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Abstract

Gene regulation is essential for the diversity and maintenance of life. The first step in protein
production, and therefore the first step in gene regulation activities, is transcription. This thesis will
outline and analyze three different stochastic models of mRNA transcription. Stochastic models
capture the randomness activity on a microscopic level within cells to then predict macroscopic
behavior. The stochastic models presented here begin with a one-state model and increase in
complexity to three state and multi-state, models. Future goals include increasing model complexity
to more accurately capture biological phenomena, and incorporating real biological rates of mRNA
birth and death as well as rates of gene activation and inactivation.

iii



iv



Acknowledgments

Firstly, I would like to thank my God, my family, and my friends who have become like
family. Without them I would not have had nearly as much joy or support when undergoing this
theses. Mom and Dad, you taught me how to love others and where to find peace in this hectic
world, which are gifts that deserve an endless amount of thanks.

Secondly, I would like to thank the Physics and Engineering Department of Washington and
Lee University and the amazing professors that went into my undergraduate education. In this
department I found a collection of passionate, empathetic, and encouraging teachers. While classes
were not always easy, they were rewarding, and for that I will be forever appreciative. I would like
to give special thanks to Dr. Irina Mazilu, Dr. Dan Mazilu, and Dr. Laurentiu Stoleriu for the
unparalleled contributions they made to this thesis.

Lastly, my overwhelming gratitude is extended toward Dr. Irina Mazilu. I can confidently
say she is the reason I am a physics major and the reason this thesis exists. The opportunities I
have seized at this university, and my future career, would never have come to fruition without the
endless support, mentor-ship, and care she devoted to me and selflessly gives to so many others.



vi



Contents

Abstract

Acknowledgments

1

2

3 One-State Model for mRNA Transcription
3.1  Definition of mRNA One-State Model . . . . . .. .. ... ... ..
3.1.1 Deterministic One-State Model . . . . . . ... ... .....
3.1.2 Stochastic One-State Model . . . . . . . ... ... ... ...
4 Two-State Models for mRNA Transcription
4.1 Two- State Models in Physics . . . . .. ... ... ... ... ...
4.2 Definition of mRNA Two-State Model . . . . . .. ... ... ....
4.2.1 No protein degradation, 6 =0 . . . . . . .. .. ... .....
4.2.2 Protein degradation, § >0 . . ... .. ...
4.3  Definition of ”"Poisson with Zero Spike” Model . . . . . . . . .. ..
5 Three-State Model for mRNA trascription
5.1 Three- State Models in Physics . . . . ... ... ... ... .....
5.2 Definition of mRNA Three-State Model . . . . . . ... ... ....
5.3 Computer Simulations . . . . . . . .. ... ... .. ... ...
5.4 Gillespie Algorithm . . . . . ... ... o oo
6 Conclusions
Bibliography
7 Appendix

Introduction

Biological Background and the Physics Connection

2.1 mRNA Transcription . . . . . . . . . . ...

vii

iii

13
13
13
15
16
20

21
21
22
23
26

27

29

31



viil



Chapter 1

Introduction

Statistical Physics is a field dedicated to understanding the macroscopic behavior of complex
systems comprised of many constituents. Equilibrium statistical physics specialized in studying
systems that move towards an equilibrium state. However, life is a non-equilibrium system and the
methods of classical statistical physics do not apply, so new methods of study are needed.

Non-equilibrium statistical physics is particularly adept at studying biological processes. Very
few systems that occur in nature follow equilibrium statistical physics as the majority of biological
processes are irreversible processes.. Biologists and biochemists are often concerned with under-
standing the different microscopic agents of these systems so that they may explain or predict
future macroscopic behaviors. Non-equilibrium statistical physics turns towards models and sim-
ulations to capture macroscopic system behavior accounting for varying amounts of microscopic
contributors.

This project analyses different stochastic non-equilibrium models of transcription ranging in
complexity from a simple birth and death model to a multi-state model. First, a biological back-
ground of transcription gives the reader necessary information to understand the structure of the
following models. Next each model has its applications discussed, is outlined mathematically, and
is analyzed for different probabilistic rates. The order of the thesis is such: the one state model
(Chapter 3), the two state model (Chapter 4), and the three state model (Chapter 5). Other possi-
ble models and future goals of this project are discussed at the end of the paper (Chapters 5 and 6).






Chapter 2

Biological Background and the
Physics Connection

2.1 mRNA Transcription

Physicists in the modern area are interested in how interactions of microscopic particles in-
fluence their macroscopic behavior. An analogous point of interest for Biologists is the relationship
between intercellular functions and their macroscopic presentations in tissues, organs, and organ
systems. One cellular process that is at the heart of cell operations is deoxyribonucleic acid (DNA)
transcription. To generalize, transcription is the first step towards protein creation utilizing cell
DNA. It is important to understand that protein creation then determines cell composition and
functioning; any process that guides protein creation, both what proteins are made and how much
of any one protein is produced, therefore has a direct impact on a cellular processes|9].

DNA is a polymer, consisting of “nucleotide” units which are comprised of a sugar, a nitrogen-
containing base, and a phosphate group. DNA is a double helix consisting of two strands running
antiparallel to one another. Adjacent nucleotides on a single DNA strand share a strong bond cre-
ating a structurally sound backbone; nucleotides parallel to one another on opposite strands share
a weaker chemical bond, two or three hydrogen bonds, allowing the two strands to separate when
needed, an example of which is transcription. Figure 2.1 displays a visual of transcription. The 3
prime (3’) and 5 prime (5’) denote directionality of the DNA stands based upon the orientation of
the nucleotide bases; figure 1 visualizes the strands antiparallel orientation. The nitrogen-containing
bases, a nitrogenous base, can have one of four bases: adenine (A), guanine (G), cytosine (C), or
thymine (T) in DNA. Base G pairs with base C on opposite strands whereas base A pairs with
base T[9] [10].

Ribonucleic acid (RNA) is another key component in transcription. RNA is responsible for
the facilitation of transcription and is a product of transcription. RNA is similar to DNA. How-
ever, key differences include the single-stranded nature of RNA and that RNA has the nitrogenous
base uracil (U) in substitution of base T in DNA. As visualized in Figure 2.1, the protein RNA
polymerase, unwinds the DNA, and builds a chain of pre-messenger RNA (pre-mRNA) out of ri-
bonucleotide triphosphates. Messenger RNA (mRNA) is the result of the processing of pre-mRNA;
it is allowed outside of the cell nucleus in a eukaryote. Eukaryotes are cells that have a nucleus
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Figure 2.1: Labelled diagram of a DNA strand undergoing transcription[10].

housing DNA rather than it free floated in intracellular space as it does in prokaryotes. The mRNA
processing that occurs is three-fold: there is a 5’ cap and 3’ tail added to prevent degradation and
there are identified unnecessary portions of the pre-mRNA that are removed. The biological pro-
cess of transcription is then complete and a protein is ready to be created through translation[9][10].

It is important to note that this process, both the initiation of transcription and processing of
mRNA, play a huge role in gene regulation. Understanding when and how much of a protein is made
can shine light on the nature of micro-anatomical physiology. On a cellular level these proteins
keep the gene alive. On a tissue, organ, and organism level these proteins differentiate cell lines and
keep the complex machine, like the human body, functioning. Errors in transcription regulation
can lead to an access of protein, or a depletion, which can throw an organism out of equilibrium and
into disease[9][10]. A well-known example of this is tumerogensis, which can develop into cancerous
legions, the over-expression of tumor-causing genes|8].



Chapter 3

One-State Model for mRNA
Transcription

Statistical physics studies system behavior comprised of a large number of agents. A mere 18g
of Hy0 consists of 6.023 x 10% molecules of water, which is the well known and widely applied Avo-
gadro number; the human genome is comprised of billions of base pairs. Biological systems, from the
micro-anatomical to population studies, lend themselves to exploration via statistical physics. Just
as a cell acts differently than an organ, and a individual separately from its community, individual
components alone do not represent the behavior of the collective[11]. Statistical physics works to
model and predict system behavior based on the input of its microscopic constituents interacting
among themselves and with their environment. This is not an easy task to undergo due to the near
endless possibilities that exist for each component. Imagine a game of musical chairs: there are a
definite number of chairs and children yet a multiplicative amount of assembly possible when the
music stops and children rush to find an open space. Increase this toy model to one with scales of
10% and higher. This example elucidates the reasons why many values sought after in statistical
physics involve total averages and probabilities which help contextualize the potential outcomes[11].

Systems move toward thermal equilibrium, their most energy efficient form, if given the proper
time. A common instance of such would be reaching for a cup of scalding coffee to find instead
a drink that has cooled to room temperature. Credit for the theoretical framework of predicting
the behavior of a system in equilibrium goes to late-ninetieth physicists J.W. Gibbs and Ludwig
Boltzmann[3]. In the 1970s such methodology was refined and today equilibrium statistical physics
finds itself as an integral part to any college physics curriculum[11].

Alas, life outside a lab does not maintain such well-behaved equilibrium with system prop-
erties in flux with exposure to a changing environment. Exchange of matter, energy, and/or infor-
mation leads to non-equilibrium behavior. Arising from inquiry and pursuit of understanding, the
field of non-equilibrium physics studies the time evolution of complex systems well outside thermal
equilibrium.

A master equation—which describes the dynamics of a system—can be written and some-
times solved provided there is a valid model for the system where interactions among the agents and
evolution between states are known. Solving these equations can be challenging, or not feasible at



times, yet solutions for simple models can provide insight into evolving patterns and fundamental
features of the non-equilibrium behaviors of these systems.[11] If interested in a deeper survey of the
kinetic approach to non-equilibrium systems, please refer to Kraphivsky, Redner and Ben-Naim’s
book A kinetic view of statistical physics” [7].

Many processes within fields such as physics, chemistry, and biology are stochastic(probabilistic).
In fact, it is uncommon to find a system that is completely deterministic. Birth-and-death pro-
cesses—also referred to as generation-recombination or one-step processes—are important for mod-
eling systems such as photon emission/absorption, chemical reactions and population dynamics[7].

Among the best known one-step processes are random walks illustrated in Figure 3.1. Typi-
cally they include an agent on a lattice that moves randomly to an allowed lattice space specified
by model constraints. This is a well studied problem yet can be applied to new puzzles and be
applied outside of traditional physics study.

Figure 3.1: Diagram of a random walk model. Agent A, can move either to the left or right,
denoted by the corresponding gold and blue arrows, and will randomly move in one direction. The
next iteration of the model A, will undergo another random movement along the lattice to one of
the adjacent spaces.

”Birth and death processes” can be studied analytically using a master equation. The master
equation is a balance (continuity) equation which expresses the conservation of configuration prob-
abilities. A configuration is a snapshot of the system. The master equation describes the evolution
of all possible configurations into other configurations, as well as their origins. In general, consider
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a system in state “r” at time “t”. P,(t) is the probability that this system is in this particular state
at time “¢”. The time dependence of P, is given by the master equation:

détt)r = ZPSWST - ZPTWTS (31)

The probability of state “r” increases with time due to all states that evolve into state “r”,
and it decreases with time because of transitions from state “r” to other states. In this equation, W
are the transition rates to and from state “r”. Knowing W allows us to calculate all probabilities
P, as a function of time.

The transition rates are customized depending on the type of physical system that is being
studied. Let us illustrate this equation with the simple example of a symmetric random walk on a
one-dimensional lattice. The walk is described by the probability P,(t) that the walk is at site n
at time t . The probabilities of moving left and right are the same and equal to 1. This probability
evolves as:

dP,
T::Pn+l+Pn—l_2Pn (3.2)

The first two terms on the right hand side account for the increase in probability P, because
of a hop from n — 1 to n or because of a hop from n + 1 to n, respectively. Similarly, the last term
accounts for the decrease of P,, because of hopping from n to n £ 1.

For the generic ”birth and death process” represented in Figure.l, the associated master
equation is:

dP,
dito = —XBo(t) + 1 Pi(t) (3.3)
dP,
W = )‘n—lpn—l(t) - ()‘n + Nn)Pn(t) + :u'n-i-lpn-i—l(t) (34)

Here )\ is the rate at which the system evolves from P, to P; and pq is the rate the system moves
from P; to P, and so forth for increasing amounts of P,. The rates A, and u, are called the
birth rates and death rates respectively (n is the population size), and are positive numbers. For
example, in a growing population, once the number n of individuals is zero, the growth process
stops . Thus the state n = 0 is a special state called an ”absorbing state”.

The master equation is not easily solvable, but for special cases there are analytical solutions.
The simplest case is a pure birth process or the ”Poisson process”. In this case, we have all A, = A,
and all p,, = 0. The solution for probability P, is the Poisson distribution:

()"
Py = (3.5)

This analytical result can be found using the generating function technique outlined in [7].

7



3.1 Definition of mRNA One-State Model
3.1.1 Deterministic One-State Model
a) a a a

0 1 TR n+1
B 2p (n+1)p

Figure 3.2: A sketch of a deterministic one-state model. Image adapted from Klindziuk’s “Stochas-
tic Modeling of DNA Transcription and Gene Expression” [6].

A very basic deterministic one-state model is described by the following equation, and de-
picted in Figure 3.2:

i pn (3.6)

where n is the number of mRNAs that are being created with a ”birth” rate o and lost with
a "death” rate §. This is a first-order approximation of a stochastic process, which is a preferred
model for capturing the biochemical processes of mRNA transcription[12]. The death rate would
symbolize two different methods of mRNA’s ”dying”. One would be mRNA degradation which is
a cellular process that results in the digestion of mRNAs; the second would be finalized mRNA’s
leaving the nucleus of a cell to be translated if measuring mRNA products in a eukaryotic cell.

This equation has a simple analytical solution dependent on the two rates and the initial
number of mRNAs, ng:

n(t) = %(1 - e_ﬁt) + nge 7 (3.7)

Examples of different cases are depicted in Figures 3.4 and 3.5. Figure 3.4 shows the outcome
of a large birthrate and minimal death rate. The function decreases exponentially, as it does in
Figure 3.5 where alpha and beta are equal, before reaching a steady state value. That steady state
value is discussed in further detail below.
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Figure 3.3: Total number of mRNAs , n, as a function of time (in arbitrary units) with corresponding
birth and death rates of « = 0.9 and § = 0.1. Initial number of mRNAs present in population is
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Figure 3.4: Total number of mRNAs , n, as a function of time (in arbitrary units) with corresponding
birth and death rates of @ = 0.5 and 8 = 0.5. Initial number of mRNAs present in population is
700.
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Figure 3.5: Total number of mRNAs , n, as a function of time (in arbitrary units) with corresponding
birth and death rates of « = 0.5 and § = 0.5. Initial number of mRNAs present in population is
10.

A common interest in statistical physics is studying the behavior of a system at specific lim-
iting cases. An example here would be the behavior of a system as t approaches infinity. The result
is shown below utilizing our master equation.

n(t)00 = %(1 — e_ﬁt) + nge Pt = % (3.8)

Here it is apparent that long-term behavior of transcription for the one state model is de-
pendent on the relationship between the birth and death rate. This is highlighted by Figure 3.5,
Figure 3.6, and equation 3.8. For these figures o and 8 are the same which leads to a steady state
production of one mRNA present as the time duration grows. In Figure 3.5 this is not as apparent
but taking a closer look, when the initial number of mRNA’s present is lower, Figure 3.6 displays
this overall trend showing the function decreases exponentially to one when reaching steady state.

3.1.2 Stochastic One-State Model

The stochastic one-state model for mRNA production is a special case of a general ”birth
and death” process presented above, with the associated master equation:

dP,
d,ito = —XF(t) + mPyi(t) (3.9)
dP,
T A—1 P (t) — (N + ) P (t) + g1 Prga (8) (3.10)
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For the one-state model, this master equation reduces to:

% = BP(t) (3.11)
o~ P () + B0+ VP (1) (3.12)

P, (t) represents the probability of having n mRNA transcripts at time ¢. This master equa-
tion is similar to a random walk problem. The steady-state probability distribution of the number
of produced mRNA molecules is given by the Poisson solution derived using the generating-function
technique:

P, = e B (3.13)

Knowing this probability distribution, we can now calculate the average number of mRNA
molecules:

<n>=Y nP,="% (3.14)

The average number of mRNA transcripts for the steady state matches the result for the
deterministic model for ¢ going to infinity. Figure 3.7 shows the multitude of steady state values
for differing rates of alpha and beta. Figure 3.7 illustrates that higher birth rates and lower death
rates result in the highest steady state values. A future improvement of this model would be to
shift away from the probabilistic rates utilized here, with « and 8 ranging from zero to one, to
biologically accurate rates that have units that are not arbitrary.
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Chapter 4

Two-State Models for mRNA
Transcription

4.1 Two- State Models in Physics

While the simple one state model is useful to consider very basic organism’s transcriptions
activity, the majority of transcription occurs at a increasingly more nuanced level. A two state
process—also termed a random telegraph model or a two-state Markov chain—can account for two
different action states of a system: one where the system is ON and one where it is OFF. An
interesting analogy for this type of model is the quantum state of a particle. Measurement of a
particle can change its quantum state and governing equations in the field can give probabilistic
predictions of what state a particle will be in upon observation.

4.2 Definition of mRNA Two-State Model

This model of transcription predicts overall mRNA production and transcription activity
when temporally their are periods of active and non-active work done by the DNA polymerase.
Homeostasis of temperature, energy storage, and protein composition within cells are all integral
to maintaining life; homeostasis is maintained by the regulation of genes and the ability of the
organism to respond to its environment appropriately.

This two-state model mirrors real gene regulation for genes that have promoters. Promoters
are sequences that come before the coding region of a gene; for transcription to begin there must
be the proper factors present at the site triggering initiation of transcription. In real life, this form
of turning genes "ON” or "OFF” is highly dependent on the interaction of the organism with the
surrounding environment.

The two-state model outlined below was introduced by J. Peccoud [?] in 1995, as a Markovian
birth and death model of gene product synthesis [?]. This study is considered a seminal work in
the field of gene expression modeling, as it generated a plethora of studies. This simple model
considers each gene in two states: Active (A) and Inactive. The switch between the states happens
based on the following rules:

13



o | — A with rate A

A — I with rate y

A — A+ N with rate v

o N — () with rate ¢

N is the mRNA being generated, and () is the zero of the chemical reaction, meaning that
the protein is transformed into something else that is not considered in the model.

We now define the following quantities:

e In any state (i,n) the first coordinate denotes the status of the gene, with i« = 0 when the
gene is inactive, and ¢ = 1 when the gene is active. The second coordinate n represents the
number of molecules (copies) of the mRNA N in the cell.

e [, is the probability that at time ¢ the gene is inactive and that n molecules of N are present.
e P, is the probability that at time ¢ the gene is active and that n molecules of N are present.

The associated master equation can be split for two cases, as presented in [13]:

For Vn > 0:
dPy,
=~ (A nd)Poy(t) + (n A 1)8Py i (1) + iPrn(8) (4.1)
dP,
d;’o = —(M + V)PL()(t) + 5P1,1(t) + )‘PO,O(t) (42)
For Vn > 1:
ap,,,
a —(p+v+nd) Py, (t) + (n+1)0P 1) + VP ;1 (t) + APy (1) (4.3)

To exemplify how this works, let’s pick first n = 0, which means no copies of mRNA are
produced. The system of equations then becomes:

dP,
P00 ARyolt) + 6P (8) + P (0 49

dP
% = —(u+v)Po(t) + 0P 1(t) + APy (t) (4.5)
(4.6)

We now pick n = 1, which means only one molecule (copy) of mRNA is produced. The
system of equations then becomes:

dp,

d;)’l — _(>\ —+ (5)P0’1(t) + 26P072(t) + ,upl,l(t) (47)
dP

O (a1 Puglt) + 0P (0) + APo(t) (48)
dP

= (kv )Py () 4+ 20Py5(t) + v Py o(t) + APy, (1) (49)
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4.2.1 No protein degradation, d = 0

In this case, the master equation simplifies to the following:

For n = 0:

For n =1:

dPO,l

dt
dPl,O

dt
dPl,l

dt

dt
dPl,O

dt

= =APyo(t) + pPr(t)

= —(u+v)Po(t) + APoo(t)

—APy1(t) + Py 1 (1)
—(u+v)Pyo(t) + APoo(t)

—(p+ V)P (t) + v P o(t) + APy 1 (1)

If we put them together into one system of differential equations:

dP070

dt
dPO,l

dt
dp

dt
dPl,l

dt

We can solve the system of equations using the Python ODE solver.

—APyo(t) + P o(t)
~ APy () + pPy ()
—(n+v)Pro(t) + AP 0(1)

—(pu+v)P1(t) + v P o(t) + APy 1 (1)

(4.13)
(4.14)

(4.15)

(4.16)
(4.17)
(4.18)

(4.19)

Two different sets of parameters are chosen for graphical representation. Figure 4.1 displays
probabilities dependent on rates that would result in low amounts of gene activation and mRNA
production. As expected, the probability of being is state F,, is maintained across time and has
values than any other state. Figure 4.2 on the other hand, visualizes the probabilities of different
states when the rate of gene activation and mRNA production is high. P;y and P;; are both
initially high in value and Py, exponentially declines. The peaks observed in Figure 4.2 represent
a higher probability of being in some state P with one mRNA molecule present, either Fy; or P;.
This peak phenomena can be attributed to the fact that birth rate v and activation rate A are high
whereas degradation rate p is low in Figure 4.2.
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Figure 4.1: Displays two-state probabilities, with corresponding birth and death rates of A = 0.1,
©w=0.9, and v =0.1.
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Figure 4.2: Displays two-state probabilities, with corresponding birth and death rates of A = 0.9,
@ =0.1, and v = 0.9.

4.2.2 Protein degradation, § > 0

In this case the previous system of equations for n = 0,1 becomes:
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dt
APy,

dt
dP o

dt
dPl,l

dt

—APyo(t) + 6Py 1(t) + pPro(t)
—(A+6)Py1(t) +20Pyo(t) + pPy(t)
—(p+v)Po(t) + 6P 1 () + APy (1)

—(u+v+0)Py1(t) +20P; 5(t) + v Py o(t) + APy (1)

(4.20)
(4.21)
(4.22)

(4.23)

If we assume & > 0, in order to be able to close the system of equations we will need to make
the assumption that the probabilities I 5 and P 5 are 0, meaning that there is no more than one
copy of mRNA in the system. So the system of equations simplifies to:

dPy

dt

dt

dt
dPl,l

dt

= —APyo(t) + 3Py (t) + uPyo(t)
= —~(A+0)Py(t) + pPpy(t)
= —(u+v)Po(t) + 0P 1(t) + APy (t)

= —(u+v+0)P () +vP(t) +APy(t)

(4.24)
(4.25)
(4.26)

(4.27)

Figure 4.3 and 4.4 demonstrate complicated behavior within the two-state model. Figure 4.3
has moderate values for all rates with lower mRNA production. It is interesting to note, that Py,
and Pjy maintain higher values than either of the probabilities of being in a state with one mRNA.
Even when further increasing the rate p and decreasing mRNA produced, v, probability P, and
P, show initial peaks and significant long term behavior. Further exploration of the complex
interaction between these rate based states could prove enlightening.
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Figure 4.3: Displays two-state probabilities, with corresponding birth and death rates of A = 0.5,
0=0.5, p=0.5, and v = 0.3.
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Figure 4.4: Displays two-state probabilities of switching between active and inactive as well as
total mRNA production. Corresponding birth and death rates are A = 0.5, § = 0.5, p = 0.9, and
v =0.1.

Figures 4.5 and 4.6 depict the results of the Monte Carlo simulations for the two-state model.
The code outlining the Monte Carlo simulation for the two-state model can be found in the Ap-
pendix Figure 8.2.. The figures display three rates: n,, whether or not the gene is active; ny,
whether or not the gene is inactive; and np the total number of proteins produced assuming every
one mRNA creates one protein. With this parallel, np could also represent the total number of
mRNA present at any given time.

Figure 4.5 displays a clear correlation between longer periods of n 4 valued at 1, the gene is
active, and corresponding mRNA production. The mutli-state model will explore this relationship

18



further and will connect to the probabilistic plots generated from the ODE solver method as well.
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Figure 4.5: Monte Carlo simulation results for one gene that switches back and forth from inactive
to active states and produces mRNA. Corresponding birth and death rates are A = 0.5, § = 0.5,
u=0.5, and v = 0.5.
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Figure 4.6: Monte Carlo simulation results for one gene that switches back and forth from inactive
to active states and produces mRNA. Corresponding birth and death rates of A = 0.5, 6 = 0.5,
w=20.9, and v = 0.1.

4.3 Definition of ”Poisson with Zero Spike” Model

The Poisson with Zero Spike model is a variation of the two state model by which the ” Off”
state now can only have zero mRNA molecules. The ”On” state can have as many mRNA molecules
as the one state model have have multiple configurations[6]. This model would be applicable to
situations where the probability of switching between the states is low. Further analysis could
compare low rates of A and p in the two state model to the Poisson with Zero Spike model presented
here. Below outlines the mean number of mRNAs produced where =y represents a transition rate
between states and x is equal to « over .

T
xre

<n>=-——— 4.28
(€"+7) (428)
This model could represent a constitutive gene, one continuously expressed. These genes are vital

for cell maintenance and function in all conditions and would have very low rates of switching to
the "Off” state.
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Chapter 5

Three-State Model for mRNA
trascription

5.1 Three- State Models in Physics

As we have seen in the previous chapters, two-state models proved to be extremely useful
in studying a variety of physical systems, from magnetism to biophysics or social systems. But
sometimes the two-state models do not capture the essential features of the physical systems, and
more general models are necessary.

For example, a generalization of the Ising model is the Potts model—fully named the g-state
Potts model. This model is beloved in the field of equilibrium statistical physics for modeling more
complex systems. It dates back to two mathematicians in the 1900s, Julius Ashkin and Edward
Teller and then expanded to what it is today by Renfrey B. Potts. The Potts model is primed to
examine different spin configurations of a larger lattice, where spins can have three orientations, or
states. This maintains the basis for any good statistical physics model, as the model allows for the
study of macroscopic behaviors from studying the microscopic internal elements][1].

The orientations of the spins along the lattice can represent, in a different context, a variety
of other features of the system that is being considered. For example, for a voter model, a spin
up can be a vote ”yes”, a spin down is a vote "no” and horizontal spin can be associated with a
neutral state or an ”abstention”. Drawing ties to this thesis, spins could be assigned ”on” or ”off”
to represent the activation of transcription within a gene, such as one "on” state and two ”off”
states, as presented in [2].

The Potts model can be used to study a wide variety of system behaviors. As mentioned
before one application could be to study epidemics and population health, but it can also be applied
as a model for tumor growth. Beaudin in [1] also outlines an example where the Potts model is
used to study human interaction tying the model to sociology studies. The cellular Potts model has
been extensively used to model interacting cell systems at the tissue-level. [4]. The Potts model
introduces our discussion of the three state model applied to transcription regulation and the ways
multi-state models can more precisely emulate the cellular mechanics observed.
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5.2 Definition of mRNA Three-State Model

Physicists often seek balance between making models accurate and making models solvable
when studying the world around them. The three-state model of mRNA production is no differ-
ent. While analysing the activation of initiation of a gene, as either on or off, the nuance of gene
regulation is simplified to a high degree. This model introduces another factor, another state,
at which transcription is turned OFF. Interplay between the three states then allows genes with
higher levels of environmental regulation to be modeled. Specifically, when introducing this third
option as one that turns OFF a gene, the model becomes best suited towards describing a repressor;
binding near the site of transcription, repressors are molecular structures that halt transcription.
These repressors can be introduced to the cellular environment from external signaling or result
from a down stream affect of mRNA production forming a negative feedback loop. Both cases will
result in transcription halting and mRNA production adjusting to environmental cues to maintain
homeostasis for proper cellular functioning.

Another variant of the three state model exists when adding an addition state that can
occur once the gene is active, or ON. This would describe the activity of an enhancer, which acts
in contrast to a repressor by motivating increased transcriptional activity. To remain viable in
fluctuating environments, cellular organisms must be able to adapt. As genes control proteins,
which then control nearly all cellular function, being able to modify transcription of genes is the
first step towards behavioral modification and environmental response.

We focus in this chapter on the three-state model presented in [2] and represented in the
following diagram:

State 2 (gene off 2)

Al Az

A=
>,

State 1 State 3
(gene off 1) (gene on)

Figure 5.1: Diagram of the 3-state model. From ”A Novel Approach for Calculating Exact Forms
of mRNA Distribution in Single-Cell Measurements” by Chen and Jaio [2].

As presented in [2], the gene can be in two "off” states and one ”"on” state. The transition
between the states happen with the probabilities A;, A, and . One the gene is in State 3, the ”on”
state, copies of mRNA are being generated, which eventually degrade into proteins.

The differential equations that govern this system are written for the probabilities that the
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gene resides in state i = 1,2,3 with m mRNA copies being produced at time ¢:

dP,,
L Py — (0 )Pyt (f) + (m o+ 6Py (1) 6.1)
dP,,
2t 2 = )\1Pm71 — (m5 + )\Q)Pm,Q(t) + (m + 1)5Pm+1,2(t) (52)
dP,,
773 = APpo— (mé+7+0)Py3(t) + (m+1)0P,113(t) + vPy, 1 3(t) (5.3)
(5.4)

For initial conditions, we assume FPy;(0) = 1, Fy2(0) = 0, Fy3(0) = 0 and all the other
probabilities P, ;(0) = 0.

5.3 Computer Simulations

We study this model two different ways, via Monte Carlo simulations and via solving numeri-
cally using the Python ODEINT module the system of differential equations for specific cases. The
code outlining the Monte Carlo simulation for the three-state model can be found in the Appendix
Figure 8.2.

For the ODE solver method, the system of equations presented above is customized for the
specific number of mRNA copies that is being considered. For example, for m = 1 copies, we will
need a system of 6 differential equations such as:

dP,
% = yPy3— (md+ A\)Py1(t) + 0P (1) (5.5)
dP,

dg,Q = MNPy — MFPya(t) + 0P o(t) (5.6)
dP073

p7al Ao Poo — (v +v)Py3(t) + 6P 5(t) (5.7)
dP,

d;l = P 3 —(0+ )P 4(t) (5.8)
dP; o
dit’ = MNP —(0+ X)) P o(t) (5.9)
dPl,S

- APy g — (6 +7+v)P5(t) +vP35(t) (5.10)

We assume that all the probabilities of having more than one mRNA copies are zero.

Figures 5.2 and 5.4 both display resulting gene activity when rates of activation are high but
mRNA production is low. Figure 5.2 demonstrates this with Py3 maintaining the highest proba-
bility for the majority of the time assessed. This is further illustrated in Figure 5.4 by the low
amounts of mRNA produced. When elevating the rates of mRNA production, Figure 5.3 shows the
increase probabilities of state Pj;, Py, and Pj3. Figure 5.5 demonstrates mRNA production for
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a case of more constant growth, with little degradation, and shows a correlation between mRNA
production plateaus and periods of increased inactivation.

Figure 5.4 displays staggered mRNA production with peaks appearing after longer durations
of njy and ny. Overall the number of mRNA produced is low as rates v, A\;, and § counteract the
higher valued rates of lambday and v. Figure 5.5 shows Monte Carlo simulation results of a steady
production of mRNA production. Figure 5.5 has the exact same rates as Figure 5.4 except that
here § = 0. The impact of removing mRNA degradation is strongly capture in the Monte Carlo
simulation results of Figure 5.5 with total mRNA product reaching levels ten times the amount
seen in Figure 5.4.

104

0.8 1

0.6

0.4 1

POL/POZ/PO3/PLL/P12/P13

02 1

0.0 1

00 25 5.0 75 woe 125 150 175 200
Time

Figure 5.2: Displays three-state probabilities, with corresponding birth and death rates of A1 = 0.9,
A2=090=0.1,v=0.1, and v =0.1.

10 1 — P01
POZ
—— P03

0.8 1
— P11
P12
0.6 1 — P13

04 1

POL/POZ/PO3/P1L/P12/P13

0.2 1

0.0 1

T T T
0.0 25 5.0 75 woe 125 150 175 200
Time

Figure 5.3: Displays three-state probabilities, with corresponding birth and death rates of A1 = 0.9,
A2=090=0.1,»=0.9, and v = 0.1.
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Figure 5.4: Monte Carlo simulation results for one gene that switches back and forth from inactive
to active states and produces mRNA. Has corresponding birth and death rates of A\1 = 0.2, A2 = 0.8
0=0.1,v=0.7,and v = 0.5.
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Figure 5.5: Monte Carlo simulation results for one gene that switches back and forth from inactive
to active states and produces mRNA. Has corresponding birth and death rates of A\1 = 0.2, A2 = 0.8
0=0.1, v=0.7, and v = 0.0.
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5.4 Gillespie Algorithm

In this paper we have focused on the increasing complexity of models that mirror microbiolog-
ical behavior. However, even multi-state models can have difficultly calculating projected behavior
as more individual elements or states are added. Models often have either unsolvable or contin-
uous deterministic solutions that fail to capture the discrete behavior by which many processes
operate. An example of this being increasing complexity in the ordinary differential equations that
provide a probabilistic projection of mRNA production and the bursting activity it can exhibit.
It is for these scenarios that the Gillespie Algorithm is most applicable[5]. These simulations rely
upon sampling the probability distribution given by a governing master equation to a satisfactory
point by which macroscopic behavior of the system can be captured. Computationally, this method
could be compared to many circuit driven projects that continuously toggle with the question of
what sampling frequency will display accurately the behavior of the electrical signals generated. As
aforementioned, it is also applicable for biological process which can become analytically unsolvable
on a continuous scale or generate discrete data that a continuous model is sought for[5].

26



Chapter 6

Conclusions

This thesis illustrates three increasing complex stocastic models of mRNA transcription. In
theory, the three-state, and mutli-state models would best describe the behavior of many genes
as transcription is often highly regulated. These models could be utilized to assess how different
rate changes or additional regulation activity could affect mRNA production. While the current
arbitrary cases can be further assessed for different rate values, a major improvement to the model
would be compiling biologically accurate birth, death, activation, and inactivation rates for genes
transcribed by eukaryotic cells. Modifying the models to move from arbitrary time and rate values
to biologically accurate units would follow. Next, the models could be examined for their accuracy
in predicting mRNA output and if verified or improved upon could then be utilized to predict what
would occur when cellular conditions are altered. Additional rate-limiting constrained, such as
availability of base pairs for mRNA production or accounting for mRNA processing in a different
matter, could also be incorporated to the multi-state model.
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Chapter 7

Appendix

random
numpy as np
t matplotlib.pyplot as plt
1mport time
start_time = time.time()

wEIER

dtype=int)
dtype=1int)

EHTo.al - nalel)
6]

nP[o]

ImbdaToA
muTol
nuToP
dltTod

IWantToSave

t

choiceI = random.random()
choiceA = random.random()
choiceP = random.random()

nINow = nI[t-1]
nANow = nA[t-1]
nPNow = nP[t-1]

1f (choiceIl < nINow/nTotal):
1f ( random.randem() < lmbdaToA ):
nINow = nINow - 1
nANow = nANow + 1

Figure 7.1: Set up of Monte Carlo Simulation code for two-state model.



random
numpy as np
t matplotlib.pyplot as
1mport time
start_time = time.time()

totalTimeSteps = 200

nA = np.zeros(totalTimeSteps, dtype=int)
nIl ros (totalTimeSte

ni2 (totalTimeStep

nP = .zeros (totalTimeSteps,

time = np.zeros(totalTimeSte

.6 :
(nTotal - nale]-nIl[e])

1
nP[a] = @

ImbdaIltoI2 =
ImbdaI2toA
muToIl

nuToP

dltToB

IWantTos

choiceIl random. random( )
choicel2 random. random() # ch
choiceA random. random( ) #
choiceP random. random()

nIlNow = nI1[t-1]
nIZNow = nIz2[t-1]

nAMAe — nAl+ 11

Figure 7.2: Set up of Monte Carlo Simulation code for three-state model.
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