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Abstract

This thesis introduces a novel machine learning framework for stock selection that only uses technical indi-

cators and chart patterns as inputs. In contrast to other papers, the machine learning model first employs

a recursive feature elimination algorithm to carefully select model inputs before a support vector machine

predicts the direction of the following trading day’s price movement. I then evaluate the accuracy of the

model’s predictions and compare the economic returns of the machine learning algorithm’s trading strategy

to a buy-and-hold approach and a simple MACD trading strategy on 48 stocks from 2010 through 2019.

The 48 stocks selected for the study represent three different types of stocks: there are 30 large-cap U.S.

stocks, 10 small-cap U.S. stocks, and 9 European stocks. I find that the machine learning model generated

a higher economic return than the buy-and-hold approach for 10 of the 48 stocks. All ten of these stocks

were large-cap stocks which suggests that the machine learning model performs best with large-cap stocks

over this time period. All in all, this paper supports the adaptive market hypothesis and provides evidence

that machine learning algorithms and technical analysis could not be used to consistently generate returns

in excess of the buy-and-hold in the low-volatility market conditions of the 2010s.
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Chapter 1

Introduction

I Neoclassical Finance

Theoretical asset pricing models in neoclassical finance rely on the assumption of efficient markets and ra-

tional investors. One of the main principles of neoclassical finance is Eugene Fama’s 1970 efficient market

hypothesis. [23]. Fama’s efficient market hypothesis (EMH) argues that competition between rational in-

vestors drives prices to their true intrinsic value that can be explained by traditional asset pricing models.

This implies that asset prices reflect all available information regarding a security’s value, making it impos-

sible for investors to make money by buying (selling) undervalued (overvalued) stocks. The most basic of

the asset pricing models is the Capital Asset Pricing Model (CAPM) which argues that returns compensate

investors for investment risk and the time value of their money. Fama and French built on the CAPM and

proposed their three-factor model in 1992. They argue that returns can be explained by investment risk,

market capitalization, and book-to-market ratio. In their paper, they find that small cap stocks with high

book-to-market ratios tended to outperform the market as a whole [25]. They conclude that more than

90% of asset returns could be explained by their three-factor model, which is considerably better than the

CAPM’s 70% explanatory power. If markets were perfectly efficient, one would expect 100% of asset returns

to be explained by asset pricing models, but Fama and French attribute this to not having the ideal subset

of factors. In 2015, Fama and French sought to improve on their three-factor model and proposed their

five-factor model which added profitability and investment factors [26]. While the model outperformed their

three-factor model, it failed to explain the low average returns of small companies that prioritize capital

investment. More recent literature has confirmed these results and found the five-factor model is unable to

consistently explain asset returns [32].

II Behavioral Finance

The failure of asset pricing models to explain equity returns brings into question the efficiency of markets

and the rationality of investors. In response, behavioral finance is predicated on the idea that investors can

be irrational at times and do not always process information correctly due to behavioral biases inherent

within human nature. A variety of behavioral biases like confirmation bias and regret avoidance can lead to

sub-optimal investment decisions. As a result, behaviorists reject Fama’s assertion that financial markets are

perfectly efficient. Instead, the literature is now evolving towards the adaptive market hypothesis (AMH).
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Andrew Lo, a behavioral economist at MIT, proposed the AMH in 2003 as a weaker form of the EMH; he

argues that markets are sometimes not efficient because investors can be irrational and overreact during

periods of high market volatility [47]. This theory implies that investors can generate returns in excess of the

market by identifying market inefficiencies caused by irrational investors. A powerful example of behavioral

finance is the dot-com bubble, which was caused by unrestrained speculation on internet stocks from 1995-

2002. This bubble is associated with the a 582% increase in the NASDAQ Composite Index from 1995-2000

and a subsequent 75% decrease from 2000-2002 that wiped out most of the aforementioned gains1. In short,

behavioral finance can be used to explain these massive fluctuations in security prices despite no changes in

the underlying assets.

III Technical Analysis

I Overview

There are two main investment approaches used to identify and profit from market inefficiencies: fundamen-

tal analysis and technical analysis.

Fundamental analysis (FA) seeks to intrinsically value a company by analyzing financial statements and

economic factors. Balance sheets, 10-Ks, and macroeconomic indicators are the primary tools of the fun-

damental analyst. FA also accounts for microeconomic factors that can impact a firm’s value like the

effectiveness of the board of directors and specific industry conditions. Through the use of these tools, an

investor can try to forecast a company’s cash flows and determine if the company is undervalued or over-

valued by the market. It is important to note that FA could still be effective if markets were perfectly

efficient because FA attempts to forecast future financial events that are obviously not incorporated into

a security’s market value. Perhaps the most well-known practitioner of FA is Warren Buffet, or the ’Or-

acle of Omaha’, who has amassed a personal fortune in excess of $102.5 billion with this investment approach.

In contrast with FA, technical analysis (TA) does not attempt to estimate the intrinsic value of a com-

pany because it assumes that the company fundamentals are already priced into the stock. Instead, TA is

grounded in behavioral finance and focuses on statistical trends in a security’s price and volume to under-

stand the underlying market psychology. This implies that TA operates under the assumption that past

price trends can provide valuable information about the future.

TA is best-suited for investors with a shorter-term investment horizon because the factors examined by

fundamental analysts are only updated quarterly with the release of financial statements. Conversely, TA

relies on price data that is recorded down to the millisecond. Additionally, TA is favored by retail traders2

because price information is widely available online. On the other hand, it is difficult for retail traders to

gain a competitive edge with FA due to the amount of holistic data required to accurately value a com-

pany. That being said, the largest investment banks and hedge funds around the world invest heavily in

technical analysis and hire specialized technical analysts to provide input on investment decisions. A survey

conducted among 692 fund managers across five countries found that 86% of fund managers rely on TA and

1On a side note, technical analysis has been shown to be profitable during financial crises [6]. This is not surprising because
technical analysis uses price information as a barometer for market psychology, which dominates during asset bubbles.

2A retail investor is a non-professional investor who buys and sells securities or funds for their personal trading account [36].
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26% consider TA to be the most important criterion in the investment process [51].

There are two subfields of technical analysis- technical indicators and chart pattern analysis- from which

I would like to draw an important distinction. Both seek to exploit investor psychology, although their

processes are considerably different. First, technical indicators represent a strict, empirical approach to

technical analysis and are rooted in statistical formulas. These formulas provide black-and-white trading

signals; an indicator will either highlight a profitable trading opportunity or not. Technical indicators include

moving averages, momentum measures, and stochastic oscillators. On the other hand, chart pattern analysis

examines patterns on price and volume charts to generate trading signals. Chart pattern analysis tends to

be more of an art than a science as there exists a substantial amount of gray area regarding investment

decisions. Please keep this distinction in mind as you progress through the remainder of the paper.

II History

Technical analysis dates back to 18th century, Edo-period Japan, where traders applied technical analysis

to the Osaka Dojima Commodity Exchange’s rice futures market. A speculator by the name of Munehisa

Homma wrote the earliest descriptions of chart patterns in his book The Fountain of Gold- the Three Monkey

Record of Money. Homma was able to amass a spectacular fortune through the use of candlestick charts, a

success that he attributed to the trends of human emotions exhibited in market behavior.

It was not until 1920 that TA rose to prominence in the United States as financial journalist Charles Dow

developed his ”Dow Theory.” Dow and his followers contend that market trends have three phases driven

by investor psychology. First, the accumulation phase, or phase one, begins when investors with privileged

information actively buy (sell) stock against the general opinion of the market. Note that privileged infor-

mation is not necessarily insider trading; Dow Theory assumes that the flow of information is imperfect.

The stock price does not change during this period because the ”in-the-know” investors are in the minority

compared to the uninformed market. As the pertinent information flows through the economy, the market

quickly corrects the price of the stock in phase two. At this point, the trend-followers participate until

rampant speculation and a gross overcorrection occurs. Lastly, the well-informed investors unload their posi-

tions and collect their profits in phase three. In order to differentiate the different phases, Dow looked at the

moving averages of historical prices, a primitive form of TA. Dow Theory is important because it formally

recognizes that investor psychology can significantly impact the market and employs technical analysis to

identify profitable opportunities.

IV Relevant Technical Indicators and Chart Patterns

Before reviewing the existing literature, I would like to offer a brief overview of the relevant technical

indicators (Figure 1.1, Figure 1.2) and chart patterns (Figure 1.3, Figure 1.4).
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Figure 1.1: Overview of Technical Indicators [1].
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Figure 1.2: Overview of Technical Indicators (cont.) [1].
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Figure 1.3: Overview of Chart Patterns [42].
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Figure 1.4: Overview of Chart Patterns (cont.) [42].
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Chapter 2

Literature Review

I Overview

The literature review is organized as follows; In sections I and II, I review the existing literature on the

profitability and effectiveness of technical indicators and chart pattern analysis. Then, I examine the usage

of machine learning for stock selection and the profitability of machine learning algorithms in finance in

section III. In section IV, I introduce the dilemma of feature selection and review the current literature.

Lastly, I discuss my contribution to the field in section V.

II Profitability of Technical Indicators

I Early Studies (1962-1992)

Early studies from 1966-1992 investigate the profitability of technical indicators like filters, moving averages,

and relative strength indices. Fama and Blume (1962) analyze the profitability of a simple filter rule on the

daily closing prices of thirty stocks in the Dow Jones Industrial Average (DJIA) from 1956-1962 [24]. For

reference, a filter rule, as introduced by Alexander (1961), is a technical indicator that generates trading

signals based on percentage changes from prior prices [3]. Filters are considered a momentum indicator

because they assume that rising prices should continue to rise and that falling prices should continue to fall.

Fama and Blume find that only three small filters (0.5%, 1.0%, and 1.5%) generated returns in excess to a

buy-and-hold strategy on the DJIA. They conclude that these filters would not be profitable once transaction

costs and the idle times of funds invested were taken into account.

Similarly, Van Horne and Parker (1967) examine the profitability of a 200-day moving-average decision

rule on a collection of thirty random stocks from the New York Stock Exchange (NYSE) over 1960-1966.

They find that only five of the thirty stocks produced excess returns using the trading rule in comparison to

the buy-and-hold strategy. On the whole, the buy-and-hold strategy greatly outperforms the moving-average

decision rule even before transaction costs. Moreover, James and Bennington (1970) conduct a similar ex-

periment using a relative strength trading rule with every stock on the NYSE from 1926-1966. They find

that once transaction costs and risk is accounted for, the buy-and-hold portfolios outperform the trading

rule on average.
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While these previous studies align with the efficient market hypothesis, other studies at the time found

evidence to support the profitability of trading rules. Leuthold (1972) applies 6 filter rules ranging from

1% to 10% to cattle futures traded on the Chicago Mercantile Exchange from 1964-1970 [45]. He finds that

all of the filters generated positive returns and four of the six filters led to a profit after transaction costs

were factored in. Moreover, Sweeney (1986) applies filter rules ranging from 0.5% to 10% to the US Dollar

to German Mark foreign exchange market from 1975 to 1980 [68]. Sweeney finds statistically-significant

risk-adjusted returns across the different filters and concludes that filters can be profitable.

The inconclusive findings of early studies can be attributed to several inconsistencies with the testing proce-

dures. First, there exists an ex-post rule selection/ data snooping problem because studies only consider a

couple trading systems over a relatively short period of time. This is in part due to the lack of computational

power available at the time, but it also could be attributed to researchers cherry-picking results to support

a certain theory. Secondly, these studies do not calculate the statistical significance of the returns. Thus,

the returns could be the product of a sample that is not representative of the true population. Lastly, the

majority of studies during the period fail to adjust for risk. Since investors are inherently risk-averse, this is

a large omission that could impact the conclusions of certain studies.

II Modern Studies (1992-Present)

The next grouping of studies are those that apply a bootstrapping procedure to evaluate the statistical

significance of trading profits. This model-based bootstrap methodology was pioneered by Brock (1992) in

one of the most influential works regarding the profitability of technical analysis [12].

Brock, et al. (1992) introduce their bootstrapping methodology to evaluate statistical significance because

conventional t-tests are not well-suited to analyze financial returns [12]. T-tests assume that data is normally

distributed and homoscedastic whereas stock returns have been shown to have non-normal distributions that

are leptokurtic, autocorrelated, conditionally heteroskedastic, and time varying. The model-based bootstrap

procedure compares the returns conditional on buy (sell) signals from the actual market with a simulated

return series generated using one of four null models: a random walk with drift, an auto regressive process of

order one (AR (1)), a generalized autoregressive conditional heteroskedasticity in-mean model (GARCH-M)

and an exponential GARCH (EGARCH). Brock, et al. take 500 bootstrapped samples of prices for each null

model and then apply the technical trading rules to each of the 500 samples. The trading returns generated

by the four null models can be estimated from the 500 samples and then compared to the returns from the

real market. Brock et al. use this methodology to test two of the simplest and most popular technical trading

systems: a moving average oscillator and a trading range break-out. In order to avoid data snooping, Brock,

et al. use the entire Dow Jones Industrial Average (DJIA) from 1897-1986. They find that the buy (sell)

signals generate positive (negative) returns across all of the technical rules and outperform the buy-and-hold

strategy. While the results are statistically significant, Brock et al. do not report the transaction costs nor

comment on the economic significance of their results. They conclude that ”it is quite possible that technical

rules pick up some of the hidden patterns [of stock price data].” This study is influential because the findings

are consistent across all technical rules and provide strong support for the effectiveness of technical analysis.

Given the profound impact of Brock et al. on the literature, many studies sought to replicate their re-
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sults with different data. Bessembinder and Chan (1995) use the bootstrap methodology with over 60

technical indicators on emerging Asian markets in Hong Kong, Japan, Malaysia, Taiwan, and Thailand from

1972-1989 [10]. They confirm that technical indicators can be economically profitable on these markets even

after transaction costs are accounted for. Similarly, Chen and Metghalchi (2011) find that moving averages,

relative strength indices, and moving average convergence divergence trading rules were profitable on the

Danish stock market’s OMXC20 index from 1993-2010 [15]. Anghel (2015) used the bootstrap methodology

to examine the efficiency in stock markets of 75 countries around the world [4]. He applies the moving

average convergence divergence (MACD) technical indicator to data from 2001 to 2012 and finds that the

MACD indicator generated abnormal cost and risk adjusted returns on about half of the markets around

the world. I contend that this presents a strong case for the effectiveness of technical indicators because

the MACD indicator is one of the most popular indicators and is used so often that it might be priced into

the stock’s value. Lastly, Kwon and Kish (2002) extend Brock et al.’s model-based bootstrap procedure

to the New York Stock Exchange (NYSE) and NASDAQ while using the same technical trading rules [43].

They also introduce a moving average indicator for volume and use slightly different null models 1. They

conclude that technical trading strategies can capture additional profit opportunities when compared to a

buy-and-hold strategy.

Other studies use the bootstrap methodology of Brock, et al. with slight modifications to address the

criticisms of the original paper. Critics claimed that Brock, et al. hand-picked technical trading rules that

succeeded over their testing period. To circumvent this, Neely et al. (1997) use a genetic programming

approach to find the optimal rules in an out-of-sample period before applying these rules to the training

period [54]. They find that their out-of-sample, optimized trading rules produced returns in excess of the

buy-and-hold strategy on foreign exchange markets from 1975-1980. These profits remain significant after

accounting for the risk premium and transaction costs. Moreover, Bessembinder and Chan (1998) did not

believe that the findings of Brock, et al. were reflective of the actual stock market because the price data

was not adjusted for dividends [11]. They believe that the dividend-adjusted data will reduce the returns

on short sales and, thus, reduce the returns on trading strategies. Thus, they opt to use the bootstrap

methodology on dividend-adjusted DJIA data from 1926-1990. Using the same trading rules, Bessembinder

and Chan conclude that technical indicators have predictive powers but are not necessarily profitable after

break-even transaction costs. This is an important distinction because this does not mean that there exists

a market inefficiency. In short, the consensus of the literature suggests that technical indicators can pro-

duce statistically significant returns, although there does exist some debate. This can be attributed to the

complexity of transaction costs, as brokerage fees and time-specific premiums must be taken into account.

Many of the previous studies on both sides of the spectrum explicitly acknowledge the difficulty of estimating

transaction costs so they used imperfect approximations to draw conclusions. Also, the debate surrounding

the profitability of technical indicators aligns with the AMH because the AMH contends that sometimes

markets are efficient, thus rendering TA powerless. For a more comprehensive review of the literature see

the following literature reviews: [53], [57].

1They use an ARIMA model in place of the GARCH model.
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III Profitability of Chart Pattern Analysis

While technical indicators received the majority of academic focus, Osler and Chang (1995) were among the

first researchers to examine the profitability of chart patterns [56]. In their seminal 1995 paper, they focus

on the (inverse) head-and-shoulders, a chart pattern considered to be ”one of the most common and, by all

odds, the most reliable of the major reversal patterns” [22]. Osler and Chang use an objective, automated al-

gorithm to identify the (inverse) head-and-shoulder pattern on the charts of daily exchange rates of six major

currencies against the U.S. dollar during the floating rate period from March 1973 to June 1994. In order to

avoid ex-post selection bias, six of the largest currencies were used including the German mark, Chinese yen,

Canadian dollar, Swiss franc, French franc, and British pound. Once the chart pattern is identified, profits

were calculated based on a market participant acting upon this information. Using BLL’s bootstrapping

methodology and a random walk null model, they find that the head-and-shoulders chart pattern produced

statistically significant profits for the German mark and Chinese yen, but not for the other four currencies.

However, they note that if an investor had speculated on all six currencies, the profits would have been both

economically and statistically significant. They conclude that the (inverse) head-and-shoulders chart pattern

has predictive power and could indicate the presence of market inefficiencies in the foreign exchange market.

With the exception of Osler and Chang’s algorithmic approach to identifying head-and-shoulders chart

patterns, computer algorithms were unable to extract more complex chart patterns from price charts in a

consistent manner. Up until Lo, Mamaysky, and Wang (2000), the presence of white noise and random stock

market fluctuations, while quickly discarded by the human eye, flummoxed computer software. Lo, et al.

bridge this gap with their systematic and replicable approach to chart pattern analysis [48]. First, they em-

ploy a nonparametric kernel regression, a type of smoothing estimator, to average out the white noise. Now

that the random fluctuations in price have been reduced, Lo, et al. define ten of the most popular technical

patterns algebraically as a sequence of extrema. These ten patterns include (inverse) head-and-shoulders,

broadening tops (bottoms), triangle tops (bottoms), rectangle tops (bottoms), and double tops (bottoms).2

For example, consider their definition of head-and-shoulders in comparison to the visual on page 11.

HS =



E1 is a local maximum

E3 > E1, E3 > E5

E1, E5 are within 1.5% of their average

E2, E4 are within 1.5% of their average

In order to confirm the accuracy of their identification algorithm, they analyze one security, CTX, from 1992

to 1996 and compare the patterns identified by their algorithm with those found by professional traders.

While not empirical evidence, the algorithm performed in a consistent manner with the professional traders

and even picked up some patterns missed by the human eye. Then, Lo et al. test the profitability of their

algorithm using the daily returns of securities on the NYSE and NASDAQ stocks from 1962 to 1996. They

randomly select 10 stocks from each of the five market capitalization quintiles and use a Kolmogorov-Smirnov

test to analyze the significance of their profits. They find that three of the ten patterns were significant on

the NYSE while all of the ten patterns were significant on the NASDAQ. They conclude that chart patterns

can provide valuable information and that ”technical analysis can add value to the investment process.”

The economic and statistical significance of chart pattern analysis is supported by numerous other studies

2Given the success of this study, nearly all chart patterns have been expressed as a series of extrema. For 370 examples, see
Thomas Bulkowski’s Encyclopedia of Chart Patterns [13].
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including Tsinaslanidis et al. on 560 NYSE stocks [69] and Masteika et al. on automated electronic futures

exchanges [50].

Chart pattern analysis is currently experiencing a renaissance due to two recent technological innovations.

First, the integration of complex event processing (CEP) into quantitative finance has enabled chart pattern

analysis to be automated and conducted in real time. CEP is a type of software that can process large vol-

umes of incoming data, conduct real time analysis, and then implement a response almost instantaneously

[2]. The application of CEP to chart pattern analysis is clear: it is a tool that can quickly identify local

extrema, classify chart patterns, and then execute trades in real time. Bandera et al. (2015) implement the

chart pattern formulas described by Lo et al. into a CEP framework and test the accuracy and speed of the

model on the closing price of the Barric Gold Corporation (NYSE) from 1995-2014. They find that their

open-source CEP toolkit identifies patterns with 96% accuracy and a minimal 20 data point delay [9]. These

findings are particularly impressive given the stock market volatility captured from 1995 to 2014 (dot-com

bubble, 2007-2009 Great Recession) and a 20 data point delay is only a few milliseconds when working

with high frequency data. Secondly, hedge funds have recently embraced CEP and similar AI technology

in an attempt to expedite the execution of their trades [63]. In the world of high frequency trading, a few

second delay could cost millions of dollars. In short, the emergence of CEP technology and the rush to AI in

the hedge fund industry have revolutionized chart pattern analysis and made it into a legitimate real-time

investment tool. While CEP technology is beyond the scope of this study, it is important to note that chart

pattern analysis can be fully automated and traded real time like technical indicators.

IV Machine Learning in Finance

I Introduction

In a 1970 interview, Gordon Moore, the founder of the multinational technology firm Intel, predicted that

the processing power of computers would double every two years. Moore’s prediction, now formalized under

Moore’s law, has proven true; modern-day mobile phones have more computational power than the entire

Department of Defense did in the 1980s [44]. One of the most important tools to emerge from this tech-

nological revolution is the field of machine learning. A subset of artificial intelligence, machine learning

algorithms build mathematical models and make decisions without being explicitly programmed to do so.

Machine learning is omnipresent in our daily lives; for example, consider web search engines, spam filters for

email, and friend recommendations on social media.

Machine learning algorithms (MLAs) have been used extensively in quantitative finance because they are

well-suited for risk-return optimization problems with lots of data. Practitioners cite two important proper-

ties of MLAs to explain their dominance in the industry. First, they can detect complex, nonlinear patterns

and hidden relationships within data that were previously undetected by regression analysis. Additionally,

MLAs can perform effectively in the presence of collinear variables. This property is particularly useful for

technical analysis because technical indicators tend to move together with a substantial amount of corre-

lation. Whereas regression analysis cannot predict the value of the dependent variable in the presence of

collinearity, MLAs can use this correlation to make better-informed estimates.
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In the early 1990s, artificial neural networks and genetic algorithms were quite popular on Wall Street

due to their (relatively) low computational requirements. However, the dot-com bubble in the early 2000s

and the 2007-2008 financial crisis aroused a feeling of distrust for machine learning in finance. These crises

made practitioners question the effectiveness and risk of these tools even though they were not at fault for

the economic turmoil. Figure 2.1 shows some interesting (anecdotal) evidence from Google Trends about

the negative relationship between search popularity for ”economic crisis” and ”artificial neural networks”

[33]. As one can see, search queries for ”artificial neural network” declined sharply from 2006-2010 before

regaining popularity. After the 2007 ”quant quake”3 and the 2008 Great Recession, machine learning made

Figure 2.1: Google Trends for ”Economic Crisis” and ”Artificial Neural Network” from 2004 to 2020

a gradual come back. Given the technological and computational advancements during the early 2000s,

MLAs were now much more powerful and easier to implement than before. As a result, MLAs have become

ubiquitous on Wall Street and have found numerous applications ranging from portfolio optimization to

stock selection. For the purpose of this study, I focus on two of the main applications of MLAs in finance:

stock selection and feature engineering.

II Machine Learning for Stock Selection

In the case of machine learning for stock selection, analysts input a variety of factors that might be correlated

with future returns into a model and let the MLAs discover how the information can be assembled to forecast

returns (or any specified metric). Model inputs can include macroeconomic factors, company fundamentals,

technical indicators, chart patterns, or a mixture of the above. Essentially, MLAs combine many weak

sources of information with white noise to produce a stronger, aggregate investment signal. MLAs do this

by uncovering complex patterns and hidden relationships between factors that might have been previously

missed by outdated linear regressions. Once the model has been trained on a subset of the data called the

training set, the model is used to forecast returns on the testing set. In order to assess the accuracy of the

model, the forecasted returns on the testing set are compared to the actual returns during that period. If

the performance of the model is satisfactory, the MLA can then be employed to actively forecast future

returns and generate trading signals. In the context of stock selection and prediction, it is important to

3A one week period in August 2007 when quantitative strategies suffered unexplainable, substantial losses before making a
full recovery [7].
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note that machine learning algorithms tend to perform better with classification than regression because the

signal-to-noise ratio is relatively low for stock returns [61]. This means that MLAs are mostly used to predict

categories like outperformer versus underperformer (relative to the market) instead of exact stock prices.

In the following paragraphs, I review the literature on machine learning for stock selection. I introduce the

most popular machine learning algorithms and evaluate their benefits and drawbacks through the use of

academic papers. Then, I conclude by focusing on support vector machines (SVM) because this algorithm

is most relevant to the rest of this study.

ARIMA Model

One of the simplest machine learning algorithms for time series forecasting is the AutoRegressive Integrated

Moving Average (ARIMA) model. ARIMA models integrate time series lags and lagged forecast errors into

a framework to predict future values. Under the assumption of stationary data and constant time-series

autocorrelation over time, these models seek to separate the signal from the noise. Adebiyi and Adewumi

(2014) apply an ARIMA model to stock data from the NYSE and Nigeria Stock Exchange from 1996-2010 [5].

They find that their model is an effective predictor of stock prices for a maximum of thirty days in advance.

However, the error of the model increases substantially in this 30-day window. This is one of the well-known

limitations of ARIMA models for stock forecasting; they are only effective for short-term prediction. In the

case of N-step ahead forecasting, the performance of the model quickly deteriorates. Additionally, the model

is predicated on constant variance over time which is an unreasonable assumption given the stock market’s

volatility [8]. Given these severe limitations, ARIMA models are rarely used in practice. Instead, the most

popular MLAs include Random Forests (RF), Recurrent Neural Networks (RNN), Long Short-Term Memory

models (LSTM), and Support Vector Machines (SVM). A comprehensive review of these MLAs is beyond

the scope of this paper so I offer the following literature reviews for more information: [62], [70], [55].

Random Forests

Figure 2.2: Random forests consist of uncorrelated de-

cision trees and use a majority voting technique to rec-

oncile the different outcomes [20].

Random forests (RF) are widely used for classifica-

tion tasks and consist of an ensemble of independent,

uncorrelated decision trees. A decision tree is a non-

parametric map that employs simple decision rules

generated from data features to predict the value

of a target variable. Random forests consist of an

aggregation of uncorrelated decision trees because

”a large number of relatively uncorrelated models

operating as a committee will outperform any of

the individual constituent models” [40]. In the con-

text of stock selection, random forest models can be

used to classify whether a stock price will increase

or decrease by using various inputs like technical in-

dicators and chart patterns. The model generates

many decision trees that examine different combi-

nations of the inputs and decision rules to forecast

the movement of the stock (Figure 2.2). Then, the

RF model adopts the consensus opinion of the deci-

16



sion trees as its forecast. The aggregation of many different models represents the main strength of RFs and

one of its biggest drawbacks; RFs are computationally intensive and require a lot of time to train. More-

over, the performance of the RF model is highly sensitive to model parameters which lends itself to overfitting.

Patel, et al. (2014) implements four MLAs- an artificial neural network, support vector machine, ran-

dom forest, and naive Bayes- to predict the stock price movement of two stocks- Reliance Industries and

Infosys Limited- from 2003 to 2012 [58]. They calculate ten technical indicators including the RSI, MACD,

and William’s R%. Each of the 200 underlying decision trees are trained using three technical indicators to

classify stock direction movement. They conclude that the RF model performs significantly better in terms

of accuracy and F-measure than the other three MLAs for both of the stocks. However, I am skeptical of

this conclusion for two reasons. First, the authors offer a small sample size of two stocks and do not justify

why they choose the stocks they did. Thus, there could be something within the properties of these two

stocks that lend themselves better to RF models. Secondly, the four MLAs are all sensitive to parameter

inputs to some extent but the authors seem to select the parameters at will without an optimization process.

Thus, the RF model might have received the best inputs resulting in the best performance. Nonetheless,

this paper showcases that RFs can be used to generate significant economic profit using technical indicators.

Recurrent Neural Networks

In order to understand the strengths of recurrent neural networks (RNN), it is helpful to first consider

artificial neural networks (ANN). ANNs, also known as feed-forward neural networks, have been used in

quantitative finance since the 1980’s. The universal approximation theorem states that ANNs are capable of

approximating any continuous and bounded function by assigning weights that map any input to the output

[65]. This property makes ANNs incredibly versatile and able to solve a wide variety of problems. However,

there are two main limitations for ANNs in stock selection. First, the ANN backpropagation algorithm

renders the ANN incapable of capturing sequential information as the weights and biases are adjusted in

each cycle. This is troublesome because the ANN cannot account for seasonal trends that are quite influ-

ential in the stock market4. Secondly, while ANNs can capture complex relationships with a wide variety

of interesting functions, they are susceptible to vanishing and exploding gradients [73]. For context, ANNs

utilize backpropagation to assign weights to inputs, a two-step process that consists of propagating the input

factors to the output layer through hidden layers and activation functions and then propagating backwards

from the output layer to the input layer while computing error gradients. Once the error gradients for the

weights and biases are calculated, the ANN updates the parameter values and takes a gradient descent step

towards the minimum. If the gradients approach zero without converging, this is known as a vanishing

gradient. Conversely, if the gradients keep getting larger and diverge, the gradient is said to be exploding.

Vanishing and exploding gradients are problematic because they create an unstable neural network with

misleading weights and biases. Thus, these networks cannot be used for classification, especially when large

amounts of money are at stake.

4For example, stocks tend to rise before seasonal occasions like Thanksgiving, Christmas, and the Fourth of July [64].
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Figure 2.3: The looping constraint that enables RNN

to process information sequentially and share param-

eters [72].

RNNs improve upon the ANN backpropagation

algorithm by using a looping constraint in the hid-

den layer (Figure 2.3). As a result, RNNs con-

sider not only their original inputs but also what

they have perceived in previous iterations. This al-

lows RNNs to account for sequential data such as

seasonal patterns between trading days, a power-

ful property for prediction in financial time series.

They are also more computationally efficient than

ANNs because RNNs employ a parameter sharing

property that results in fewer parameters to train

in each iteration. In turn, they are well-suited for

high frequency trading applications with their re-

duced training time. However, RNNs with a large

number of time series factors also suffer from van-

ishing and exploding gradients, a common issue across all the variations of neural networks. Despite this

drawback, recurrent neural networks are widely used for stock prediction and selection problems.

Chen, et al. (2018) incorporate sentiment analysis and technical indicators into a recurrent neural net-

work framework to forecast the Shanghai-Shenzhen 300 stock index from 2015-2017 [18]. They analyze more

than 800,000 posts from one hundred official accounts on Sina Weibo, China’s largest online social network,

as a proxy for the public mood. The technical indicators in the model include open/close/high/low price,

volume, and daily percentage price and volume changes. Their RNN-boost model predicts the direction of

the following day’s price movement and achieves an impressive 70.17% prediction accuracy, outperforming

the baseline ARIMA models. Chen et al. concludes that RNNs can generate economically significant profits

even without a feature engineering algorithm.

Long Short-Term Memory Networks

Figure 2.4: LSTM units are more complex than RNN

cells and include gates that carefully regulate the train-

ing process [21].

Long short-term memory (LSTM) networks are a

type of RNN that solves the vanishing and exploding

gradient problem [37]. LSTM units5 contain mech-

anisms called gates that are responsible for regu-

lating the flow of information during model training

(Figure 2.4). These gates are composed of different

neural networks that carefully regulate the informa-

tion that is used to update weights and biases. Con-

sequently, the LSTM backpropagation stage is quite

controlled through input and forget gates that pre-

vent gradient divergence or convergence to zero. In

addition to regulating the gradient descent, LSTM

units enable better preservation of long-range de-

pendencies through the use of memory cells. Mem-

5Comparable to cells in a classical neural network.
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ory cells, located within LSTM units, can store information for long periods of time and reveal long-term

relationships between factors. Thus, LSTM architecture represents a substantial improvement of the RNN

without the gradient issues and longer-term memory. Even so, LSTM models can take a long time to train

because the process is controlled with so many disjoint gates. Also, they are prone to overfitting given their

increased memory storage. There does not exist a clear solution to either of these issues although current

research suggests that dropout algorithms could prevent overfitting.

Fischer and Krauss (2018) deploy LSTM networks on the S&P 500 from 1992-2015 to predict out-of-sample

directional price movements [31]. They find that the LSTM model produced economically significant profits

(post-transaction costs) with an excellent Sharpe ratio of 5.8, indicating high returns with relatively low risk.

Additionally, the LSTM model outperforms a random forest, deep neural network, and logistic regression

over the same time period. Similarly, Siami-Namini, et al. compare the performance of a LSTM network and

ARIMA model on monthly data from 1985-2018 on a variety of indices including the NASDAQ composite in-

dex, DJIA, and S&P 500 commodity price index [66]. The LSTM model acheived a lower Root-Mean-Square

error (RMSE) than the ARIMA model on all ten indices considered. In fact, the LSTM model reduced the

RMSE by an average of 85% which showcases the architectural superiority of the LSTM network over the

ARIMA.

Support Vector Machines

Figure 2.5: 3-dimensional space with red and blue

points representing two different classes of objects

within the data. The SVM models fits the blue sepa-

ration hyperplane to classify the objects [59].

As demonstrated, machine learning algorithms have

been used extensively within quantitative finance to

evaluate stocks. While each MLA has its benefits

and drawbacks, recent literature endorses support

vector machines as the best approach to stock se-

lection. Support vector machine (SVM) is a ma-

chine learning algorithm that approaches classifica-

tion problems from a geometric perspective. Each

data item is plotted in an n-dimensional space

(where n represents the number of inputs) with the

value of each feature corresponding to a particular

coordinate set. Then, the SVM fits a separation

hyperplane to correctly classify the data within a

specified margin using a decision function (Figure

2.5). SVMs are powerful because they are effec-

tive in high dimensional spaces with large quantities

of inputs and memory efficient like LSTM models.

This is particularly relevant for stock selection be-

cause there is an endless supply of inputs that can

be used to explain asset prices. On the other hand, SVM performance can atrophy when the data set has a

lot of noise. In order to remedy this issue, current research suggests the use of a feature selection algorithm

to eliminate noisy input factors. A more comprehensive discussion of this issue is located in the Methodology

section.
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Fan and Palaniswami (2001) use a classification support vector machine in an attempt to generate returns in

excess of the market [27]. They input fundamental accounting information and technical indicators of stocks

trading on the Australian Stock Exchange from 1992-1995. The stocks predicted to increase by the SVM

are assembled into an equally-weighted portfolio and assessed against a market benchmark from 1995-1999.

The market benchmark returned 71.36% while the SVM portfolio accumulated an impressive 208% return

over the same period. These strong results have been replicated by a number of other studies in different

markets and time periods; Chicago Mercantile Exchange from 1988-1999 [14], NASDAQ and Shenzhen Stock

Exchange from 2008-2010 [74], and Indian National Stock Exchange from 2009-2018 [52]. In short, SVM has

been shown to be a very effective tool for stock selection.

III Machine Learning for Feature Selection

The second relevant application of machine learning is to the feature selection problem. With the recent

explosion in our data production capabilities6, analysts have access to more data than ever. As a result,

there are millions of possible model inputs, a situation dubbed ”the zoo of factors” by esteemed economist

John Cochrane (2011) [19]. Furthermore, Harvey et al. (2016) found that more than three hundred factors

have been proposed to explain asset returns in the last two decades [35]. Feature engineering seeks to de-

termine which of these factors are most relevant in order to increase the signal-to-noise ratio and to avoid

the computational costs that accompany high dimensionality. With respect to forecasting stock returns, this

means that the selection of technical indicators and chart patterns as inputs into the model is arguably just

as important as the parameters of the model. Thus, I devote the following paragraphs to reviewing different

approaches to feature selection discussed in recent literature.

To demonstrate the importance of feature selection, Hwang and Rubesam (2019) hypothesize that the ma-

jority of the factor zoo is either redundant or the product of arbitrary data mining [38]. To test this theory,

they construct a large database that contains 83 factors that might be correlated with asset returns ranging

from technical indicators like 6-month momentum to nontraditional metrics like the number of analysts fol-

lowing a stock. They use a Bayesian approach to evaluate the efficacy of these different factors in explaining

the monthly returns of all available U.S. common stocks from the CRSP and Compustat databases from

1980 to 2016. Their Bayesian variable selection process finds that only 10 factors (of the original 83) are

ever selected and, of these ten, only eight are selected more than 50% of the time. The only factor that

remained significant across all stocks is market excess return, defined as the stock return less the risk-free

interest rate. The other selected factors include short-term reversal, change in 6-month momentum, earnings

announcement return, change in the number of analysts covering stocks, industry concentration, unexpected

quarterly earnings, and industry-adjusted size. Interestingly enough, short-term reversal and change in 6-

month momentum are both technical indicators. These results align with previous research which suggest

that the most effective models have five or less factors [25], [67], [17], [26].

On the other hand, Feng, Giglio, and Xiu (2020) evaluate the contribution of new factors introduced by

asset pricing research from 2010 to 2016 in their award-winning paper titled ”Taming the Factor Zoo” [28].

They gather 150 factors on a large set of standard portfolios of U.S. equities consisting of random stocks

from the NYSE, AMEX, and NASDAQ. Then, they apply their model, an aggregation of recent econometric

6We produce more than 2.5 quintillion bytes of data every day. Also, more than 90% of data in existence has been produced
in the past five years [41].
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techniques ranging from Double-Selection to LASSO methodology, to determine the most impactful factors.

They conclude that several newly developed factors are significant in explaining asset prices. They also find

many more significant factors than previous studies, suggesting that asset prices cannot be explained by

only five or six factors. This contradiction between studies is important because it demonstrates that the

importance of feature selection.

Recursive feature elimination (RFE) is a popular, wrapper-style feature selection algorithm amongst the

current literature. RFE searches for the most effective feature subset by building a model using all possible

inputs and the desired machine learning algorithm. Then, RFE drops the weakest features, as ranked by the

relative contribution of each of the inputs. This process repeats until the optimal number of features remain.

In order to find the optimal number of features, cross-validation is used to evaluate the model accuracy of

feature subsets of different sizes. RFE is widely-used because it is computationally efficient and not strongly

influenced by the model’s parameters. This property is important because it makes RFE performance con-

sistent and not hypersensitive to parameters that can’t be optimized. Gunduz (2021) implements a RFE

algorithm to reduce the number of features before using a LTSM model to forecast the hourly directions of

eight stocks in Borsa Instabul [34]. He finds that the RFE-LSTM model achieves the same model accuracy

as the LSTM model without RFE using 20% less features. He concludes that RFE is a computationally

efficient and effective method to feature selection with respect to stock selection.

V My Contribution

My contribution to the literature is two-fold. First, I integrate both technical indicators and chart pattern

analysis into the same framework. Secondly, I use an original model that consists of a recursive feature

elimination algorithm to carefully select model inputs before using an updating support vector machine to

classify price direction. I hypothesize that this model can produce statistically- and economically-significant

returns by only analyzing technical indicators and chart patterns.
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Chapter 3

Methodology

I Overview

In this study, the daily price direction of 48 stocks are forecasted from 2010-2019 with a nonlinear, classifica-

tion SVM. Using the R programming language, 33 technical indicators are calculated and 10 chart patterns

are identified for each stock. A RFE algorithm is then implemented to identify the optimal subset of features

for the SVM. Ultimately, a SVM classifies observations into two categories: stocks predicted to increase in

price the following trading day and those predicted to decrease. Model performance is evaluated using the

accuracy of the model’s predictions and the returns of the underlying trading strategy. The following para-

graphs delve into more detail on each step. Figure 3.1 offers a visual depiction of the process. For more

information on the training and testing periods, please refer to Figure 3.8, 3.9.

Figure 3.1: Flowchart of the model framework.
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II Data

I collect price and information data for each of the 48 stocks from 1/1/2010 to 12/31/2019 with Yahoo!

Finance [30]. Data is collected from 2010 through 2019 to capture the ebbs and flows of the economic cycle

while avoiding the unprecedented market conditions caused by the 2008 Great Recession and the COVID-19

pandemic. The 48 stocks can be divided into three main groups. The first group consists of large-cap stocks

and includes 29 of the 30 stocks1 on the Dow 30 Index. The Dow 30 Index, also known as the Dow Jones

Industrial Average (DJIA), is a price-weighted collection of thirty large, publicly-traded companies on the

U.S. stock market. This index was developed to track the performance of the market in the late 1800s when

information flow was limited [46]. Thus, the DJIA is selected as a holistic representation of the large-cap

stocks on the market and to avoid data snooping. Figure 3.2 lists the stocks on the DJIA.

Figure 3.2: List of the large-cap stocks from the Dow 30 index.

The next group of stocks consists of 10 small-cap stocks from the VIOO index, Vanguad’s S&P 600 Small-

Cap ETF. In order to avoid selection bias, I choose the month-end top-10 holdings from VIOO index as of

12/31/21 [71] as long as the stocks were publicly traded from 2010-2020. Figure 3.3 lists the small-cap

stocks that were selected.

Figure 3.3: List of small-cap stocks from the VIOO index.

1Note that Dow Inc. is excluded because the company was founded on 4/1/2019 and does not possess the requisite price
history.
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The last group of stocks are the top-nine holdings of the Euro Stoxx 50 ETF as of 03/01/22 [29]. The Euro

Stoxx 50 is considered to be Europe’s prominent blue-chip index for the Eurozone and contains stocks from

various stock exchanges throughout Europe including Paris, Brussels, and Germany. Figure 3.4 lists the

European stocks that were selected.

Figure 3.4: List of the European stocks.

I use three groups of stocks- a large-cap group, small-cap group, and European group- to investigate whether

the model performs better with different types of stocks. I hypothesize that the model will perform best on

the European stocks because European stock exchanges tend to have smaller market capitalizations than

the U.S. markets and receive less attention from large institutional investors. On the other hand, I predict

that the large-cap stocks will be the hardest to predict because they receive more scrutiny from big banks

and hedge funds with large research departments. As a result, machine learning approaches might already

by priced into the stocks.

III Software

The computational analysis is conducted in the R programming language [60].

IV Feature Engineering

In this section, I discuss the calculation of the 43 technical indicators and chart patterns used as inputs in

the model. Definitions for the technical indicators come from the following sources: [16], [1]. Note that 25

data points are deleted at the beginning of the data set because certain indicators, like moving averages,

require so many data points to be calculated.

I Technical Indicators

Price and Volume

The high, low, close, and adjusted daily price are included in the model. The adjusted daily price accounts

for corporate actions like stock splits and buybacks that can manipulate the price of a stock. The daily

trading volume is also included. This data comes directly from Yahoo! Finance.
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Simple Moving Average

A simple moving average (SMA) is the average price or volume over a specified period and used to determine

the direction of a trend. If the SMA is moving up (down), the trend is moving up (down). The five- and

fifteen-day SMA for price and volume are calculated as well as the ratio of the two. Let Pn represent the

daily price or trading volume of a stock on day n:

SMAP5
=

P1 + P2 + ...+ P5

n

SMAP15 =
P1 + P2 + ...+ P15

15

SMAPRatio
=

SMAP5

SMAP15

SMAV5
=

V1 + V2 + ...+ V5

n

SMAV15 =
V1 + V2 + ...+ V15

15

SMAVRatio
=

SMAV5

SMAV15

Exponential Moving Average

An exponential moving average (EMA) is a moving average that places more weight on the most recent

data points. Consequently, it reacts more significantly to recent price changes than the SMA. The five- and

fifteen-day EMA for price is calculated as well as the ratio of the two. Let Pn represent the daily price on

day n:

EMA5 = Pn ·
(
1

3

)
+ EMA(n−1) ·

(
2

3

)
(1/3 = smoothing multiplier)

EMA15 = Pn ·
(
1

8

)
+ EMA(n−1) ·

(
7

8

)
EMARatio =

EMA5

EMA15

Relative Strength Index

The relative strength index (RSI) is a momentum indicator that evaluates whether a stock is overbought or

oversold by examining the magnitude of recent price changes. The RSI ranges from (0, 100) where RSI > 70

indicates an overvalued and overbought condition and a RSI < 30 denotes an undervalued condition. The

five- and fifteen-day RSI are calculated as well as the ratio of the two. There are two steps (S1, S2) to

calculate the RSI5. For simplicity, I only show the RSI5 formula. The RSI15 can be calculated with the

same formula substituting fifteen in place of the five.

RSIS1
= 100−

[
100

5-day average gain
5-day average loss

]

RSIS2
= 100−

[
100

1 + (5-day average gain·13)+Current gain
(5-day average loss·13)+Current loss

]

RSIRatio =
RSI5
RSI15
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Bollinger Bands

Bollinger Bands are used to measure the volatility of a stock by adding and subtracting two standard

deviations from the 20-day SMA. Analysts can then examine the stock price in relation to the Bollinger

Bands to generate trading signals. For example, if the price touches the upper Bollinger Band, the price is

considered to be overbought triggering a sell signal. Let σ20 represent the standard deviation of price over

the last twenty trading days:

Upper Band = SMA20 + 2 · σ20

Lower Band = SMA20 − 2 · σ20

Moving Average Convergence Divergence

Moving average convergence divergence (MACD) is a momentum indicator that analyzes the relationship

between the a longer and shorter term EMA. Trading signals are generated as other moving averages cross

the MACD. Other methods involving the MACD include crossovers, divergences, and sudden movements up

(down). I calculate two MACDs with different parameters; MACDDT is optimized for day trading whereas

MACDS is designed for longer-term trading horizons:

MACDDT = EMAd − EMAt

MACDS = EMAm − EMAn

Chaikan Volatility

Chaikan volatility (CV) measures the accumulation-distribution line of MACD. It measures the number of

buyers/ sellers involved in the market in order to make a prediction about future price direction. I calculate

the five- and fifteen-day CV and the ratio of the two. Here is the formula for the five-day CV where H,L,C

represent high, low, close price:

S1 =
(C − L)− (H − C)

H − L

S2 = S1 ·Volume5 (Previous 5-day volume)

S3 = S2n−1
+ S2n

CV5 = EMA3(S3)− EMA10(S3)

CVRatio =
CV5

CV15

Rate of Change

Rate of Change (ROC) is a momentum indicator that measures the percentage change in price between today

and the price a specified number of days ago. A positive (negative) ROC indicates an uptrend (downtrend)

in price over the specified period. I calculate the five- and fifteen-day ROC as well as the ratio of the two.
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Let Pn denote the current daily price and P(n−x) the price x days ago:

ROC5 =

(
Pn − P(n−5)

P(n−5)

)
· 100

ROC15 =

(
Pn − P(n−15)

P(n−15)

)
· 100

ROCRatio =
ROC5

ROC15

On-Balance Volume

On-balance volume (OBV) is a momentum indicator that adjusts stock price for volume flow. OBV is

predicated on the assumption that volume is a key force behind market momentum. As OBV increases

(decreases), an uptrend (downtrend) is occurring and a trend reversal might be looming in the near future.

Let OBVn represent the current OBV level, OBVn−1 the previous OBV level, Pn the current price, and

P(n−1) the price yesterday:

OBV = OBVn−1+


volume, if Pn > Pn−1

0, if Pn = Pn−1

-volume, if Pn < Pn−1

Ease of Movement

Ease of Movement (EMV) is a momentum and volume indicator that analyzes how easily a price can move

up or down. It is also used to provide insight into the strength of an underlying trend by considering both

price and volume. I calculate a five-day EMV using the following steps (S1, ..., S4). Let S = scale, a value

ranging from 1,000 to 1,000,000 depending on the average trading volume of the underlying security, H (L)

be the high (low) price, and PH (PL) be the prior high (prior low) within the past five days.

S1 = Distance Moved =

(
H + L

2
− PH + PL

2

)
S2 = Box Ratio =

Volume/10000

H − L
(S=10,000)

S3 = 1-Period EMV =

(
S1

S2

)
S4 = 14-Period EMV = SMA14(S3)

Stochastic Oscillator

A stochastic oscillator (SO) is a momentum indicator that contextualizes a stock’s current price within a

range of its price over a specified period of time. It is used to identify overbought and oversold conditions

and ranges from (0, 100); SO > 80 signals overbought conditions while SO < 20 signals oversold conditions.

There are a variety of parameters that can influence the trading signals produced by the SO. Thus, I calculate

six distinct stochastic oscillators that offer unique information about the stock price. Let Pn represent the
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current price, HHn be the highest high in the past n days, and LLn be the lowest low in the same period:

Stoch5 FastK =

(
Pn − LL5

HH5 − LL5
· 100

)
Stoch5 FastD = SMA3(Stoch5 FastK)

Stoch5 SlowD = SMA15(Stoch5 FastK)

Stoch15 FastK =

(
Pn − LL15

HH15 − LL15
· 100

)
Stoch15 FastD = SMA3(Stoch15 FastK)

Stoch15 SlowD = SMA15(Stoch15 FastK)

Williams Percent Range

Williams %R is a momentum indicator that compares a stock’s price to the high-low range over a specified

lookback period. In contrast to the SO, Williams %R looks at the closing price in relation to the highest

high, not the lowest low. I calculate the five- and fifteen-day Williams %R and the ratio of the two. Let Pn

represent the current price, HHn be the highest high in the past n days, and LLn be the lowest low in the

same period:

Williams %R5 =
HH5 − Pn

HH5 − LL5

Williams %R15 =
HH15 − Pn

HH15 − LL15

Williams %RRatio =
Williams %R5

Williams %R15

Average Directional Index

Average directional index (ADX) is a technical indicator that measures the strength of a price trend. I

calculate the five- and fifteen-ADX as well as the ratio of the two. I show the calculation for the ADX5
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below. Let Hn (Ln) denote the current high (low) and Hn−5 (Ln−5) the high (low) five days ago:

+DM = Hn −Hn−5

−DM = Ln − Ln−5

CDM = Current DM

Smoothed + /−DM =

14∑
t=1

DM −
(∑14

t=1 DM

14

)
+ CDM

ATR = Average True Range

+DI =

(
Smoothed +DM

ATR

)
· 100

−DI =

(
Smoothed −DM

ATR

)
· 100

DX =

(
|+DI −−DI|
|+DI +−DI|

)
· 100

ADX =
PriorADX · 13 + CurrentADX

14

ADXRatio =
ADX5

ADX15

Vertical Horizontal Filter

A vertical horizontal filter (VHF) measures the strength of a trend by analyzing the relationship between

various moving averages. I calculate the five- and fifteen-VHF as well as the ratio of the two. I show the

calculation for the V HF5 below. Let H5 (L5) represent the highest (lowest) closing price in 5 periods, Pn

the current close price, and Pn−1 yesterday’s close:

V HF5 =
(H5 − L5)∑5

n=1 |Pn − Pn−1|

V HFRatio =
V HF5

V HF15

II Chart Patterns

There are two main approaches to locate technical patterns on stock price movement charts: template-based

and rule-based matching. Template-based matching defines the shape of the query patterns visually and then

uses point-to-point comparisons across price charts to identify patterns. Template matching was dominant

in the 20th century before technical analysts developed rule-based matching, a method that reduces chart

patterns to a series of mathematical extrema [48]. By reducing patterns to familiar mathematical objects,

analysts can make use of the tools of quantitative finance to make the pattern recognition process more

reliable and efficient. I opt to use a rule-based matching approach in order to consistently identify chart

patterns and give the model the most accurate possible inputs.
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Figure 3.5: AAPL stock before and after the kernel

regression smoother is used to reduce white noise.

I use a R package called RPatRec to institute

this rule-based matching approach [49]. RPatRec

offers a couple of nice features that makes the pro-

cess customizable and efficient. First, it includes a

recognition function that allows users to define their

own chart patterns by inputting a series of extrema.

This allows me to define the following ten technical

chart patterns. Secondly, the package offers a non-

parametric kernel regression function (as described

by Lo, Mamaysky, and Wang [48]) to smooth time

series data by averaging out the white noise (Figure

3.5). Lastly, rule-based pattern matching is sensi-

tive to a specified window size used to look for local

extrema and correctly identify patterns. RPatRec

allows the user to customize the length of the win-

dow and the number of data points in between in

order to identify patterns at any scale of interest.

For this study, I use ten years of stock data which

equates to roughly 2500 price points. Therefore, I

use a window size of 500 points with a 250 point

overlap. The presence of a chart pattern is encoded

in a binary variable where 1 signifies a pattern and 0

a lack thereof. Since I focus on ten of the most popu-

lar technical patterns, there exists ten chart pattern

variables. While RPatRec provides inbuilt techni-

cal chart patterns, I update some of the mathematical formulas using Bulkowski’s Encyclopedia of Chart

Patterns [13]. Each chart pattern is defined as the following series of extrema. In order to visualize these

definitions, refer to Figure 1.3, 1.4.

Head and Shoulders

Head and Shoulders =



E1 is a maximum

E3 > E1, E3 > E5

E1 and E5 are within 2% of their average

E2 and E4 are within 2% of their average

Inverse Head and Shoulders

Inverse Head and Shoulders =



E1 is a minimum

E3 < E1, E3 < E5

E1 and E5 are within 2% of their average

E2 and E4 are within 2% of their average
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Broadening Top

Broadening Top =


E1 is a maximum

E1 < E3 < E5

E2 > E4

Broadening Bottom

Broadening Bottom =


E1 is a minimum

E1 > E3 > E5

E2 < E4

Triangle Top

Triangle Top =


E1 is a maximum

E1 > E3 > E5

E2 < E4

Triangle Bottom

Triangle Bottom =


E1 is a minimum

E1 < E3 < E5

E2 > E4

Rectangle Top

Rectangle Top =



E1 is a maximum

tops are within 1% of their average

bottoms are within 1% of their average

lowest top > highest bottom

Rectangle Bottom

Rectangle Bottom =



E1 is a minimum

tops are within 1% of their average

bottoms are within 1% of their average

lowest top > highest bottom

Double Top

Double Top =


E1 is a maximum

E1, E3 are within 2% of their average

At least 20 days must pass before consecutive tops
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Double Bottom

Double Bottom =


E1 is a minimum

E1 < E3 < E5

At least 20 days must pass before consecutive bottoms

Chart Pattern Detection

Figure 3.6 presents the results of the chart pattern detection algorithm. It appears that the head-and-

shoulders and double bottom patterns were the most commonly identified patterns whereas zero rectangle

tops and bottoms were detected. This makes sense because rectangle tops and bottoms have very strict

definitions.

Figure 3.6: The number of chart patterns detected in each stock from 2010-2019.
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V Recursive Feature Selection Algorithm

Figure 3.7: The results of the RFE algorithm on

AAPL with a 2011-2012 testing period.

With the 33 technical indicators and 10 chart patterns

in the data set, I use RFE with cross-validation (CV) to

identify the optimal factors for the SVM model. I use

a random forest algorithm to fit the model in each iter-

ation and to evaluate the performance of four different-

sized feature subsets consisting of 4, 8, 16, and 40 fac-

tors. Then, I select the subset of features that optimizes

the trade-off between dimensionality and the root-mean-

square error (RMSE). Figure 3.7 visualizes the results of

the RFE-CV algorithm on Apple’s stock (AAPL) in 2011.

As one can see, the feature subsets have little predictive

power with four features and then the RMSE drops with

the addition of four more factors. Then, the RMSE grad-

ually increases as noisy features are added to the model.

In this case, eight features is the optimally-sized feature

subset.

I recalculate the RFE for each stock and each testing year in order to get the most updated feature subsets.

For example, consider AAPL stock from 2010-2019. The first testing period is from 2011-2012 because the

model first needs to be trained on data from 2010-2011. For this first testing period, the RFE algorithm

is implemented on data from 2010-2011. For the second testing period, 2012-2013, the feature subset is

optimized from 2010-2012 in order to give the RFE algorithm more data. The RFE for the last testing

period, 2018-2019, uses data from 2010-2018 to find the best feature subset. Thus, I expect that the model

for the last testing period (2018-2019) will be more accurate than the first testing period model (2011-2012)

because the RFE algorithm has more data to make better-informed decisions. Figure 3.8 depicts the RFE

training periods in terms of the test year. The graph can be interpreted as follows: For the 2015-2016 test

year, the RFE is trained from 2010-2015.

Figure 3.8: Visualization of the RFE train/test split.
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VI Support Vector Machine

Figure 3.9: Visualization of the SVM train/test split.

Once the optimal feature subset is selected, the data

is passed to the SVM to classify the price direc-

tion for each observation. The data is split into a

training/testing split that is constantly updating.

For example, consider AAPL stock from 2010-2019.

The first SVM is trained from 2010-2011 and then

tested from 2011-2012. The second SVM is trained

from 2011-2012 and tested from 2012-2013. Fig-

ure 3.9 depicts the SVM train/test splits. I opt to

have the SVM update every year in order to capture

macroeconomic conditions and yearly trends that

are omitted from the data set. The SVM model

contains three parameters that must be specified.

First, I specify the kernel to use a radial basis func-

tion (RBF). This allows the SVM to construct non-

linear hyperplanes to separate the different classes

of data. Secondly, I set the gamma value, or the

kernel coefficient for the RBF, equal to 1
5 which is

relatively low in order to avoid over-fitting. Lastly,

the cost parameter, or the penalty parameter of the

error term, is defined as 3. These parameters are carefully selected based on the current literature in order

to avoid over-fitting.

The yearly models for each stock are combined such that each stock has daily price predictions from 2011-

2019. Model performance is then assessed with two measures. The statistical accuracy of the SVM compares

the predicted price direction with the actual movement of the price direction. The accuracy is defined by

the number of correct predictions divided by the number of total predictions. The 95% confidence interval

for the accuracy is also calculated. Model performance is also considered in light of the returns generated

by the underlying trading strategy. The trading strategy is straight-forward. Assume that the SVM models

are calculated every trading day right before market close. If a stock is predicted to increase (decrease) in

price the following day, one share of the stock is bought (shorted) until the models are recalculated the next

trading day. The ability of the model to hold long and short positions is advantageous because the algorithm

can generate returns in both bull and bear markets. Stocks are then held (shorted) for consecutive days as

long as they are predicted to increase (decrease) in value. I consider the returns of the strategy without

accounting for transaction costs because they are typically assumed to be negligible.

I compare the returns from the RFE-SVM model to a buy-and-hold approach and a simple MACD strategy.

The buy-and-hold strategy assumes that a share of the stock was purchased on 1/4/2011 and held through

12/31/2019. The MACD strategy generates a signal when the MACD line crosses over a signal line. The

MACD line is defined as the difference between a 26-day simple moving average of closing price and a 12-day

simple moving average. The signal line is a 9-day exponential moving average of the MACD signal. When

the MACD line crosses above (below) the signal line, a long (short) position is acquired. The buy-and-hold
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approach serves as a passive investment baseline whereas the MACD strategy represents a basic technical

approach to investment.
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Chapter 4

Results

I Feature Selection

The results of the RFE algorithm for the 29 large-cap stocks1 are displayed in Figure 4.2 on the next page

and arranged in descending order of popularity. The interpretation of the table is as follows. In the first

row, on-balance volume (OBV) was included in the optimal subset of features for 15 of the 29 large-cap

stocks when the RFE was trained on 2010-2011 data. When the RFE was trained on 2011-2012 data, OBV

was selected in 14 of the 29 optimal subsets. The column on the far-right is the sum of the yearly selec-

tions. For example, OBV was selected in 135 of the 290 (29 stocks over 10 years), or ≈ 47%, possible subsets.

Figure 4.1 showcases the selection trends of the seven features with the most total selections (left) and the

seven least popular features (right). Of the ten chart patterns, only four were selected in at least one cycle.

The four chart patterns that were selected were among the five least popular features. The majority of chart

pattern selections occurred in 2012, with no chart pattern being selected after 2015.

Figure 4.1: Trends over time of the seven most and least selected features.

1This section focuses on the RFE results for only the large-cap stocks due to computational limits.
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Figure 4.2: Feature selection results
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II Stock Selection

The results of the RFE-SVM algorithm are considered with respect to the statistical accuracy of the model

as well as the economic returns generated by the signal.

I Statistical Accuracy

The statistical accuracy of the RFE-SVM model is defined by the number of correct price predictions divided

by the total number of predictions. Figure 4.3 displays the accuracy of the model for each stock and contains

three panes, one for each of the three groupings of stocks. The shaded regions represent the 95% confidence

interval for the model accuracy. Stocks that are labelled either have better than a 52% accuracy or below

a 49% accuracy. The large-cap stocks had the highest average model accuracy with 51.5%, followed by

European stocks with an average 50.9% accuracy and then the small-cap stocks with 50.2% accuracy. After

confirming the homogeneity of variances with Levene’s test and the normality of the data with a Shapiro-

Wilk test, I used an ANOVA and a Tukey multiple pairwise-comparisons test to find a statistically significant

difference between the model accuracy of the large-cap stocks and the small-cap stocks.

Figure 4.3: Statistical accuracy of the RFE-SVM model by stock type.
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II Economic Returns

The following figures display the compound returns for the buy-and-hold strategy, the RFE-SVM model, and

a simple MACD trading strategy. Figure 4.4 shows the returns for large-cap stocks. The average return for

the RFE-SVM model was 4.44% which outperformed the buy-and-hold approach with mean return 3.14%

and the MACD signal with mean return -0.24%. The RFE-SVM model outperformed the buy-and-hold

strategy for 10 of the 29 large-cap stocks.

Figure 4.4: Returns of the large-cap stocks.

Figure 4.5 displays the returns for the small-cap stocks. The average return for the buy-and-hold strategy

was 3.57% which outperformed the RFE-SVM model with mean return -0.81% and the MACD signal with

mean return -0.29%. The RFE-SVM model did not outperform the buy-and-hold strategy for any of the

10 small-cap stocks. Figure 4.6 displays the returns for the European stocks. The average return for the

buy-and-hold strategy was 2.14% compared to the RFE-SVM model with mean return 0.02% and the MACD

signal with mean return -0.45%. The RFE-SVM model did not outperform the buy-and-hold strategy for

any of the nine European stocks.
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Figure 4.5: Returns of the small-cap stocks.

Figure 4.6: Returns of the European stocks.
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Lastly, Figure 4.7 displays the distributions of the returns for the different stocks. The three panes

once again represent the three different groups of stocks. The dashed vertical line marks the mean return for

each strategy in each stock group. The buy-and-hold strategy generated the highest average return for the

small-cap stocks, followed by the large-cap stocks and then the European stocks. The RFE-SVM model was

most effective on the large-cap stocks, but produced an average return of about zero for both the small-cap

and European stocks. The standard deviations of the buy-and-hold distributions are the highest amongst

the different strategies. The distributions of the MACD strategy is centered below zero for the three groups

of stocks and clustered tightly around the median value. The distributions of the RFE-SVM model vary

based on the type of stock but generally demonstrate more upside potential than the MACD strategy. Note

that two returns for the RFE-SVM on large-cap stocks are omitted because they are outliers (GS- 42.3, IBM-

24.0). If you are interested in the individual cumulative return graphs for the 48 stocks, please reference the

Appendix.

Figure 4.7: Density plots for the returns.
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Chapter 5

Discussion

In light of the economic returns and predictive accuracy of the model, I reject the hypothesis that the RFE-

SVM model could produce economically- and statistically-significant results using technical indicators and

chart patterns. These results suggest that SVMs could not outperform a passive buy-and-hold strategy from

2010-2019. This aligns with the adaptive market hypothesis which states that technical indicators can only

be used to generate a profit in periods of high market volatility where investors behave irrationally. The

time period I selected for my analysis specifically omitted the high volatility conditions of the 2008 Great

Recession and the COVID-19 pandemic, so these results make sense in context. The results also support the

recent shift of funds away from active management funds to passive index funds. In 2010, actively managed

funds and ETFs controlled 81% of the fund market whereas index mutual funds and index ETFs composed

the other 19% [39]. In 2020, actively managed funds decreased in size to 60% while passive funds grew to

control a 40% share of the fund market. This shift towards passive funds can most likely be explained by a

recent crop of literature that shows that active funds can not consistently outperform passive portfolios in

the long run.

All in all, I believe that there still exists certain periods where MLAs can outperform passive strategies.

In the future, I would like to continue my work on preemptively identifying periods of high market volatility.

This is important because MLAs can be employed when periods of high market volatility are anticipated

and then sidelined when volatility is forecasted to decrease. Additionally, I plan to run the RFE-SVM model

on the same stocks during the 2008 Great Recession and the COVID-19 pandemic to investigate how this

model performs in unprecedented and highly volatile market conditions.
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Chapter 6

Appendix

This section includes all of the cumulative return graphs for the three trading strategies (buy-and-hold,

RFE-SVM, and MACD) for the 48 stocks. The graphs are organized by stock group and then alphabetically.

The large-cap stocks are displayed first, followed by the small-cap stocks and European stocks, respectively.
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AAPL 

RFE-SVM: 4.41 

BuyHold: 6.17 

MACD: -0.5 
 

AMGN 

RFE-SVM: 5.96 

BuyHold: 4.28 

MACD: 0.28 
 

BA 

RFE-SVM: 0.80 

BuyHold: 5.12 

MACD: -0.42 
 

CRM 

RFE-SVM: 3.56 

BuyHold: 3.76 

MACD: -0.75 
 

AXP 

RFE-SVM: 1.03 

BuyHold: 2.27 

MACD: -0.49 
 

CAT 

RFE-SVM: 4.25 

BuyHold: 1.01 

MACD: 0.02 
 

 

 

 

  

Legend: Strategy BuyHold MACD 



CSCO 

RFE-SVM: 1.16 

BuyHold: 2.00 

MACD: 0.02 
 

CVX 

RFE-SVM: 0.85 

BuyHold: 0.82 

MACD: 0.02 
 

GS 

RFE-SVM: 42.3 

BuyHold: 0.51 

MACD: -0.51 
 

HON 

RFE-SVM: 1.88 

BuyHold: 3.15 

MACD: -0.03 
 

DIS 

RFE-SVM: 2.13 

BuyHold: 3.32 

MACD: 0.08 
 

HD 

RFE-SVM: 3.53 

BuyHold: 6.56 

MACD: -0.43 

   

 

 

  

Legend: Strategy BuyHold MACD 



IBM 

RFE-SVM: 24.0 

BuyHold: 0.19 

MACD: 0.08 
 

INTC 

RFE-SVM: 3.12 

BuyHold: 2.78 

MACD: -0.56 
 

JPM 

RFE-SVM: 3.13 

BuyHold: 3.03 

MACD: -0.17 
 

MCD 

RFE-SVM: 0.70 

BuyHold: 2.35 

MACD: -0.19 
 

JNJ 

RFE-SVM: 0.34 

BuyHold: 2.02 

MACD: -0.34 
 

KO 

RFE-SVM: 0.18 

BuyHold: 1.24 

MACD: -0.17 

   

 

 

  

Legend: Strategy BuyHold MACD 



MMM 

RFE-SVM: 7.86 

BuyHold: 1.56 

MACD: -0.02 
 

MRK 

RFE-SVM: 0.86 

BuyHold: 2.43 

MACD: 0.29 
 

NKE 

RFE-SVM: 1.03 

BuyHold: 4.27 

MACD: -0.55 
 

TRV 

RFE-SVM: 2.06 

BuyHold: 2.05 

MACD: 0.22 
 

MSFT 

RFE-SVM: 0.63 

BuyHold: 6.01 

MACD: -0.41 
 

PG 

RFE-SVM: 0.02 

BuyHold: 1.55 

MACD: -0.51 

 

   

 

 

  

Legend: Strategy BuyHold MACD 



UNH 

RFE-SVM: 1.03 

BuyHold: 8.09 

MACD: -0.79 
 

VZ 

RFE-SVM: 0.74 

BuyHold: 1.54 

MACD: 0.02 
 

WBA 

RFE-SVM: 7.70 

BuyHold: 0.84 

MACD: -0.77 
 

V 

RFE-SVM: 3.25 

BuyHold: 10.4 

MACD: -0.38 
 

WMT 

RFE-SVM: 0.71 

BuyHold: 1.74 

MACD: -0.42 

 

   

 

 

  

Legend: Strategy BuyHold MACD 



ADC 

RFE-SVM: -0.79 

BuyHold: 3.25 

MACD: -0.26 
 

AMN 

RFE-SVM: -0.97 

BuyHold: 8.82 

MACD: -0.51 
 

EXPO 

RFE-SVM: -0.96 

BuyHold: 6.73 

MACD: 0.23 

BCPC 

RFE-SVM: -0.35 

BuyHold: 2.04 

MACD: -0.29 
 

GTLS 

RFE-SVM: -1.00 

BuyHold: 0.86 

MACD: 0.65 

OMCL 

RFE-SVM: 0.42 

BuyHold: 4.62 

MACD: -0.59 

 

   

 

 

  

Legend: Strategy BuyHold MACD 



ROG 

RFE-SVM: -0.98 

BuyHold: 2.12 

MACD: -0.46 
 

UFPI 

RFE-SVM: -0.97 

BuyHold: 3.10 

MACD: -0.89 
 

WTS 

RFE-SVM: -0.77 

BuyHold: 1.97 

MACD: -0.12 

VG 

RFE-SVM: -0.90 

BuyHold: 3.10 

MACD: -0.65 
 

   

 

 

  

Legend: Strategy BuyHold MACD 



ABI.BR 

RFE-SVM: -0.49 

BuyHold: 1.23 

MACD: -0.67 
 

ASML.ML 

RFE-SVM: 3.10 

BuyHold: 6.63 

MACD: -0.40 
 

OR.PA 

RFE-SVM: -0.57 

BuyHold: 2.64 

MACD: -0.41 

MC.PA 

RFE-SVM: 0.24 

BuyHold: 3.02 

MACD: -0.08 
 

SAN.PA 

RFE-SVM: -0.36 

BuyHold: 1.21 

MACD: -0.61 

SAP.DE 

RFE-SVM: -0.18 

BuyHold: 1.59 

MACD: -0.47 

 

   

 

 

  

Legend: Strategy BuyHold MACD 



SIE.DE 

RFE-SVM: -0.15 

BuyHold: 0.89 

MACD: -0.61 
 

TTE.PA 

RFE-SVM: -0.27 

BuyHold: 0.97 

MACD: -0.66 
 

VOW.DE 

RFE-SVM: -0.72 

BuyHold: 0.86 

MACD: -0.53 
 

   

 

 

 

Legend: Strategy BuyHold MACD 
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