωu(x)

Ω2 = (x − xb) (2.25)

with the new constant K = ΩC − 2ΩA.

In a more compact form, the solution can be reported using LambertW special function:

u (x) = −
K

ω

(
LambertW

(
−

1

K
e−1−K1 ω

2

K
−xω

2

K

)
+ 1

)
(2.26)

where K1 is a new constant of integration found by matching the boundary conditions. This leads
to a solution for ρ(x):

ρ (x) =
1

2

(
C +

K

ω

(
LambertW

(
−

1

K
e−1−K1 ω

2

K
−xω

2

K

)
+ 1

))
(2.27)

Although there is a somewhat qualitative agreement between simulations and mean-field theory for
the general case with the constraint in place, the mean-field theory fails to capture the intricacies
of the model dynamics when the constraint is lifted, as seen in Fig. 2.7.
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(a) (b)

(c) (d)

(e)

Figure 2.6: Microtubule instability. Monte Carlo results for the case of γ ̸= δ ̸= 0 and initial
length N = 100 and maximum number of 500 sites, α = 0.8, β = 0.1, γ = 0.07 and δ = 0.95:
(a) average density along the track; (b) average current along the track; (c) the time evolution of the
total density; (d) the time evolution of the total current; (e) The average length of the microtubule
as a function of time.
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(a) (b)

(c) (d)

(e)

Figure 2.7: General case. Sample Monte Carlo results for the case of γ ̸= δ ̸= 0 and ωD ̸= 0,
ωA ̸= 0, initial length N = 100 and maximum number of 700 sites. (a) average density along the
track; (b) average current along the track; (c) the time evolution of the total density; (d) the time
evolution of the total current.(e) the time evolution of the length.
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Chapter 3

Model Expansion: Introduction of
Side-Stepping

3.1 Side Stepping Without Tip Dynamics

In a model that better reflects the reality of biological systems, the motion of motor molecules
along their microtubule tracks is not strictly one-dimensional. Depending on the processivity and
properties of the member of the kinesin family in question, the motors have the ability to step
laterally to an adjacent protofilament. Side-stepping occurs to avoid other microtubule associated
proteins (including other kinesins), cross-linking factors, passenger proteins, or microtubule end-
tracking proteins [69]. In the yeast kinesin-8 family (known in the biological literature as Kip3),
motors have been empirically observed to demonstrate a left side-stepping directional bias, traveling
helically around the microtubule as it moves forward. Interestingly, this left-hand bias is indepen-
dent of forward velocity, but strongly depends on the average time required for the motor to take
a step, and subsequently increases under limited ATP concentrations. This could be caused by a
bifurcation in the stepping cycle of Kip3, in which the two-head bound conformation transitions
to a one-head bound conformation, weakening interactions with the microtubule and allowing a
greater range of lateral motion [69].

The helical motion of Kip3 as it moves toward the positive end of a microtubule can be
visualized with a model produced from experimental results collected from [69], who labeled Kip3
motors with quantum dots and tracked their motion with highly inclined thin illumination mi-
croscopy (Fig. 3.1).

Side-stepping of motor molecules to adjacent protofilaments at unoccupied sites can be mod-
eled with periodic boundary conditions. With a cylinder of 13 protofilaments, stepping from the
thirteenth to what would be the fourteenth protofilament is the same as returning to the first
protofilament. Consequently, I can adapt the one dimensional code to account for two-dimensional
motion around the microtubule, assign periodic boundary conditions, and introduce left-hand bias
in side-stepping probability that matches the biological literature.

A complication is introduced, however, by the fact that not all protofilaments in the micro-
tubule polymerize or depolymerize at the same rate [20]. Rather, dynamic interactions between
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Figure 3.1: Helical trajectory of Kip3 exhibits a lefthanded bias. [69] provides a A) schematic
representation of their experimental setup for monitoring motor dynamics B) annotated schematic
detailing geometries of Kip3, quantum dots, and the microtubule. C) They report the 3D tracking
result of the motion of quantum dot labeled Kip3 and D) project the angle between the motor and
the microtubule axis, represented as theta in panel B. E) They also provide the cumulative change
in angle as the motor travels toward the positive end of the microtubule. The increase in angle
demonstrates an effective lefthand bias.

protofilament tips result in different rates of growth, shrinkage, catastrophe, and rescue. The
modeling of side-stepping across thirteen protofilaments, each with unique tip dynamics, grows
increasingly complicated. Consequently, I first address the side-stepping of motors in a simpli-
fied two-dimensional model that neglects lateral interactions between protofilament tips, allowing
polymerization to be constant around the microtubule.

3.2 Tip Dynamics and Lateral Interactions

It is known that the combination of multiple protofilaments create different configurations
that alter rates of polymerization and depolymerization at their tips, quantified by their association
and dissociation constants, kon and koff [20].

Historically, it has been difficult to distinguish kinetic rates of each protofilament in a micro-
tubule due to limited imaging technology and reliance on model approximations whose assumptions
vary throughout the literature [20]. The standard technique, video-enhanced differential interfer-
ence contrast microscopy, made possible observations for (kon and koff ) for the microtubule as a
whole, but did not provide high enough granularity to specify differences in association and disso-
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ciation constants for each protofilament. However, the emergence of optical tracking techniques,
especially in combination with back focal plane interferometry, allows for the more precise mea-
surements necessary to observe tip fluctuations and dynamics between protofilaments.

The new technique implemented by [21] utilized interferometric scattering micrscopy to mea-
sure incorporation of gold-labeled tubulin into the microtubule. This allowed for the direct mea-
surment of kon and koff for different protofilaments. Interestingly, when measuring koff , the
researchers recorded dwell times, or the average time required for the dissociation of a tubulin
dimer. They observed two distinct groups: those with short dwell times, which the authors at-
tribute to tubulins with one longitudinal bond, and those with longer dwell times, which they
attribute to the combination of a longitudinal bond and a lateral bond with an adjacent protofil-
ament. This theory is supported by an additional experiment in which a mutation to destabilize
the lateral interface between tubulins was introduced, leading to a higher frequency of short dwell
times. As a result, it is understood that interprotofilament interactions change the kinetic rates for
polymerization and depolymerization.

Though the current model remains simplified and assumes that each protofilament polymer-
izes and depolymerizes at the same rate, a further expansion of the model could consider the effects
of lateral interactions between protofilaments tips.

3.3 Two-Dimensional Model Code Structure

The two-dimensional track is defined by its transversal section, where each number represents
the index of a track perpendicular to the lattice and the direction of motor movement.

By definition, this allows the total number of sites to be the initial length of the microtubule
multiplied by the number of protofilament tracks, which is usually 13. Further, motors may only
advance to adjacent sites either on its own track or a directly neighboring track. The track control
parameters are the same constants as introduced in Table 2.1. Parameters for attachment, de-
tachment, spontaneous polymerization, and motor-induced polymerization are the same as for the
one dimensional model, with an important modification: we introduce a new parameter, ΩJ , as
a probability of jumping laterally to a neighboring protofilament. For more details, the interested
reader should refer to the source code in Appendix D.2.

3.4 Analysis of Side-Stepping Model Results

3.4.1 ΩJ = 0

I begin by presenting the two-dimensional case with a zero probability of side stepping,
ΩJ = 0, such that particles walk only along the filament that they are initially injected on. I ex-
pect this to recover behavior from the one-dimensional case. Importantly, results for total density
and current are summations over each of the individual 13 filaments as a function of time, while
occupancy is reported as a snapshot for an individual filament as a function of position.

The relationship between density and current is modeled as J = ρ(1−ρ), which is reflected
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Figure 3.2: A transversal of the indices of each protofilament, as seen perpendicular to the axis of
motor motion.

in the code after it reaches steady state. The model does not start recording measurements at the
beginning of the process, explaining the initial transient behavior. Once traffic on the microtubule
builds up to full density, the pile-up results, analogous to traffic jams on a highway. This is followed
by detachment from the microtubule, after which steady state dynamics can be observed (following
the expected behavior of ρ(1−ρ)). I observe a current that extends below zero. This is due to the
mean-field correction in the equation for current. In the one dimensional case, current was modeled
as J = ρ(C − ρ), where C was the constant, C = γ(1 − ρ2)(ρ1 − 1) + δρ1ρ2 + 1 defined
in Eq. 2.11. The negative current from the mean-field correction proves that the mean-field is
not physically meaningful and fails in the side-stepping model, supporting the use of Monte Carlo
simulations in further adaptations of the model.

In this iteration of the model, each protofilament has the same properties, including the same
rate of polymerization, an absence of lateral dynamics between filaments, and the same parameters
for motor dynamics (biologically, this is an oversimplification that may be addressed in a refined
version of the model). Since occupancy is recorded individually for each filament, rather than as
a sum across all 13 filaments of the cylinder, dynamics for individual filaments may be compared
to ensure that their behavior is in fact similar. Consequently, I compare individual filament occu-
pancy for three different filaments, each run with the same parameters. I conduct two tests, first
comparing filaments for a system with no side-stepping (Fig 3.5), and a second with a non-zero ΩJ
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Figure 3.3: Schematic of Langmuir kinetic parameters for the two-dimensional system. As in the
one dimensional model, ωA and ωD show the attachment and detachment of particles in bulk. New
to the two-dimensional model, ωJ shows the side stepping of particles that encounter an obstacle.
It should be noted that in the two-dimensional lattice, the bottom lattice is periodic with the top
lattice, allowing a particle to side step from what appears to be the bottom lattice back to the top.

(a) (b)

Figure 3.4: Two-dimensional model on a fixed length track with a zero probability of side stepping.
a) Total density and current. b) Occupancy. Parameters for a) and b) : ΩA = ΩD = ΩJ =
0, α = β = 0.5, γ = δ = 0.1.

(Fig. 3.6).

I observe that for both the systems with and without side-stepping, occupancy on each fil-
ament follow the same patterns. This recovers expected results, as measuring a different filament
should not change dynamics. Aside from the sanity check of comparing filaments, I also observe
that without the capability of side-stepping, each filament maintains a higher average steady-state
occupancy, 0.58, compared to the side-stepping counterpart, 0.39. This behavior occurs because
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Figure 3.5: Comparison of occupancy of three different filaments (1, 4 and 9) for on a fixed-length
track with an equal probability of Langmuir attachment and detachment, but a zero probability of
side stepping. Parameters: ΩA = ΩD = 0.5, ΩJ = 0, α = β = 0.5, γ = δ = 0.1.

Figure 3.6: Comparison of occupancy of three different filaments (1, 4 and 9) for on a fixed-length
track with an equal probability of Langmuir attachment and detachment, but a non-zero probability
of side stepping. Parameters: ΩA = 0.3, ΩD = 0.7, ΩJ = 0.8, α = 0.3, β = 0.7, γ = δ = 0.1.

the inability of motors to side step causes obstructions and pile-ups when they encounter other
motors. In contrast, the side-stepping system allows motors to move laterally and continue travel
down the track, thus lowering the track’s occupancy in steady state.

3.4.2 ΩJ ̸= 0

Next, I examine the case in which the rate of attachment, detachment, and side stepping are
all equal and nonzero (Fig. 3.7).

As expected, I observe the same J = ρ(1 − ρ) relationship for density and current, and a
higher average steady state occupancy than for the non-zero case.

Now, I analyze the two-dimensional model with at two extreme cases. The first extreme
case is a high rate of side stepping, ΩJ = 0.9, with low attachment and detachment rates,
ΩA = ΩD = 0.1, analyzed for both a fixed and variable length track (Fig. 3.8). The second
extreme case is a low (but non-zero) rate of side stepping, ΩJ = 0.1, with high attachment and

36



(a) (b)

Figure 3.7: Two-dimensional model on a fixed length track with an equal probability of Langmuir
attachment, detachment, and side stepping. a) Total density and current. b) Occupancy along the
first filament. Parameters: ΩA = ΩD = ΩJ = 0.5, α = β = 0.5, γ = δ = 0.1.

detachment rates, ΩA = ΩD = 0.9 (Fig. 3.9).

(a) (b)

(c) (d)

Figure 3.8: Two-dimensional model extreme case with a high rate of side stepping and low rates of
Langmuir attachment and detachment, on tracks of fixed and variable lengths. a) Total density and
current, fixed length. b) Occupancy, fixed length. c) Total density and current, variable length. d)
Occupancy, variable length. Parameters: ΩA = ΩD = 0.1,ΩJ = 0.9, α = 0.2, β = 0.8, γ =
δ = 0.1

Similar to the individual filament comparisons without and with side-stepping in Fig. 3.5
and 3.6, I observe that the presence of side-stepping reduces average occupancy in steady state.
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(a) (b)

(c) (d)

Figure 3.9: Second extreme case with a low rate of side stepping and high rates of Langmuir attach-
ment and detachment, on tracks of fixed and variable lengths. a) Total density and current, fixed
length. b) Occupancy, fixed length. c) Total density and current, variable length. d) Occupancy,
variable length. Parameters: ΩA = ΩD = 0.9,ΩJ = 0.1, α = 0.2, β = 0.8, γ = δ = 0.1

This is analogous to cars switching lanes to spread their occupancy along a highway.

Though these examples represent only a small number of many possible combinations of
parameters. It remains over-simplified compared to the complex biological reality of the non-
equilibrium system, as it neglects interprotofilament dynamics, bidirectional motors, and other bio-
chemical parameters that affect motor processivity. Despite its simplifications, the two-dimensional
model is more nuanced than the original unidirectional, one-dimensional model and demonstrates
the dynamic nature of motor molecule side-stepping. The iterative process of model refinement
allows for the introduction of new complexities, accompanied by the rise of new theoretical and
experimental questions. The high number of parameters necessitates the arbitrary nature of the
selected cases and may overlook interesting model behavior in parameter combinations not ana-
lyzed. This supports the introduction of an algorithm for strategically analyzing all combinations
of parameters, which will be discussed in Chapter 5.

This side-stepping model will provide statistical physicists and computational biophysicists
alike the opportunity to explore new horizons in applied two-dimensional non-equilibrium systems,
as well as guide experimental research specific to motor molecule and microtubule dynamics.
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3.5 A Biological Application of the Coupled Harmonic Oscillator

I now take the opportunity to consider a unique application of a familiar model that accounts
for some complexities overlooked in our side-stepping model. By considering the lateral, inter-
protofilament interactions and the longitudinal, intraprotofilament interactions between tubulin
dimers as springs, microtubule dynamics can be modeled as a coupled simple harmonic oscillator.
In the two-dimensional model (and in the biological systems it represents), microtubule shrinkage
following hydrolysis of the GTP cap is more complicated than simple one-dimensional depolymeriza-
tion. Tubulin dimers with associated GDP exhibit a naturally bent conformation, storing potential
energy in the form of mechanical strain when assembly into a microtubule forces each protofilament
into a straight conformation. Therefore, during shrinkage, lateral interactions dissociate, releasing
both chemical and mechanical energy then utilized to exert cellular forces, namely on kinetochores
during mitosis [70]. To describe this phenomena, multiple models have been introduced. Most
research has been conducted under the assumptions of the allosteric model, which states that GTP
hydrolysis increases the mechanical strain in each protofilament. More recently developed based on
observations from cryo-EM, the lattice model states that both GTP and GDP tubulin dimers form
bent protofilaments, and hydrolysis affects the latitudinal and longitudinal bonds between dimers.
In the lattice model, hydrolysis does not alter mechanical strain, but rather decreases the amount
of strain the microtubule can tolerate before shrinkage occurs [70].

There is strong potential to adapt the model developed by [70] in which they used the
allosteric model as a foundation, and incorporated the lattice model by introducing the dissociation
of interprotofilament bonds as stochastic events with corresponding force-dependent rates. Alpha-
beta tubulin dimers would represent the smallest subunit, depicted in the model as cylinders.
Springs would connect each cylinder at their longitudinal and lateral points of interaction.

Figure 3.10: A diagram of the coupled harmonic oscillator model for lateral dynamics between
alpha-beta tubulin dimers (adapted from [70]).

Integrating the current model with [70] could result in an effective two-dimensional model
that rigorously accounts for interactions between protofilaments.
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Chapter 4

A Three-State ASEP Model

In Section 1.3, it was explained that TASEP models particle motion on a one-dimensional
lattice in one direction. This applies to unidirectional motor molecules, but is an incomplete model
for bidirectional motor molecules with both anterograde (toward the beta-tubulin positively charged
end) and retrograde (toward the alpha-tubulin negatively charged end) motion. Consequently, we
turn to the asymmetric exclusion principle (ASEP) model, where the probability of a step toward
the negative end of the microtubule is non-zero. Before discussing how ASEP driven dynamics
alter the stochastic model presented in Chapter 2, I first introduce the molecular mechanics of
bidirectional motors.

4.1 Bidirectionality: Introduction to Dynein

Similar to the kinesin superfamily, dynein is a family of motor proteins. The major difference
between the two families is the direction of motion: dynein carries intracellular cargo from the
periphery of the cell to the center, moving toward the negatively charged end, while kinesin carries
its cargo to the cell periphery, generally moving toward the positively charged end.

Dynein’s structure is different than that of kinesin. It consists of one long chain folded into
many domains [71]. Of a core ring of six AAA+ domains, the AAA1 domain connects to a linker
domain and a long tail, and the tail connects two to three dyneins together. Domain AAA4 is a
long, non-rigid, coiled, anti-parallel stalk with a microtubule binding domain, and AAA5 is a strut
domain that stabilizes the stalk. There are four binding sites for ATP, one of which is utilized in a
chemo-mechanical cycle for motility, and the remaining three are believed to be regulatory [71].

The mechanism for dynein motility is similar but distinct from that of kinesin, and consists
of a primary and power stroke. In the primary stroke, ATP binding to AAA1 causes release of the
microtubule binding domain from the microtubule and changes the linker into a bent confirmation
[72]. Following ATP hydrolysis, the microtubule binding domain rebinds to the microtubule and
the linker unbends, creating a force-generating power stroke [72].

There are two models proposing the mechanism driving dynein’s stepping direction toward
the negative end. In the linker swing vector model, the motor domain pivots about the linker and
the direction of stepping is the same as the direction of the linker swing [72]. In the asymmetric
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Figure 4.1: X-ray diffraction for a full-length dynein. The tail domain is not included in the crystal
structure but would attach to the linker. Gray ligands are ATP [71].
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release model, the faster release of dynein toward the negative end creates a net stepping bias [72].
The length and angle of the stalk are also critical in controlling the direction of motion toward the
negative end and are conserved through all members of the dynein family [72].

4.2 Adaptation of the Model

Adapting the model to have a non-zero probability of retrograde motion deeply compli-
cates the one-dimensional Monte Carlo code, and especially complicates the thirteen protofilament,
side-stepping model. A one-dimensional model that included dynein would need to have different
attachment and detachment rates at boundary conditions. If the motor has anterograde movement,
it would attach at site N and move toward site N1 (as the lattice is labeled in Figure 2.1). Con-
versely, a motor with retrograde movement would attach at site N1 and move toward site N . It is
necessary to simplify the dynamics in the one-dimensional, bidirectional model when anterograde
and retrograde motors confront one another. Like motorists avoiding a head-on collision on a road,
one of the motors would necessarily detach prematurely from the lattice at rate ωD, as governed
by Langmuir dynamics. Which motor desorbs is a matter of probability in the oversimplified one-
dimensional model.

In the thirteen protofilament adaptation of the model, instead of decreasing their processivity,
a collision could be avoided through side stepping. Empirical evidence could be used to determine
how motors interact with one another, and experimentally determined probabilities of biased left
or right-handed side stepping in the face of an obstacle could be applied. Though the dynamics an-
terograde and retrograde motors becomes more biologically sensible in the two-dimensional model
than its one-dimensional counterpart, the code becomes rapidly more complex. Consequently, I
adapt the one-dimensional model to include bidirectionality, but defer expansion of bidirectionality
in the two-dimensional version.

Empirical observations show that vesicles and other intracellular cargo have a small number
of motor proteins tightly bound, including between one to five dynein and one to four kinesin [73].
Transport is driven by force-dependent kinetics, where in general, kinesins exert force toward the
positive end of the microtubule and dynein toward the negative [73]. The bidirectional motion is
disrupted with directional switching as different motor proteins attach to the microtubule track. It
is common throughout biological literature to refer to this process as a tug-of-war [73, 74]. Other
evidence supports a “paradox of codependence,” in which inhibition of motors of either polarity
decreases motitility in both directions [75].

Though the net motion of cargo is coordinated by regulatory proteins and is beyond the
scope of this thesis, we now adapt the model rules presented in Section 2.1 to account for move-
ment of both kinesin and dynein. Then, we present the results of the bidirectional model, and
conclude the chapter with a loose analogy to the three-spin-state Potts model for equilibrium
systems. Interested readers may refer to Appendix D.3 for the source code for both pile-up and
drive-by interpretations, and Appendix C.2 for a mathematical analysis of the Potts model analogy.
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4.3 Bidirectional Model Rules

As in the unidirectional model presented in Chapter 2, the negatively charged right end of
the lattice is fixed (site N) and the positively charged left end (site 1) can polymerize to extend,
remain constant, or depolymerize to contract. Consistent with the previous model, lattice growth
and shrinkage due to attachment or detachment at the leftmost site updates all site labels i → i±1.

As before, kinesin traffic occurs from right to left, towards the positive end of the microtubule.
Conversely, dynein traffic occurs from left to right, toward the negative end of the microtubule. To
account for the two types of particles, I adapt the model to a three-state system in which lattice
sites can be occupied by either kinesin, 1, dynein, 2, or unoccupied, 0. If two motors are neighbors,
they block one another.

The system evolves according to the following rules (depicted in Fig 4.2) :

At sites 1 and 2:

� 10 → 00 with rate β1: kinesin particles leave the track with exit rate β1;

� 00 → 20 with rate α2: dynein particles enter the track with entrance rate α2;

� 01 → 10 with rate 1: kinesin particles move from right to left if the neighboring site is
empty;

� 20 → 02 with rate 1: dynein particles move from left to right if the neighboring site is
empty;

� 00 → 000 with rate γ: the length of the track increases by one unit when the two first sites
are empty; this is equivalent to spontaneous polymerization of a microtubule;

� 11 → 0 or 12 → 0 or 21 → 0 or 22 → 0 with rate δ: the length of the track decreases by one
unit when two particles (occupying site 1 and 2) are present; at the same time, the particles
leaves the track; this is equivalent to motor-induced depolymerization for a microtubule;

In bulk (sites ni = 3...N − 1):

� 01 → 10 with rate 1: kinesin particles move to the left with rate 1 as long as the neighbor
to the left is empty;

� 20 → 02 with rate 1: dynein particles move to the right with rate 1 as long as the neighbor
to the left is empty;

� 1 → 0 with rate ωD,1: if site is occupied, remove kinesin particle with rate ωD,1;

� 2 → 0 with rate ωD,2: if site is occupied, remove dynein particle with rate ωD,2;

� 0 → 1 with rate ωA,1: if site is empty, add kinesin particle with rate ωA,1;

� 0 → 2 with rate ωA,2: if site is empty, add kinesin particle with rate ωA,2;

At site N:
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� 00 → 01 with rate α1: kinesin particles enter the track with entrance rate α1;

� 02 → 00 with rate β1: dynein particles leave the track with exit rate β2;

� 01 → 10 with rate 1: diffusion of kinesin to the left with rate 1;

� 20 → 02 with rate 1: diffusion of dynein to the right with rate 1;

(a) Kinesin enters track with rate α1 at site N and
exits with rate β1 at positive end.

(b) Dynein enters track with rate α2 at the positive
end and exits with rate β2 at site N .

(c) Kinesin diffuses to the next unoccupied site to-
ward the positive end with rate 1, and dynein diffuses
toward th negative end.

(d) Langmuir Kinetics: kinesin attachment with rate
ωA1, kinesin detachment with rate ωD1, dynein at-
tachment with rate ωA2, and dynein detachment with
rate ωD2.

Figure 4.2: Three-state system model rules for kinesin and dynein
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Figure 4.3: Motor-induced depolymerization for different combinations of kinesin and dynein at
the positive end.

4.4 Bidirectional Model Code Structure

For each parameter introduced, the mean field method introduces more error into the model.
For the bidirectional model, the necessity of averaging across so many parameters prevents the mean
field approximation from accurately representing the system. I introduce the mean field method
for two types of motors in Appendix C.1, but move forward with the Monte Carlo approach.

To model directional dynamics along a one-dimensional lattice. we define one current for
each species, for both kinesin and dynein:

⟨ni(1 − ni+1)⟩ (4.1)

where ni represents the occupation site on the lattice.

I present two versions of the bidirectional code, distinguished by what happens when kinesin
and dynein collide, or occupy adjacent sites on the lattice. In the pile-up interpretation, if the
motor’s neighboring site, ni+1 is occupied by either the same or opposite type of motor, then the
motors block one another and a pile of motors builds. This will lead to a traffic jam and motor-
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induced depolymerization. As described in Section 4.3 for model rules, this leads to the following
detachments as a result of collisions:

� 11 → 0

� 12 → 0

� 12 → 0

� 22 → 0

The other version of the bidirectional will be referred to as the drive-by interpretation. As
before, when motors of the same type occupy adjacent sites, the motor in ni detaches. However,
when motors of the opposite type occupy adjacent sites, I observe a drive by or hopping scenario
analogous to lane switching in the two-dimensional model: if a kinesin occupies site ni and a dynein
occupies ni+1, then the motors will side step one another, where in the next time step the kinesin
will occupy ni+1 and the dynein will occupy ni. This allows for the transition

� 12 ↔ 21

Figure 4.4: Schematic of the bidirectional model with the “drive by” interpretation, allowing a
dynein and kinesin in adjacent sites to exchange positions. This is a different version of kinesin-
dynein collisions than the “pile up” conditions presented in Fig.4.3.

The pile-up scenario presented in Fig. 4.3 is less biologically relevant, but leads to math-
ematical results of interest to the statistical physics community. The latter interpretation with
the drive-by option, Fig 4.4, is more biologically relevant and will be easily adapted to the two-
dimensional side stepping model presented in Chapter 3.

For each species, the measurement of the currents is observed separately, though interactions
between species influence their dynamics. Notably, the total current is the sum of the two currents
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in absolute value to account for the total motion of motors in either direction, not measuring the
net motion if positive-end directed motion of kinesin wins the tug-of-war over dynein or vice versa.

I manipulate changes in initial length and attachment/detachment parameters of the track
to observe changes in the development of steady state, as well as changes in the current, density
and occupancy of the track. I analyze both two species interpretations, pile-up and drive-by, on
tracks of fixed and variable lengths.

4.5 Analysis of Bidirectional Model Results

First, I demonstrate as that the Monte Carlo simulations can lead to a steady state dynamic
equilibrium, following initial transient behavior. Steady state can be reached for both fixed (Fig.
4.5.a) and variable (Fig. 4.5.b) length tracks.

(a) (b)

Figure 4.5: Current of each type of particle and the total current (as an absolute value) on a track
of a) fixed and b) variable length. c) The length over time for the steady state current. Parameters:
ΩA1 = ΩA2 = ΩD1 = ΩD2 = 0.5, α1 = β1 = α2 = β2 = 0.5, γ = δ = 0.1

Next, I introduce a special case in the drive-by scenario in which the manipulation of γ,
the rate of spontaneous polymerization, can lead to the study microtubule catastrophe and phase
transitions. As expected, a large γ leads to microtubule growth. A small γ, by comparison,
demonstrates rapid depolymerization. Using the Monte Carlo simulations, I can observe the point
at which the phase transition occurs (Fig. 4.6). At lower and higher rates of spontaneous de-
polymerization, the track unravels or continues growth, but directly at the phase transition, the
microtubule demonstrates treadmilling, also known as dynamic instability (Fig. 4.7).

Phase transitions are a subject of intense study in non-equilibrium statistical physics. Sim-
ilarly, understanding the causes and disruptions to dynamic instability is of strong interest to
biophysicists. Consequently, this case provides one of many examples of how this model is a useful
foundation for future research. The parameters selected for this phase transition are an arbitrary
combination that led to a familiar physical phenomena, and many other cases not examined could
also lead to meaningful results. However, the high quantity of parameters makes in unfeasible to
run all combinations of parameters manually. This calls for a methodical system to conduct a
sensititivty analysis, the introduction of a training and test set, and implementation of machine
learning algorithms.
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Figure 4.6: For the drive-by bidirectional scenario, I present Monte Carlo results for microtubule
lengths. With rates of spontaneous polymerization below 0.3, the microtubule experiences catas-
trophe, while rates of spontaneous polymerization above 0.3 lead to growth. At exactly 0.3, the mi-
crotubule length stays roughly constant. For all manipulations of γ, all other parameters were held
constant: ΩA1 = ΩA2 = ΩD1 = ΩD2 = 1, α1 = 0.3, β1 = 0.7, α2 = 0.7, β2 = 0.3, δ = 0.1.

Figure 4.7: A close up of the gray line in Fig.4.6 At the phase transition, the microtubule demon-
strates dynamic instability, depolymerizing and undergoing rescue to polymerize again.

4.6 An Analogy in Equilibrium Statistical Physics: The Potts
model

In statistical physics, the Potts model represents spins on a crystalline lattice, in which
spins take one of q possible values, distributed uniformly around a circle [76]. Interaction between
spins occurs in a non-Abelian (non-commutative) way. Applications of the Potts model depend
on the designated q value. In statistical physics, the Potts model is generally used to study phase
transitions. When q ≤ 4, the model represents continuous transitions; such is the case in our
biophysical application, as our three-state system can be represented as q = 3.
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It should be emphasized that the movement of kinesin and dynein with diffusion across the
microtubule track is a non-equilibrium system, while the Potts model is strictly in equilibrium.
While the analogy between the two is limited, the Potts model three-state system has relevance
in the study of phase transitions in biophysics. For the interested reader, I detail the statistical
physics behind the Potts Model analogy in Appendix C.2.
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Chapter 5

New horizons: Machine Learning
Applications for TASEP

5.1 Introduction to Machine Learning

Machine learning is a rapidly expanding computational tool, and emerging biophysical ap-
plications traverse many contexts. Recently, machine learning algorithms have been essential in
formulating predictions for drug delivery systems, including nanocrystals, solid dispersion, and
self-emulsifying systems [77]. Similarly, machine learning algorithms have been applied to opti-
mize physiochemistry of lipid nanoparticle formulation, used as delivery systems for the mRNA
vaccines that became prevalent after the COVID-19 pandemic [77]. Other applications include
development of molecular dynamics simulations in protein engineering to predict functional fitness
given molecular interactions, and modeling transcription elongation through DNA polymerase II
dynamics [78, 79].

Given the essential role of machine learning in the future of computational biology, I present
a brief review of machine learning approaches to totally asymmetric exclusion process and traffic
modeling. In hopes of continued expansion of this project, I suggest how machine learning algo-
rithms could be applied to modeling motor molecule dynamics, but leave it to the motivated reader
to execute the algorithms.

Broadly, machine learning is the process through which computers develop independent pat-
tern recognition to make predictions from data sets [80]. Without being explicitly programmed,
machine learning allows computers to make predictions and adjustments from data sets, with appli-
cations throughout industry, academia, and beyond. There are four general categories of machine
learning, depending on how much guidance the algorithm is given. In supervised, semi-supervised,
and unsupervised learning, the algorithms extracts patterns from a labeled, partially labeled, or an
unlabeled data set, respectively [80]. Within unsupervised learning, there are many strategies an
algorithm can employ including (but not limited to) clustering, which identifies and groups similar
data points, density estimation, which analyzes distributions, anomaly detection, which identifies
outliers, and principal component analysis, which summarizes the set and makes predictions ac-
cordingly [80].
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A prominent and emerging branch of machine learning is deep learning, in which an algorithm
develops a neural network to determine the success of an output and reiterate to improve accuracy
of results [80]. Deep learning consists of two steps: training, in which an algorithm interprets
data and adapts based on feedback, and inference (testing), in which the neural networks make
predictions using an unfamiliar data set.

A successful neural network is predicated on the best choice of algorithm based on the data
set, as well as the complexity of the training data set. The accuracy of a neural net is determined
by minimization of the risk function, R(Θ), where Θ represents the model (Θ∗ represents the
optimal model), the set z = z1...zl represents the data set, F (z) represents the distribution, and
Q(z,Θ) represents the cost function:

R(Θ) =

∫
Q(z,Θ)dF (z)Θ ∈ A (5.1)

A fundamental understanding of the mechanics of deep learning allows for the best choice of
network architecture, effective models, and interdisciplinary applications.

5.2 Applications of Machine Learning to Traffic, TASEP and Mo-
tor Molecule Dynamics

Statistical physics literature refers to hydrodynamical equations as those that represent the
flow of traffic:

q(x, t) = ρ(x, t)V (x, t) (5.2)

where q represents flow, ρ represents density, and V represents speed.

Widespread through the statistical physics community, hydrodynamical models often assume
the fundamental hypothesis, also known as the fundamental diagram relationship, that flow is
exclusively dependent on density [81]. This assumption is the foundation of the Lighthill-Whitham-
Richards (LWR) equation, a first-order model of traffic dynamics [81]:

∂ρ(x, t)

∂t
+

∂q[ρ(x, t)]

∂x
= 0 (5.3)

Sacrificing accuracy for simplicity, the LWR equation falls short in modeling many of the
empirical phenomena of traffic flow. As a result, many models often incorporate a second order
equation to govern dynamics:

∂V (x, t)

∂t
+ V (x, t)

∂V (x, t)

∂t
= −ν

1

ρ(x, t)

∂ρ(x, t)

∂x
+

1

τ
(Ve[ρ(x, t)] − V (x, t)) (5.4)

with ν serving as a viscosity coefficient and τ representing a relaxation time to settle into equilib-
rium speed, Ve[ρ] [81].

At the microscopic scale in the continuous limit, hydronamic equations lead to “car following”
models, in which the motion of individual particles (in the case of highways, vehicles, in the case of
microtubules, motor molecules) abide by a kinematic rule that is a function of distance and speed
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relative to an adjacent particle [81].

This leads to the introduction of the Nagel Schreckenberg (NaSch) model for traffic, with
strong applications to totally asymmetric exclusion principle. Coined in 1992 by Nagel and Schreck-
enberg as they used Monte Carlo simulations to simulate freeway traffic, the NaSch model executes
four rules for updating the position of each particle. These rules lead to a density-dependent transi-
tion from laminaar flow to “start-stop waves,” as observed empirically [82]. The four rules, executed
in parallel to update the position of each particle, are as follows:

� acceleration: vn → min(vn + 1, vmax)

� deceleration to avoid collision: vn → min(vn, dn)

� randomization: vn → max(vn − 1, 0) at probability P

� particle motion: xn(t + 1) → xn + vn

where
dn(t) = xn+1 − xn − 1 (5.5)

represents the current empty sites in front of the nth particle and xn represents the position of the
particle at time t [82]. Some literature refers to the “start-stop waves” as “phantom jams,” defined
as spontaneous and symmetrical breaking among identical particles [81]. As in the original context
of vehicles on the highway, the NaSch model rules can be applied to the TASEP of motor molecules
traveling along a microtubule to recreate intracellular traffic patterns of density-dependent and
phantom jams.

Utilizing these hydrodynamical equations as the cost function in a machine learning algorithm
opens the door to complex biophysical models able to be trained by empirical data. Though the
execution of such algorithms is outside the scope of this thesis, machine learning is arguably the
future of computational biophysical modeling.
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Chapter 6

Discussion, Conclusions, and Future
Direction

6.1 Conclusions

I presented a versatile traffic model on dynamic tracks motivated by the motion of molecular
motors on microtubules of variable length. The model captures the interplay between polymeriza-
tion and depolymerization of the microtubule, consistent with the microtubule instability observed
in lab experiments [83, 84]. To model motor molecule dynamics, we utilized TASEP and Langmuir
Kinetics as the foundation for a mean-field analysis, and compared analytical results to Monte
Carlo simulations when applicable. I began with a unidirectional, one-dimensional model and then
expanded to increasing levels of complexity, including motion of motors in two-dimensions and
bidirectional toward the positive and negative ends of the microtubule.

As with any model, there are benefits and weaknesses to its simplicity. Though many com-
plexities from both a biologists’ and a physicists’ perspective are not accounted for, the simple
model structure lends to its generality and versatility.

The first iteration of the model with unidirectional motion on a one-dimensional lattice can be
adapted to a particular motor with motor-induced depolymerization capabilities (such as kinesin-8
or kinesin-13), but it is also general enough to be applied to other physical systems. The general
nature of this model also contributes to widespread applicability and purpose in the context of
interdisciplinary research. There is value in studying this model as an abstract non-equilibrium
statistical physics system that can shed light on the new features of a traffic model defined on
dynamic tracks.

As introduced in Section 1.3.1, many such applications can be made in biophysics. For ex-
ample, TASEP-type models are useful in modeling translation, the process in which transfer RNAs
convert messenger RNA transcripts into a polypeptide chain. Ribosomes, complexes of ribosomal
RNA, move unidirectionally from N-terminus to C-terminus (5’ to 3’) along the one-dimensional
mRNA lattice [44]. Each site on the lattice is represented by a three-base codon, which codes for
an amino acid. In eukaryotes, transcription initiates when transcription factors recruit a ribosome
to bind to a promoter, a sequence upstream of a gene, and the ribosome begins moving one codon
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at a time downstream (toward the 3’ end) in search of a start codon. This triggers the beginning
of elongation, in which a new amino acid is added to the polypeptide chain at each codon, that is,
at each site of the lattice. As it moves, the ribosome attaches to one site at a time but blocks the
adjacent sites from attachment by another ribosome. In a reading frame of N codons, the addition
of the last amino acid in the polypeptide occurs at site N − 1, as the N th site is designated
by the stop codon, which does not code for an amino acid and causes termination. Notably, the
ribosome does not attach and detach freely as it moves down the lattice, indicating that translation
is an application of TASEP without Langmuir kinetics. A similar application can be made to the
movement of RNA polymerase (RNAP) and the displacement of histones during transcription [51].

From a theoretical point of view, the model is rich in its dynamics and can lead to more in-
depth studies of its special cases or extensions. I used the mean field and hydrodynamics approach
to study it analytically, and compared our results to the Monte Carlo simulations with mixed suc-
cess. Specifically, in the unidirectional, one-dimensional model, the high correlation effects between
the sites at the tip of the microtubule that trigger the change in length caused the mean-field
approach worked for only a few cases, when the microtubule can be easily approximated as being
constant in length. For other sets of parameters, the mean-field theory fails, and other analysis
methods need to be explored. The first step in addressing the shortcomings of the mean-field theory
is to include particle correlations into the equations, starting with two and three point correlations
for the boundary sites. Another avenue of study may be a kinetic approach to small-size systems
by solving numerically the governing master equation.

Though remaining highly simplified, the Monte Carlo simulations of the two-dimensional,
unidirectional model increased complexity by incorporating motor side-stepping between protofila-
ments of a microtubule. These results recreated traffic dynamics familiar to a motorist on a highway:
occupancy in steady state was lower in systems with higher rates of side-stepping, analogous to a
higher rate of changing lanes on a higway. The next step in addressing the shortcomings of the
two-dimensional model is to account for interprotofilament tip dynamics, where each protofilament
in the mirotubule polymerizes and depolymerizes at slightly different rates and affects neighboring
protofilament dynamics. I expect track dynamics to have an effect on the build-up, and likely the
detachment, of molecular motors.

The final expansion of the model introduced bidirectionality. The high number of parameters
caused too many approximations to make the mean-field approach meaningful, leading us to rely
exclusively on Monte Carlo simulations. I analyzed two interpretations of bidirectional systems,
the pile-up and drive-by scenarios, of which the latter led to more biologically relevant results.
By varying rates of spontaneous polymerization of a track of variable length, I isolated a phase
transition, the point at which the track experienced catastrophe and rapidly dissociated. Further
study of the parameters that result in phase transitions in the bidirectional model are of interest to
non-equilibrium physicists as well as biophysicists whose work applies to medicine, as understand-
ing the mechanisms and mathematical modeling behind the malfunctions of intracellular transport
is a critical step in treating neurodegenerative and other diseases.

As is the direction of biophysical computational modeling, I discussed the potential for ap-
plication of TASEP to machine learning. Though I leave it to the motivated reader to use our
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model to ask questions and continue research, I predict that the use of machine learning in traffic
modeling will be an effective computational approach in the future.

With a few exceptions (for example [61], [62], and others), traditional TASEP studies for
motion of molecular motors on microtubules consider the track as fixed in length. The value of this
thesis is in considering three competing processes that occur at the biological level: (1) the track
variable in length (incorporates both growth and shrinkage); (2) TASEP dynamics; (3) Langmuir
dynamics. I hope this study can be useful for biologists and biophysicists working in the molecular
motors field. I also hope that this is an interesting enough non-equilibrium statistical physics model
worthy of further studies and extensions to other physical systems.
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Appendix A

TASEP Master Equation

In section 1.3, I introduce TASEP as a stochasitc model for the one-dimensional motion of
particles on a one-dimensional lattice. Here, I present the master equation for the probability of of
finding the system in configuration {ni} after t time steps:

P ({ni}, t + 1) − P ({ni}, t) =
∑
{ni}

L({n
′

i}, {ni})P ({ni}, t) (A.1)

where the Liovillian (like the quantum Hamiltonian) can be written as

L({ni
i}, {ni}) = W ({ni

i}, {ni}) − δ({ni
i}, {ni})

∑
{n

′′
i }

W ({ni
i}, {n

′′

i })[44] (A.2)

Here, δ is the Kroncecker delta and W ({n
′

i}, {ni}) represents the transition probability
between configurations:

1

L + 1
[α(1 − n1)δ(n

′

1, n1 + 1)
∏
j>1

δ(n
′

j, nj)+

L−1∑
k=1

γnk(1 − nk+1)δ(n
′

k, nk − 1)δ(n
′

k+1, nk+1 + 1)
∏

j ̸=k,k+1

δ(n
′

j, nj)

+ βnLδ(n
′

L, nL − 1)
∏
j<L

δ(n
′

j, nj)] (A.3)
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Appendix B

Phase Transitions

Also in section 1.3, I begin to introduce the role of TASEP and ASEP as an approach to
phase diagrams. Non-equilibrium physicists define density and current for three phases: low-density,
high-density, and a maximal current.

For total current, J :

J =


1
4

α ≥ 1
2
β ≥ 1

2
(MC phase)

α(1 − α) α < 1
2
β > α (LD phase)

β(1 − β) β < 1
2
α > β (HD phase)

(B.1)

For total density, ρ:

ρ =


1
2

α ≥ 1
2
β ≥ 1

2
(MC phase)

α α < 1
2
β > α (LD phase)

1 − β β < 1
2
α > β (HD phase)

α + (1 − 2α)x α = β < 1
2

(B.2)

where the position is denoted as

x =
i

N
(B.3)

and i labels the site.

On the one-dimensional lattice S, the state n of the system is 0 when the site x in S is
unoccupied, and 1 when site x is occupied. Growth processes can then be described using a
height function, ht, (time dependent based on the current of the particles. The height function
is constructed in pieces: if nt(x) = 1, representing an occupied site, then ht(x) ∈ [x, x + 1]
increases with a slope of 1. If nt(x) = 0, representing a vacant site, then ht(x) ∈ [x, x + 1] has
a slope of -1.

In the continuous limit, exclusion processes are described by the Kadar-Parisi-Zhang equation:

∂h

∂t
= ν

∂2h

∂x2 + Λ(
∂h

∂x
)2 + ω (B.4)
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Figure B.1: Central: a schematic phase diagram of ASEP, where LD represents low-density phase,
HD represents the high-density phase, and MC represents the maximal-current. Subplots depict
changes in density by coordinate [45]

where the second order partial derivative accounts for diffusion, the first order partial deriva-
tive accounts for growth, and ω accounts for noise [85, 86].

In the hydrodynamic limit, TASEP is governed by the noisy Burgers equation:

u(x, t) =
∂h

∂x
(B.5)

[3, 86].
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Appendix C

Mean Field Method for Bidirectional
Motors

C.1 Three-State Mean Field Equations

In order to be able to write the differential mean field equations, I will introduce two occu-
pation numbers for the two types of particles, ni = 0 for empty and ni = 1 for occupied (kinesin)
and pi = 0 for empty and pi = 1 for occupied (dynein). Though there are two versions of the
bidirectional model, one where colliding kinesin and dynein pile up and one where they drive by
one another, here I present equations for the pile-up version only.

I present below the evolution equations for the site occupation numbers. Even though all
the equations are coupled, for clarity, I will write separate sets of equations for the two types of
models. I first start with the boundary sites 1, 2, 3 and N the equations are:

dn1

dt
= −β1n1(1− p1)(1−n2)(1− p2) +n2(1− p2)(1−n1)(1− p1)− δ(n1n2 + p1p2+

+ n1p2 + p1n2)

(C.1)

dn2

dt
= n3(1−n2)(1−p3)(1−p2)−n2(1−n1)(1−p1)(1−p2)−δ(n1n2+p1p2+n1p2+p1n2)+

δn1n2n3p1p2p3)

(C.2)

dn3

dt
= n4(1 − p4)(1 − n3)(1 − p3) − n3(1 − p3)(1 − n2)(1 − p2) − ωD,1n3(1 − p3)

+ωA,1(1−n3)(1−p3)−γ(1−n1)(1−p1)(1−n2)(1−p3)+δ(n1p1+n2p2+n1p2+p1n2)(n4p4−n3p3)

(C.3)
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dnN

dt
= α1(1 − nN)(1 − pN) − nN(1 − pN)(1 − nN−1)(1 − pN−1) (C.4)

For the dynein motors, the equations for the boundary sites are:

dp1

dt
= +α2(1−n1)(1−p1)(1−n2)(1−p2)−p1(1−p2)(1−n1)(1−p1)−δ(n1n2+p1p2+

+ n1p2 + p1n2)

(C.5)

dp2

dt
= p1(1−n1)(1−n2)(1−p2)−p2(1−n1)(1−p1)(1−n2)−δ(n1n2+p1p2+n1p2+p1n2)+

δn1n2n3p1p2p3)

(C.6)

dp3

dt
= p2(1 − n2)(1 − n3)(1 − p3) − p3(1 − n3)(1 − n4)(1 − p4) − ωD,2p3(1 − n3)

+ωA,2(1−p3)(1−n3)−γ(1−n1)(1−p1)(1−n2)(1−p3)+δ(n1p1+n2p2+n1p2+p1n2)(n4p4−n3p3))

(C.7)

dpN

dt
= −β2(1 − nN)(1 − pN) − pN−1(1 − nN)(1 − pN)(1 − nN−1) (C.8)

And for the bulk sites, ni = 4...N − 1 and pi = 4...N − 1 :

dni

dt
= ni+1(1 − ni)(1 − pi+1)(1 − pi) − ni(1 − pi)(1 − ni−1)(1 − pi−1)+

γ(1 − n1)(1 − n2)(1 − p1)(1 − p2)(ni−1pi−1 − nipi)+

δn1n2p1p2((ni+1pi+1 − nipi) − ωD,1ni(1 − pi) + ωA,1(1 − ni)(1 − pi) (C.9)

dpi

dt
= pi−1(1 − pi)(1 − ni−1)(1 − ni) − pi(1 − ni)(1 − ni+1)(1 − pi+1)+

γ(1 − p1)(1 − p2)(1 − n1)(1 − n2)(ni−1pi−1 − nipi)+

δn1n2p1p2((ni+1pi+1 − nipi) − ωD,2pi(1 − ni) + ωA,2(1 − pi)(1 − ni) (C.10)
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C.2 Potts Model Analogy

The Potts model is an equilibrium system used to investigate phase transitions.

Distribution of q spins is modeled as

Θn =
2Πn

q
n = 0, 1, ..., q − 1 (C.11)

In the vector Potts model, we introduce the interaction Hamiltonian:

Hc = Jc

∑
i,j

cos(Θsi
− Θsj

) (C.12)

for nearest neighbor pairs, i and j over all lattice sites, and site “colors”, si assume values in
1, ...q. Jc represents the coupling constant, indicative of the interaction strength between spins.
In further iterations of this applications of the Potts model, Jc could be represented with empirical
data quantifying the extent of interactions between kinesin and dynein, analogous to the strength
of the interaction between spin states 1 and 2.

In the (simpler) standard Potts model, the Hamiltonian is represented by

Hp = −Jp

∑
i, jδ(si, sj) (C.13)

where δ(si, sj) is the Kronecker delta, collapsing to one when si = sj and zero everywhere else.
Notably, the standard and vector Potts models are made equilvalent when

Jp =
3

2
Jc (C.14)

The Potts model is generalized by the Fortuin-Kasteleyn representation, also referred to as
the random cluster model, which unifies the Potts model with Bernoulli percolation (q = 1) and the
Ising model (q = 2). The random cluster model is used to study random combinatorial structures,
phase transitions, ferromagnetism, and (as we demonstrate here) biophysical systems. Importantly,
the generalizations made by the random cluster model has aided in the development of Markov
chain Monte Carlo approaches to model the Potts model for small q, applicable to our three-state
system. Markov chain Monte Carlo approaches are detailed in Chapter 5.
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Appendix D

Code Screenshots

For the sake of reproducibility, I provide screenshots of the python code utilized to make each
model.

D.1 Unidirectional Stochastic Model in One-Dimension

D.2 Side-Stepping Model

D.3 Three-State ASEP Model

D.3.1 Interpretation One: pile-up

D.3.2 Interpretation Two: drive-by
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Figure D.1
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Figure D.2
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Figure D.3
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Figure D.4
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Figure D.6
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Figure D.7
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Figure D.8
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Figure D.12
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