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ABSTRACT

This thesis is about some of the methods and concepts of linear algebra that are
particularly helpful for data analysis. After a brief review of some linear algebra con-
cepts in chapter 1, the second chapter of the thesis centers around the singular value
decomposition (SVD) which expresses any matrix A as a product of an orthogonal
matrix, a diagonal matrix, and another orthogonal matrix. Understanding the SVD
requires understanding the properties of symmetric matrices, which are explained
first. Chapter 3 focuses on the applications of the SVD. It begins with using the SVD
for low-rank approximation, and then explores how the SVD is applied in principle
component analysis.

Chapter 4 introduces neural networks, a machine learning architecture useful for
image recognition among other applications. It introduces the structure of a neural
network in linear algebraic notation; one of the main goals of chapter 4 is to reinforce
the idea that neural networks can be seen as compositions of matrix transformations
with non-linear activation functions. We then introduce how the parameters in a
neural network are optimized. Chapter 5 deals with convolutional neural networks. It
also focuses heavily on circulant matrices, and the relationship between convolution
and circulant matrices. Understanding the properties of circulant matrices will be
instrumental in understanding the benefits of convolution. We finish the chapter by
showing how PCA can be used as a data pre-processing tool before running the data
through a convolutional neural network.
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CHAPTER 1. INTRODUCTION

This chapter will introduce some basic ideas from linear algebra that will be nec-
essary to understand the content in this thesis. A reader who has taken a college-level
linear algebra course should be familiar with these ideas and could skip this chapter
if they wanted. However, this may be helpful for a reader who hasn’t encountered
linear algebra in a while.

The first section of the chapter will review what eigenvectors and eigenvalues
are, how to solve for them, and their implications. It will also introduce what it means
to diagonalize a matrix which will become particularly important when we introduce
the idea of singular value decomposition.

The second section of the chapter introduces the concept of orthogonality. Most
importantly, it displays the Gram-Schmidt algorithm which presents an algorithm to
construct an orthogonal basis from any basis. This algorithm will also be extremely
important when we present the concept of singular value decomposition. The fi-
nal section of this chapter will introduce some different miscellaneous ideas that are
referenced in the thesis.

We omit most of the proofs in this chapter. A more detailed discussion can be
found in various introductory texts including [9] and [6].

1.1. Eigenvectors

Definition 1.1. An eigenvector of an n × n matrix A is a nonzero vector x ∈ Rn

such that Ax = λx for some scalar λ. We call λ an eigenvalue, and we also say that
x is a λ−eigenvector

Lemma 1.2. λ is an eigenvalue of A if and only if λ is the root of

cA(λ) = det (A− λI) .

Lemma 1.3. The λ-eigenvectors x are the non-zero solutions to the homogeneous
system

(λI − A) x = 0.

Note: The λ- eigenspace Eλ is the full set of solutions including x = 0

Definition 1.4. An eigenvalue λ of a square matrix A is said to have multiplicity
m if it occurs m times as a root of the characteristic polynomial cA(λ).

Definition 1.5. A square matrix A is said to be diagonalizable if A = PDP−1 for
some invertible matrix P and some diagonal matrix D.

Proposition 1.6. An n × n matrix A can be diagonalized when A has eigenvectors
x1, x2, . . . , xn such that the matrix P = [x1x2 . . . xn] is invertible. Then A = PDP−1,
with

D = P−1AP = diag (λ1, λ2, . . . , λn)

where xi is a λi−eigenvector for 1 ≤ i ≤ n.
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Definition 1.7. For any eigenvalue λ, the eigenspace Eλ is defined

Eλ = {x ∈ Rn|(λI − A)x = 0}.

Proposition 1.8. An n×n matrix A is diagonalizable if and only if every eigenvalue
λ of multiplicity mλ yields an eigenspace Eλ such that dim(Eλ) = mλ; that is if and
only if the general solution of the system (λI − A) x = 0 has exactly mλ parameters.

Lemma 1.9. An n×n matrix matrix A is diagonalizable if and only if Rn has a basis
{x1, x2, . . . , xn} consisting of eigenvectors of A

Algorithm 1.10. Diagonalization Algorithm

- Step 1) Find the distinct eigenvalues λ of A

- Step 2) Compute each basis for each eigenspace Eλ by solving the solutions to
the homogeneous system

(λI − A)x = 0

- Step 3) If the total number of eigenvectors from step 2 is equal to n, then the
matrix is diagonalizable.

- Step 4) If A is diagonalizable, the n× n matrix P with these basic eigenvectors
as its columns is the diagonalizing matrix for A, meaning that P is invertible
and P−1AP is diagonal.

1.2. Orthogonality

Definition 1.11. For two vectors x = [x1, . . . , xn] and y = [y1, . . . , yn], their dot
product x · y is defined

x · y =
n∑

i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn.

Definition 1.12. Two vectors u and v ∈ Rn are orthogonal if u · v = 0.

If a vector z is orthogonal to every vector in a subspace W of Rn then z is said
to be orthogonal to W. The set of all vectors z that are orthogonal to W is called to
orthogonal complement of W and is denoted by W⊥. W⊥ is a subspace of Rn

Definition 1.13. A set of vectors {u1, . . . .,up} in Rn is said to be an orthogonal
set if each pair of distinct vectors from the set is orthogonal.

Lemma 1.14. If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn,
then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition 1.15. An orthogonal basis for a subspace W of Rn is a basis for W
that is also an orthogonal set.

2



Lemma 1.16. Let {u1, . . . ,up} be an orthogonal basis for a subspace W of Rn. For
each y in W, the weights in the linear combination y = c1u1 + . . .+ cpup are given by

cj =
y · uj

uj · uj

(j = 1, . . . , p) .

Lemma 1.17. Let W be a subspace of Rn and x be a vector in Rn. Then we can
write x uniquely as

x = xW + xW⊥

where xW ∈ W and xW⊥ = x− xW ∈ W⊥.

The vector xW⊥ is called the orthogonal projection of x on W . We have:

Proposition 1.18. For W a subspace of Rn with an orthogonal basis {u1, . . . .,up}
the orthogonal projection of a vector x in Rn onto W is

projWx =

(
x · u1

u1 · u1

)
u1 + . . .+

(
x · up

up · up

)
up.

Note that projWx ∈ W since u1, . . . ,up are all ∈ W

Lemma 1.19. Let W be a subspace of Rn, let y be any vector in Rn and let ŷ =
projW (y). Then ŷ is the closest point in W to y in the sense that

||y− ŷ|| < ||y− v||

for all v in W distinct from ŷ.

Lemma 1.20. Let {f1, f2, . . . , fm} be an orthogonal set of nonzero vectors in Rn.
Given x in Rn, write

fm+1 = x−
(

x · f1
f1 · f1

)
f1 −

(
x · f2
f2 · f2

)
f2 − . . .−

(
x · fm
fm · fm

)
fm

Then:

1. fm+1 · fk = 0 for k = 1, 2, . . . ,m

2. If x is not in span{f1, . . . , fm, fm+1}, then fm+1 ̸= 0 and orthogonal to f1, . . . , fm

This tells us that for the orthogonal set S ∈ Rn, we can use a vector x ∈ Rn

where x /∈ span(S) to add another vector to the set, while keeping the set orthogonal.
Vectors in orthogonal sets are non-zero. If {f1, . . . , fm} is an orthogonal set of vectors
and fm+1 /∈ Span{f1, . . . , fm} then {f1, . . . , fm, fm+1} will also be an orthogonal set of
non-zero vectors.

Lemma 1.21. Every subspace has an orthogonal basis, and we can find the orthogonal
basis applying the Gram–Schmidt algorithm to any basis.

3



Algorithm 1.22. Gram-Schmidt Algorithm: If {x1,x2, . . . ,xm} is any basis of
a subspace U of Rn, construct f1, f2, . . . , fm in U successively as follow

f1 = x1

f2 = x2 − x2·f1
||f1||2 f1

f3 = x3 − x3·f1
||f1||2 f1 −

x3·f2
||f2||2 f2

.

.

where in general we have

fk = xk − xk·f1
||f1||2 f1 −

xk·f2
||f2||2 f2 − . . .− xk·fk−1

||fk−1||2
fk−1

for each k = 2, 3, . . . ,m then

1) {f1, f2, . . . , fm} is an orthogonal basis of U

2) span{f1, f2, . . . , fk} = span{x1,x2, . . . ,xk} for each k = 1, 2, . . . ,m.

The definition of an orthogonal projection of a vector x in Rn onto a subspace
W of Rn leads directly to the Gram-Schmidt Process. If we have an orthogonal set of
vectors, we can add another vector to the set and keep the set orthogonal by choos-
ing a vector outside of the subspace spanned by the original set {f1, f2, . . . , fk} and
subtracting it from the orthogonal projection of x onto that subspace. We know that
this will not only be outside of the original subspace, but it will also be orthogonal
to every basis vector for the subspace. The Gram-Schmidt process is saying we can
extend an orthogonal set which spans W by adding the vector x− projWx to the set,
where x is a vector outside of W.

1.3. Matrix as a Linear Transformation and Change of Basis Matrix.
If T : V → W is a linear transformation where V = Rn and W = Rm, we can

always describe T as a multiplication by an m × n matrix A given bases for V and
W .

Lemma 1.23. Suppose the set B = {b1, . . . , bp} is a basis for the subspace H. For
each x in H, the coordinate of x relative to B is defined

[x]B =

c1...
cp


where x = c1b1 + . . .+ cpbp
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Figure 1. Viewing the vector a as vector az defined by the basis with a new coordinate
space

Let B = {b1, . . . ,bn} be a basis for V and let E be a basis for W. If T : V → W
is a linear transformation and x = d1b1 + . . . dnbn then

T (x) = T (d1b1 + . . . dnbn) = d1T (b1) + . . . dnT (bn)

and

[T (x)]E = [d1T (b1)+. . . dnT (bn)]E = d1[T (b1)]E+. . .+dn[T (bn)]E = M

d1...
dn

 = M [x]E

where
M = [[T (b1)]E . . . [T (bn)]E ]

and we call M the matrix for T with respect to the bases B and E .
It is important to remember we can think of any basis as a way to describe a

coordinate system. More specifically, the basis will tell us the direction and unit of
change for each axis in the coordinate system. Once we pick a basis, each vector in
the vector space can be described as a coordinate vector with respect to that basis.
Often, when we see any random vector, we are assuming it to be a coordinate vector
for the standard basis. This means we are defining the vector with respect to the
traditional coordinate system. However, if we pick a different basis, our coordinate
system reflects that basis. Thus, if T : V → W is a linear transformation where
V = Rn and W = Rm, we can always describe T as a multiplication by an m × n
matrix A. However, this matrix A is completely determined by the bases we pick for
both V and W.

1.4. Miscellaneous

Definition 1.24. For an m×n matrix A, the transpose AT is a matrix where [AT ]ji =
Aij for all i, j.

Lemma 1.25. (AB)T = BTAT

5



Definition 1.26. An n× n square matrix A is an orthogonal matrix if the columns
of A are orthogonal to the rows of AT . This occurs when AAT = I, equivalently,
AT = A−1

Definition 1.27. The column space (also called the range or image) of a matrix A
is the span (set of all possible linear combinations) of its column vectors.

Definition 1.28. The row space of a matrix A is the span of the row vectors in A.

Definition 1.29. Given two vectors of size m× 1 and size n× 1 respectively

u =


u1

u2
...
um

 ,v =


v1
v2
...
vn


their outer product u ⊗ v is defined:

u ⊗ v = A =


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
... . . . ...

umv1 umv2 . . . umvn


Lemma 1.30. If u and v are both non-zero vectors, then their outer product u ⊗ v
has rank 1.

6



CHAPTER 2. SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of a matrix is a decomposition of the
matrix into a product of an orthogonal matrix, a diagonal matrix, and another or-
thogonal matrix. It is one of the most powerful ideas in linear algebra. However, to
understand it fully one must first understand certain facts about symmetric matri-
ces. Thus, our first section will show that all symmetric matrices are orthogonally
diagonalizable. Not only can we construct a basis of eigenvectors for any symmetric
matrix, but the the matrix formed out of these vectors, P , will be an orthogonal
matrix! We will then make this relationship between orthogonal diagonalization and
symmetric matrices even tighter; a matrix is orthogonally diagonalizable if and only
if it is a symmetric matrix. This result is known as the spectral theorem.

The second section introduces the singular value decomposition of a matrix. It
relies on the concepts of symmetric matrices and the fact that for any matrix A both
AAT and ATA will be symmetric matrices. The SVD says that for any m×n matrix
A, A = UΣV T where U is made of an orthogonal basis of eigenvectors for AAT and
V is made up of an orthogonal basis of eigenvectors for ATA.

We finally introduce the idea that when we represent any linear transformation
as a matrix transformation, the SVD helps us map this transformation through all
fundamental subspaces. The idea that the spectral theorem and the singular value
decomposition can help us choose the right coordinate systems for each fundamental
subspace is explained further in [5].

The final section on quadratic forms will be helpful when we consider the ap-
plications of the singular value decomposition such as low-rank approximation and
principle component analysis. This section will also introduce the idea of an orthog-
onal change of basis matrix.

2.1. Symmetric Matrices

Definition 2.1. A symmetric matrix is a n × n matrix A that is equal to its
transpose. This means that for all 1 ≤ i, j ≤ n aij = aji.

Definition 2.2. A matrix A is orthogonally diagonalizable if there exists an
orthogonal matrix P and a diagonal matrix D such that A = PDP−1 = PDP T .

First, we see that orthogonally diagonalizable matrices are always symmetric
matrices. The diagonal matrix D is always symmetric.

Lemma 2.3. If a matrix is orthogonally diagonalizable, it is a symmetric matrix

Proof. If A = PDP T and D is diagonal, then AT = (PDP T )T = P TTDTP T =
PDP T = A

In fact, the converse holds. Before showing this, we need to prove other results
about symmetric matrices.
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Lemma 2.4. For any real symmetric matrix A, if λ is a complex eigenvalue of A,
then λ is real.

Proof.

Our goal is to prove that λ = λ. A = A because A is real. Let x be a (possibly
complex) eigenvector corresponding to λ so that x ̸= 0 and Ax = λx. Let c = xTx.
If xT = [z1, . . . zn] then

x =


z1
z2
...
zn


and

c = xTx = z1z1 + z2z2 + ...+ znzn = |z1|2 + |z2|2 + ...+ |zn|2

Thus, c is a real number and c > 0 since zi ̸= 0 for some i (as x ̸= 0). We can now
show that λ = λ. Observe that

λc = λ(xTx) = (λx)Tx = (Ax)Tx = xTATx

Since A = A = AT , we have

xTAx = xT (Ax) = xT (Ax) = xT (λx) = xT (λx) = λxTx = λc

Thus, λc = λc meaning that λ = λ since c ̸= 0.
This means that A− λIn is a real matrix, and det(A− λI) = 0 yields non-zero

real solutions. Thus, there are also real eigenvectors for each eigenvalue λ.

Lemma 2.5. Let {x1, x2, ..., xk} be a linearly independent set of eigenvectors of an
n× n matrix A, and extend it to the basis {x1, x2, ..., xk, ...xn} of Rn and let

P =
[
x1 x2 . . . xn

]
be the invertible n × n matrix with xi as its columns. If λ1, λ2, ..., λk are the (not
necessarily distinct) eigenvalues of A corresponding to x1, x2, ..., xk then P−1AP has
block form [

diag(λ1, λ2..., λk) B
0 A1

]
where B has size n× n− k and A1 has size n− k × n− k.

Now we have the facts to prove that not only are all orthogonally diagonalizable
matrices are symmetric, but all symmetric matrices are orthogonally diagonalizable.

Theorem 2.6. Spectral Theorem The following conditions are equivalent for any
n× n matrix A

1. A has an orthonormal set of n eigenvectors

8



2. A is orthogonally diagonalizable

3. A is symmetric

Proof. We need to prove that (1) ⇔ (2) ⇔ (3). Well, we have that (1) ⇒ (2): Let
x1,x2, ...,xn be orthonormal set of eigenvectors of A. If we let P = [x1,x2, ...,xn] then
P is orthogonal and

AP = [Ax1, ..., Axn] = [λ1x1, ..., λnxn] = PD

where D = diag(λ1, ..., λn). Since P−1 = P T we have A = PDP T , meaning that A is
orthogonally diagonalizable.

(2) ⇒ (1): Let P−1AP be diagonal where P is orthogonal. If x1,x2, ...,xn are
the columns of P then {x1,x2, ...,xn} is an orthonormal basis of Rn that consists of
eigenvectors of A.

(2) ⇒ (3): This statement is Lemma 2.3 which we have proved.

Now, we have (1) ⇔ (2) and (2) ⇒ (3). If we show that (3) ⇒ (2), by the
transitive property we will have (1) ⇔ (2) ⇔ (3) which means we have proven the
spectral theorem.

Base Case: n = 1. If A = [a], then A = [1][a][1]T . Thus, if A is a 1× 1 (symmetric)
matrix, it will be orthogonally diagonalizable.

Inductive Step: Assume that all n − 1 × n − 1 symmetric matrices where n − 1 ≥ 1
are orthogonally diagonalizable.

Now, consider an n× n symmetric matrix A. We know that A has a real eigenvalue
λ1 by Lemma 2.4. Let Ax1 = λ1x1 where |x1| = 1 is a normalized eigenvector for λ1.

We can add vectors to x1 to find a basis for Rn, and then use the Gram-Schmidt
algorithm to find an orthonormal basis {x1,x2, ...,xn} for Rn. So P1 = [x1,x2, ...,xn]
is an orthonormal matrix where x1 is an eigenvector, and the rest of the column
vectors are not necessarily eigenvectors. Observe that

AP1 = P1

[
λ1 B
0 A1

]
for some B,A. We can rewrite this as

P T
1 AP1 =

[
λ1 B
0 A1

]
=

[
λ1 0
BT AT

1

]

This means that B = 0, BT = 0, and A1 = AT
1 . Thus, we have P T

1 AP1 =

[
λ1 0
0 A1

]
where A1 is a symmetric n− 1× n− 1 matrix.

9



By induction, since A1 is an n−1×n−1 symmetric matrix, there exists an n−1×n−1
orthogonal matrix Q such that QTA1Q = D1

Let P2 =

[
1 0
0 Q

]
. The matrix P2 is orthogonal and so P1P2 will also be orthogonal

as products of orthogonal matrices are also orthogonal.

Let P1P2 = U . We have

UTAU = (P1P2)
TA(P1P2) = P T

2 P
T
1 AP1P2 = P T

2 (P
T
1 AP1)P2

=

[
1 0
0 QT

] [
λ1 0
0 A1

] [
1 0
0 Q

]
=

[
λ1 0
0 QTA1

] [
1 0
0 Q

]
=

[
λ1 0
0 QTA1Q

]
=

[
λ1 0
0 D1

]

and
[
λ1 0
0 D1

]
is diagonal! This completes the inductive step. Therefore, any sym-

metric matrix A is orthogonally diagonalizable. Thus, (3) ⇔ (2), and we have proven
the spectral theorem!

Now we understand that a matrix can be orthogonally diagonalized if and only
if it is a symmetric matrix. Let’s look at a method for finding an orthogonal diag-
onalization. This will rely on Lemma 2.7 which will allow us to prove Lemma 2.8
which will be crucial to orthogonally diagonalizing a symmetric matrix.

Lemma 2.7. If A is an n× n symmetric matrix, then

(Ax) · y = x · (Ay)

for all columns x and y in Rn

Proof. We have x · y = xTy so if A = AT then (Ax) · y = (Ax)Ty = xTATy =
xTAy = x · (Ay)

This implies the following statement.

Lemma 2.8. If A is a symmetric matrix, then the eigenvectors of A corresponding
to distinct eigenvalues are orthogonal.

10



Proof.

Let Ax = λx and Ay = µy where λ ̸= µ.

Then λ(x · y) = (λx) · y = (Ax) · y. By Lemma 2.7 (Ax) · y = x · (Ay)

Therefore, λ(x · y) = µ(x · y) so (λ − µ)(x · y) = 0. It follows that x · y = 0 since
λ ̸= µ

We can now describe a simple algorithm to orthogonally diagonalize any sym-
metric matrix A.

Algorithm 2.9. Orthogonal diagonalization of a symmetric matrix algorithm

- Step 1) Find the eigenvalues λi for A.

- Step 2)For each λi, if its corresponding eigenspace Eλi
has rank > 1, use the

use the Gram-Schmidt process to construct an orthogonal basis.

- Step 3) Take the union of all the bases for each eigenspace Eλi
. By Lemma 2.8,

this set will be orthogonal and form a basis for Rn.

We can now also define the spectral decomposition of a symmetric matrix A.

Definition 2.10. For a symmetric n×n matrix A, we define a spectral decompo-
sition of A as being a sum of the form

A = λ1u1uT
1 + λ2u2uT

2 + ...λnunuT
n

where P = [u1,u2, ...,un] is an orthogonal set of unit eigenvectors, and λ1, λ2, ..., λn

are the eigenvalues of A corresponding to P. The spectral decomposition is in fact
found by orthogonally diagonalizing A.

A = PDP T = [u1,u2, ...,un]


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...
0 0 .... λn



uT
1

uT
2

...
uT
n



=
[
λ1u1 λ2u2 ... λnun

] 
uT
1

uT
2

...
uT
n

 = λ1u1uT
1 + λ2u2uT

2 + ...λnunuT
n

.
2.2. Singular Value Decomposition

The singular value decomposition (SVD) is a decomposition that exists for any
m× n matrix A. It can be viewed as a generalization of the spectral theorem and we
will make use of this using the following definition.

11



Theorem 2.11. Let A be any m×n matrix with rank r. Then, A = UΣV T where U
is an m×m orthogonal matrix, V is an n× n orthogonal matrix, and Σ is an m× n
matrix such that

Σ =

[
D 0
0 0

]
where D is a r× r diagonal matrix. The remaining m− r rows and n− r columns of
Σ will be 0. D will be the first r non-zero singular values of A, (σ1, . . . , σr), such that

σ1 ≥ σ2 ≥ ... ≥ σr > 0

We call A = UΣV T a singular value decomposition of A.

The power of the singular value decomposition is that it exists for any matrix
without restrictions. Because of this, the applications of the singular value decompo-
sition are extremely powerful for data analysis.

Proof. First, for any m × n matrix A, the matrix ATA will be a n × n symmetric
matrix

(ATA)T = ATATT = ATA

We can therefore apply the Spectral Theorem to ATA

V TATAV = D

where the columns of V [v1 . . .vn] form an orthogonal basis of eigenvectors for ATA.
It can be shown that the set {Avi|Avi ̸= 0} forms an orthogonal basis for the column
space of A.

If i ̸= j, we have

(Avi)
T (Avj) = vT

i A
TAvj = vT

i (λjvj) = λj(vi · vj) = 0

since vi · vj = 0.
We can order the vectors so that Avi ̸= 0 for 1 ≤ i ≤ r and Avi = 0 for i > r.
Secondly, we can write any vector x ∈ Rn as a linear combination of v1, ...,vn.

If
x = c1v1 + ...cnvn

then
Ax = A(c1v1 + ...+ c1vn) = Acvi + ....+ Acvr + 0 + ....0

Therefore, Avi, ..., Avr is a basis for the column space of A

If we now define
ui =

1

||Avi||
Avi

for 0 ≤ i ≤ r, then {ui, . . . ,ur} will be an orthonormal basis for the column space of
A.

12



Let σi = ||Avi||. Then Avi = σiui. We can use the Gram-Schmidt process to
extend {ui, . . . ,ur} to , an orthonormal basis {ui, . . . ,ur, . . . ,um} for Rm. Let U =
[u1, ...,um]. Let D be a diagonal matrix containing σi for 0 ≤ i ≤ r and 0s along the
diagonal. Observe that

UΣ = [u1u2 . . .um]



σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
. . .
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
. . .
0 0 . . . 0 0 . . . 0


= [σ1u1 . . . σrur0 . . .0] = AV

Let’s define some terms used in the SVD.

Definition 2.12. The columns of U are called left singular vectors of A. The
columns of V are called right singular vectors of A.

Lemma 2.13. Left singular vectors of A are eigenvectors for AAT and right singular
vectors of A are the eigenvectors for ATA

Proof. Let A = UΣV T be a singular value decomposition. Then

A = UΣV T , AAT = UΣV TV ΣTUT = UΣΣTUT

Therefore, AATU = UD where D = ΣΣT = ΣL. Thus the columns of U form an
orthogonal eigenbasis for ATA. If we apply the singular value decomposition to ATA,
we get

ATA = V ΣUTUΣV T = V ΣΣTV T

Therefore, V is equal to the orthogonal basis of eigenvectors for ATA.

Lemma 2.13 displays how important symmetric matrices are to the SVD. We
could think of the singular value decomposition as just orthogonally diagonalizing
two different matrices.

Multiplication by an orthogonal matrix will always preserve the length of a
vector and can be thought of as a rotation or reflection. Multiplication by a di-
agonal matrix always scales the components of the vector by the entries along its
diagonal. Therefore, the singular value decomposition tells us that any matrix can
be decomposed into a product of a rotation/reflection, a strength, and another rota-
tion/reflection.

13



Lemma 2.14. The column space is spanned by the first r columns of U. The row
space is spanned by the first r columns of V, or the first r rows of V T

Proof. If we take a SVD of a matrix A, we will have A = UΣV T . V T is an invertible
matrix and therefore can be broken up as a product of elementary matrices. This
action will not change the column space. Therefore, UΣV T must have the same
column space as UΣ. Σ is a diagonal matrix where the first r diagonal entries are
non-zero. Therefore, only the first r columns of the product UΣ will be non-zero.
Because U is orthogonal and therefore invertible, the first r columns of U will also
be independent, and therefore span the column space for A. The row space of A is
equal to the column space of AT . If A = UΣV T , then AT = V ΣTUT = V ΣUT . We
can apply a similar argument for the row space.

Lemma 2.15. The last n− r columns of V or the last n− r rows of V T span the null
space of A. The last m− r columns of U span the null space of AT .

Proof. For any right singular vector vi it is true that

Avi = UΣV Tvi = UΣei = Uσiei. (1)

If i > r, then σi = 0 and so Avi = 0. Therefore, the span of the last n − r columns
of V will be contained in the null space. Since these columns are a subset of the
invertible matrix V, they will be independent. Therefore, they will span the null
space since the dimension of the null space is n− r.

For the second statement, observe that AT = V ΣUT . The same argument can
be applied with U in place of V to prove that the last m− r columns of U span the
null space of AT .

See below an example of constructing an SVD.

Example 2.16. Let’s find the SVD of
[
5 4.6
2.5 3

]
- Step 1) Orthogonally Diagonalize ATA[

5 4.6
2.5 3

]T [
5 4.6
2.5 3

]

=

[
−0.713395 −0.700762
−0.700762 0.713395

] [
61.2099 0

0 .20001

] [
−0.713395 −0.700762
−0.700762 0.713395

]T
Note, that

[
61.2099 0

0 .20001

]
=

[
σ2
0 0
0 σ2

1

]
14



- Step 2) Set up V and Σ

V =

[
−0.713395 −0.700762
−0.700762 0.713395

]
,Σ =

[√
61.2099 0

0
√
.20

]
=

[
7.823 0
0 .4476

]
- Step 3) Construct U

u1 =
1

7.823

[
5 4.6
2.5 3

] [
−.713395
−.700762

]
=

1

7.823

[
−6.79048
−3.88577

]
=

[
−.86794
−.496669

]
u2 =

1

.44736

[
5 4.6
2.5 3

] [
−0.700762
0.713395

]
=

1

.44736

[
−0.222193
0.38828

]
=

[
−0.496669
0.86794

]
Thus we have

A =

[
−.86794 −0.496669
−.496669 0.86794

] [
7.823 0
0 .4476

] [
−0.713395 −0.700762
−0.700762 0.713395

]
One important factor is that the methods that we use to find the SVD of a

matrix by hand will be often very different for how a computer will compute the
SVD. The study of numerical linear algebra often surrounds the most efficient com-
putational algorithms to solve or closely estimate decompositions like the SVD.

2.3. Quadratic Forms
We can now use the quadratic form to describe any any function’s effect on

any vector with a symmetric matrix. This concept will be extremely important when
we examine the applications of the SVD; the quadratic form is often used to map
simplify datasets.

Definition 2.17. A quadratic form on Rn is a function Q defined on Rn whose
value at a vector x in Rn can be computed by an expression of the form Q(x) = xTAx
where A is an n × n symmetric matrix. The matrix A is called the matrix of the
quadratic form.

The quadratic form helps us understand any vector x in Rn as a product of its
transpose, an n× n symmetric matrix A, and itself.

When x = {x1, x2, . . . , xn}, the quadratic form, Q(x) can also be written as

n∑
i,j

aijxixj = [x1, ..., xn]

 a11 ... a1n
...... .... ....
an1 ... anm


x1

...
xn


= a11x

2
1 + a12x1x2 + . . .+ a1nx1xn

+a21x2x1 + a22x
2
2 + . . .+ a2nx2xn

+ . . .+ . . .+ . . .+ . . .

+ . . .+ . . .+ . . .+ . . .

+ . . .+ . . .+ . . .+ . . .

+an1xnx1 + an2xnx2 + . . .+ annx
2
n
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Example 2.18. Let x =

[
x1

x2

]
. Compute Let’s find the SVD of xTAx for

[
3 −2
−2 7

]
xTAx =

[
x1 x2

] [ 3 −2
−2 7

] [
x1

x2

]
=
[
x1 x2

] [ 3x1 − 2x2

−2x1 + 7x2

]
= x1(3x1 − 2x2) + x2(−2x1 + 7x2) = 3x2

1 − 4x1x2 + 7x2
2

Definition 2.19. If x represents a variable vector in Rn, then a change of variable
is an equation of the form x = Py, or y = P−1x where P is an invertible matrix
and y is a new variable vector in Rn. More precisely, y is the coordinate vector of x
relative to the basis of Rn determined by the columns of P.

Now, if we plug in the change of variable equation into the quadratic form we
have

xTAx = (Py)TA(Py) = yTP TAPy = yT (P TAP )y

Thus, the quadratic form can also be represented in a way with no “cross” terms
as yTDy will be a diagonal matrix. Furthermore, if we choose P, such that P is
the orthogonal matrix, made up of an orthogonal basis of eigenvectors for Rn. Then
plugging in x = Py gives us

xTAx = yTDy = λ1y2
1 + λ2y2

2 + . . .+ λny2
n

where λ1, λ2, ..., λn are the eigenvalues corresponding to the eigenvectors that form
the columns of P.

Example 2.20. Make a change of variable that transforms the quadratic form to
have no “cross terms” for the matrix [

1 −4
−4 −5

]
- Orthogonally diagonalize A. Its eigenvalues are λ = 3 and λ = −7. Its corre-

sponding unit eigenvectors are

λ = 3 :

[
2
√
5

−1
√
5

]
λ = −7 :

[
1√
5
2√
5

]

Construct an orthonormal basis for R2

P =

[
2
√
5 1√

5

−1
√
5 2√

5

]
D =

[
3 0
0 −7

]
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- x = Py where x =

[
x1

x2

]
and y =

[
y1
y2

]
- Thus

xTAx = x2
1 − 8x1x2 − 5x2

2 = (Py)TA(Py)
= yTP TAPy = yTDy = 3y21 − 7y22

This means that for any vector x in Rn, if we orthogonally diagonalize any n×n
symmetric matrix A, such that

A = PDP T

we can represent x as the product of the transpose of the coordinate vector of x
relative to P, the symmetric matrix A, and the coordinate vector of x relative to
P. The value of this quadratic form for x ̸= 0 is completely determined by what
symmetric matrix A we choose.

Lemma 2.21. For any n×n symmetric matrix A, the quadratic form Q(x) = xTAx.
We have:

a. Q(x) > 0 for all x ∈ Rn if and only if the eigenvalues of A are all positive.

b. Q(x) < 0 for all x ∈ Rn if and only if the eigenvalues of A are all negative

c. Q(x) = 0 for all x ∈ Rn if and only if A has both positive and negative eigen-
values

Proof. First note that we proved for any symmetric matrix A, there exists an orthog-
onal change of matrix variable x = Py such that

Q(x) = xTAx = yTDy = λ1y
2
1 + λ2y

2
2 + ...+ λny

2
n

Since P is invertible, there is a one-to-one correspondence between all nonzero x and
nonzero y. Therefore, the values of Q(x) for x ̸= 0 coincide with the values of the
above expression on the right. Therefore, Q(x) is determined by the signs of the
eigenvalues (λ1, λ2, ...λn).

Consider the relationship between the SVD and the quadratic form. For x ∈ Rn

and the m× n matrix A we have

QA(x) = xTATAx = (Ax)TAx = (Ax)T (Ax) = ||Ax|| ≥ 0 (2)

for all x ∈ Rn. See that if A = UΣV T , then

S = ATA = (UΣV T )TUΣV T = V ΣTUTUΣV T = V ΣTΣV T = V DV T

Therefore, the maximum and minimum values for QS(x) for x such that ||x|| = 1
are the same as for Q0(x) since V is orthogonal implies that ||x|| = 1 ⇔ ||V x|| = 1.
This the maximum σ2

i is the maximizes the quadratic form when ||x|| = 1 and the
minimum σ2

i minimizes the quadratic form when ||x|| = 1.
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CHAPTER 3. APPLICATIONS OF THE SINGULAR
VALUE DECOMPOSITION

Chapter 3 focuses on applications of the SVD. We first introduce the concept
of low-rank approximation. By low-rank, we mean that our approximation matrix
has a lower rank than the original matrix A. This approximation relies heavily on
the fact that the rank of any matrix is equal to the number of non-zero singular
values. We show how to compute such an approximation using the SVD. We give
an example using a real image quantifying how much memory we can save using
this approximation. We also introduce the idea of a spectral norm and show that our
rank-k approximation is the closest rank-k approximation with respect to the spectral
norm. These ideas draw heavily from Section 4.7 in [3].

We then introduce the concept of principle component analysis, which allows
us to use the SVD in the context of statistics. By taking any data matrix, and
putting it in mean-deviation form, a concept that will be explained later, we can
create the covariance matrix. If we denote the matrix in mean-deviation form as
B, the covariance matrix will be equal to 1

N−1
BBT , a symmetric matrix! Every en-

try in the covariance matrix Sij is equal to the covariance between variables i and j.
These statistical properties can be further analyzed by orthogonally diagonalizing the
covariance matrix S. This can be used for PCA approximation as well as data-analysis.

3.1. Low-Rank Approximation

Lemma 3.1. The rank of any matrix A is equal to the number of non-zero singular
values of A.

Proof. Given an m × n matrix A, we can find a singular value decomposition, A =
UΣV T . Both U and V are orthogonal matrices and therefore also invertible matrices.
Further note, that multiplication by invertible matrices preserves rank. Since A =
UΣV T , we have that rank(A) = rank(UΣV T ) = rank(ΣV T ) = rank(Σ). The rank of
a diagonal matrix is equal to the number of non-zero entries. Therefore, the rank of A
is equal to the rank of Σ which is equal to the number of non-zero singular values.

Definition 3.2. Define

Â(k) =
k∑

i=1

σiuivT
i

where σi are the singular values for the matrix A and ui and vi are the left and right
singular vectors of A, respectively.

Lemma 3.3. Â(k) has rank k.

Proof. We have

Â(k) =
k∑

i=1

σiuivT
i =

[
u1 . . . uk

] 
σ1 0 ... 0
0 σ2 ... 0
... ... ... ...
0 0 .... σk


vT

1
...

vT
k

 = UkΣkV
T
k
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TUk
(x) = Ukx is a one-to-one transformation, just as TV T

k
(x) = xV T

k is a one-to-one
transformation. Applying a one-to-one transformations preserve the rank of a matrix
A. We have

rank(Â(k)) = rank(UkΣkV
T
k )

rank(Â(k)) = rank(ΣkV
T
k ) = rank(Σk)

Therefore rank(Â(k)) is equal to the number of non-zero singular values of Σk which
is equal to k if k ≤ rank(A).s

We will eventually prove that this approximation is the best rank-k approxi-
mation for A. However, let’s first give a visual example of the effectiveness of the
Â(k) approximation. It is particularly helpful with image compression. If we think
of an image as a m × n matrix, we can represent the “essence” of the image with a
much lower rank than the original one. See the figures below, which shows different
low-rank approximations of a grey-scale image of me hitting using the approximation
Â(k).

Figure 2. Rank 1 Approximation

Figure 3. Rank 5 Approximation
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Figure 4. Rank 25 Approximation

Figure 5. Rank 50 Approximation

Note that storing the original image would take 1125 ∗ 2000 values. However,
storing a rank k approximation would only take k × (1125 + 2000 + 1) values. We
can see for our rank 50 approximation, it is nearly indistinguishable from the original
image to the human eye. Furthermore, it would take 50(1125 + 1200 + 1) = 116, 300
values to store it which is much less then 1125∗2000 = 2, 250, 000 to store the original
image.

It will be shown that the rank k approximation A(k̂) is the closest rank k
approximation for the matrix A. First, we introduce a notation of size for matrices
called the spectral norm.

Definition 3.4. [3, Section 10.2] The spectral norm of an m×n matrix A is defined

||A|| = maxx
||Ax||
||x||

x ∈ Rn.

The spectral norm determines the maximum scaling factor for x when multiplied
by A.

Lemma 3.5. Let M and m be the maximum and minimum singular values for a
matrix A respectively. Then
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- 1) m ≤ ||Ax||
||x||

≤ M for all x ∈ Rn.

- 2) The spectral norm of A is equal to M.

Proof. We can restrict to ||x|| = 1. This is because for any scalar c we have
|cx| = |c||x| and |A(cx)| = C|Ax| = |c||Ax|. This means our quotient under scaling

is
|A(cx)
|cx|

=
|c||Ax|
|c||x|

=
|Ax|
|x|

. Thus, we can restrict to |x| = 1 when looking for

the maximum and minimum value. Further note that multiplying by an orthogonal
matrix preserves length. If we write A = V ΣUT , then we have

||A|| = max||x||=1
||V ΣUTx||

1
= max||x||=1||ΣUTx|| = max||x||=1||Σx||

= max||x||=1

√
(σ1x2

1 + . . . σnx2
n)

The singular values are greater than or equal to 0. Therefore M ≥ m ≥ 0 Let
M = maxσi and m = minσi. If ||x|| = 1, then

m =

√√√√m
n∑

i=1

x2
i ≤

√√√√ n∑
i=1

σix2
i ≤

√√√√M
n∑

i=1

x2
i = M

If we order the singular values so that M = σi, the greatest singular value, the
maximum is attained at x = e1. The maximum is achieved with the unit vector
corresponding to the largest singular value of A, therefore, the spectral norm is equal
to the largest singular value σ1.

Theorem 3.6. Consider an m× n matrix A of rank r. For all m× n matrices B of
rank k ≤ r, we have

|||A− Â(k)|| = σk+1 ≤ ||A−B||

Therefore, Â(k) is the best rank-k approximation for A.

Proof. The matrix A− Â(k) is a matrix containing the sum of the remaining rank-1
matrices. By Definition 3.4,

A− Â(k) =
n∑

i=k+1

σiuivT
i

We see that {σk+1, . . . , σn}, σk+1 is the biggest singular value, so by Lemma 3.5

||A− Â(k)|| = σk+1

Let B be any matrix such that rank(B) = k. We can choose a basis, x1, . . .xk, for
Col(B). Let X = [x1, . . .xk]. Any vector in the column space can be written as a
linear combination of these basis vectors. Since the columns of B are in the column
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space, we can write B = XY where the columns of Y are the coordinate vectors of
the columns of B with respect to this basis.

Consider Y vi ∈ Rk for 1 ≤ i ≤ k + 1. Since k + 1 > k, the vectors will be
linearly dependent, and so there exists w1, . . . , wk+1 ∈ Rk such that

k+1∑
i=1

wiY vi = 0

where w1, . . . , wk+1 are not all 0. Let w =
k+1∑
i=1

wivi. Rescale so that ||w||2 = w2
1 +

. . .+wk+1 = 1. We have Bw = XYw = XY

k+1∑
i=1

wivi = X

k+1∑
i

wiY vi = 0. Using the

fact that V is orthogonal, we have

Aw = UΣV Tw = U
k+1∑
1

wiΣV
Tvi = U

k+1∑
i=1

wiσiei

where the vectors ei are the standard basis vectors for Rm.
Using Definition 3.4, and the fact U is orthogonal, we have

∥A−B∥2 ≥ ∥(A−B)w∥2 = ∥Aw∥2 =
∥∥∥U k+1∑

i=1

wiσiei

∥∥∥2
=
∥∥∥ k+1∑

i=1

wiσiei

∥∥∥2
=

k+1∑
i=

(wiσi)
2 ≥ (

k+1∑
i=1

w2
i )σ

2
k+1 = σ2

k+1.

Therefore, there exists no matrix Bk with rk(B) = k such that

||A−B|| < ||A− Â(k)||

Thus A(k) will be the best rank-k approximation for A.

3.2. Principal Component Analysis
One common application of singular value decomposition is principal component

analysis (PCA). PCA allows us to reduce and simplify sets of data based on their
covariance and variance across the variables of the data set. The relies heavily on
computing the covariance matrix, B, from the data matrix A.
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Input Data Principle component analysis takes a matrix of observations as input.

Example 3.7. Suppose we took the measurement of height (inches), weight (pounds),
and age (years) of four different adults in a random sample from a population. Our
observation vectors would be

x1 =

 72
180
25

 ,x2 =

 65
140
68

 ,x3 =

 70
165
45

 ,x4 =

 74
200
36


which would give us a data-matrix

X =

 72 65 70 74
180 140 165 200
25 68 45 36


Our data-matrix is a matrix where each column is one of the observation vectors.

For an m × n matrix that PCA takes as input, we will have m measurements or
variables and n different observations for each variable. Thus we have the matrix,
where each observation vector Xk is a column

X = [x1x2....xn] =


x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

...

xm1
...

... xmn


Data Transforming Secondly, PCA requires us first to put the original input
matrix X into mean-deviation form. Doing this requires computing the mean of
each variable. We will then create a matrix X̂, where instead of having our columns
be the observation vectors xk, our columns are x̂k. Let x̂k = xk − m where m is the
vector where each component mi is the mean of variable i.

Example 3.8. m =

 70.25
171.25
43.5

 since meanh = 70.25, meana = 43.5, meanw = 171.25.

Thus, our matrix X̂ would be

 1.5 −5.5 −.5 3.5
8.75 −31.25 −6.25 28.75
−18.5 24.5 1.5 −7.5


Let mrowj be the mean of row 0 ≤ j ≤ m. Our mean deviation matrix will be

X̂ where X̂ is

[x̂1x̂2 . . . x̂n] =


x11 −mrow1 x12 −mrow1 . . . x1n −mrow1

x21 −mrow2 x22 −mrow2 . . . x2n −mrow2
...

...
...

...

xm1 −mrowm
...

... xmn −mrowm
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We call the m× n matrix S the the (sample) covariance matrix where

S =
1

N − 1
X̂X̂T

This is not only a symmetric matrix, but it also contains important information about
the variance of the data. First note, that for matrix multiplication of two matrices
AB, the matrix product ABij, will be

n∑
k=1

(aik)(bkj)

Secondly note that (AT )ij = Aji. Thus, Sij will be equal to

1

n− 1
([BBT ]ij) =

1

n− 1

n∑
k=1

(Bik)((B
T )kj) =

1

n− 1

n∑
k=1

(Bik)((B)jk)

which is equal to
1

n− 1

n∑
k=1

(xik −mrow1)(xjk −mrowj)

This is equivalent to the covariance of variables i and j. Thus, each index Sij of S is
equal to the covariance of variables i and j!

Example 3.9. For our data-matrix X our covariance matrix S would be

1

4− 1
X̂X̂T =

 1.5 −5.5 −.5 3.5
8.75 −31.25 −6.25 28.75
−18.5 24.5 1.5 −7.5

 1.5 −5.5 −.5 3.5
8.75 −31.25 −6.25 28.75
−18.5 24.5 1.5 −7.5

T

which is equal to

1

3

 45 288.75 −189.5
288.75 1918.75 −1152.5
−189.5 −1152.5 1001

 =

 15 96.25 −63.1667
96.25 639.583 −384.167

−63.1667 −384.167 1001
3


Well, what does the covariance represent? The covariance measures the joint-

variability of two random variables. A positive covariance means that variables tend
to be above or below their mean values at the same time, while a negative covariance
means that one variables tends to above the mean while the other is below, and
vice-versa.

Because our data matrix, B is an m× n matrix, consider the SVD of B

B = UΣV T

Furthermore, since S = 1
n−1

X̂X̂T , we say that

S =
1

n− 1
UΣV TV ΣTUT =

1

n− 1
UΣΣTUT
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Since S = X̂X̂T is symmetric, we have an orthogonal diagonalization of S

S = PDP T = UΣΣTUT

The matrix U is made up of orthogonal eigenvectors of S and the eigenvalues of S
are related to the singular values of X like

λd =
σ2
d

n− 1

Example 3.10. The SVD of S in our example involving height, age, and weight is

U =

−0.125805 .12312 .984385
−.82414 −.565327 −.03461
.55223 −.815627 .172589



Σ =

908.437 0 0
0 129.913 0
0 0 12.9343


V T =

 .0468423 .829633 .556341
−.827098 −.28008 .487303
.560102 −.482975 .673068

T

We can also observe that the total variance of the data matrix is equal to the
trace of the covariance matrix.

Lemma 3.11. The total variance of the data, is equal to the trace of the covariance
matrix, S = 1

n−1
XXT which is equal to the sum of the eigenvalues of S

Proof. Remember that the trace of a square matrix is equal to the sum of the elements
across the diagonal. Note that for the covariance matrix S, the elements across the
diagonal Sij where i = j, is equal to the variance of each variable in the data. Also
note that the trace of a matrix products is commutative; Tr(AB) = Tr(BA). Since
S is a symmetric matrix we have Tr(S) = Tr(PDP T ) = Tr(DPP T ) = Tr(D). Thus,
Tr(S) =

∑n
i=1 λi. Since, Tr(S) =

∑n
i=1 λi =

∑n
i Sii, it is true that the total variance

across all variables of the data is equal to the sum of the eigenvalues of the covariance
matrix.

Since S = PDP T , where P is an orthogonal matrix that forms a basis for Rm,
any observation vector XK can be written as Xk = Py such that

x0k

x1k

.....
xmk

 = [u1u2....um]


y1
y2
.....
ym


where the new variables y1, ...., yp are uncorrelated and are arranged in order of de-
creasing variance. Note that for each Xk it is true that Yk = P−1Xk = P TXk

25



Each observation vector Xk will now receive a “new name”, Yk such that XK =
PYk, where Yk is the coordinate vector of Xk with respect to the columns of P, as
Yk = P−1Xk = P TXk for k = 1, ....,m.

We can also see that the covariance matrix of Y1, ...,Yn is P TSP .

Proof. Let S ′ = 1
n−1

Y Y T which means that S ′ = 1
n−1

PX(PX)T = P (( 1
n−1

)XXT )P T =

PSP T

By definition, P TSP will be a diagonal matrix and contains the eigenvalues
of S on the diagonal arranged so that λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 where P is made
up of the unit eigenvectors of S. Further note that because this matrix is diagonal,
each variable will be uncorrelated; the co-variances for difference variables will be 0.
Furthermore, we can also say that this new matrix has the same total variance as the
original matrix S

Proof. Let S ′ = Y Y T we showed that this equals PSP T . Thus Tr(S ′) = Tr(USUT ) =
Tr(S). Thus, S and S ′ will have the same trace and the same eigenvalues which
summed together will equal to the total variance of the variables.

We call the unit vectors u1, ...um of the covariance matrix S, the principal
components of the data (in the matrix of observations). The first principle com-
ponent is the eigenvector corresponding to the largest eigenvalue of S, the second
principal component is the eigenvector corresponding to the largest eigenvalue and
so in.

The first principal component u1 determines the new variable y1 in the following
way. Let c1, ..., cm be the entries in u1. Since uT

1 is the first row of P T , the equation*
Y = P TX shows that

y1 = uT
1X = c1x1 + c2x2 + ...+ cpxp.

3.3. Using PCA to Reduce the Dimension of Multivariate Data
Since Y = P TX, and P T is orthogonal, it will not change the trace of Y , and

will therefore keep the total variance (the sum of the eigenvalues the same). Further
note that since Y is diagonal, the covariance of different variables will be 0, and the
variables will be uncorrelated. Thus, we can use PCA to create a new Data-matrix
with the same total variance, but where the co-variance between each variable is 0.
Thus we could use this matrix Y to create low-rank approximations of the data, which
is not only accurate, but maintains the co-variance among different variables to be 0.
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CHAPTER 4. NEURAL NETWORKS

Neural networks are machine-learning models which are inspired by how neu-
rons fire in the brain to make decisions. Nevertheless, the actual difference between
neural networks and the brain are numerous and distinct. Before we introduce their
structure, let’s consider why neural networks are important. Neural Networks are ex-
tremely powerful, particularly when it comes to image processing and pattern recog-
nition. Their structure allows computers to effectively recognize patterns through
automatic extraction of features of the input. These features can then be used for
classification or prediction. Let’s now introduce their structure.

4.1. The Components of a Neural Network
A neural network is composed of neurons and edges with the neurons usually

organized in layers and the directed edges connecting neurons from one layer to the
next. We can think of neurons as variables with assigned values which we calculate
through “forward propagation” which will be defined later. They are also called
activation units. We can think of edges as variables whose value indicates how strongly
one neuron influences another. The weights will serve as a type of scalar to the neuron
it recieves.

These edges’ values will be used to define functions that take the values of the
neurons in one layer and use these to define values in the next layer. There will be a
pre-determined number of layers in the network and the activation units in the final
layer will signify something about the data inputted into the neural network.

For example, suppose we have a data point with two variables and we want to
classify the point as “on” or “off”. Consider figure 6 which displays a neural network
with one “hidden layer”, the layers that do not contain input or output neurons and
with three neurons inside this layer.

Figure 6. Structure of a Neural Network

The depth of the network is equal to the total number of layers in the network.
Each layer will also have a width which is based on the number of neurons at each
layer. We call the value of the edges that connect neurons to different layers, the
weights of the network. The weights are used to define a function that uses one
layer to define how one input neuron becomes another input neuron. We have x1, x2
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as the input neurons, where wij represents the weights applied to the them. Also,
s1, s2, s3 are the neurons at the hidden layer, and y is the output neuron. Consider
figure 4.1

How do these weights transform the neurons? The best way to understand
this is by viewing a neural network as simply layers of matrix-vector multiplication
composed together. If we have a data set the entire data set will usually be a data
matrix X, where each vector is a data point. In our previous example, each data point
would have two variables, x1 and x2. Thus, we can think of each layer of neurons as
a vector. If a layer has 3 neurons, it would be represented as a vector with dimension
3. In a fully connected layer, there is an edge between each input neuron and each
output neuron. In this case, we can represent the edges together as a matrix as well.
We will call this the weight matrix. Thus, the action of the weights on the first layer
becomes

w11 w12

w21 w22

w31 w32

[x1

x2

]
=

w11x1 + w12x2

w21x1 + w22x2

w31x1 + w32x2


which would then undergo another matrix multiplication to produce the output neu-
ron y.

We previously only described the interactions between neurons and edges as
matrix-transformation. However, neural networks will be made up of non linear
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transformations. The goal of many neural networks is to identify complicated patterns
to solve complicated problems. Having our functions limited to be linear functions
would severely restrict the ability for neural networks to identify complicated patterns
that will most likely not be linear. Therefore, at each layer we introduce, non linear
activation functions which transform our linear functions into non linear functions.
Consider the activation function σ as R → R. Let σb : Rn → R where b ∈ Rn. We
now describe the interaction between neurons and edges as an non linear function
where 4.1 becomes

σb

w11 w12

w21 w22

w31 w32

[x1

x2

]
=

w11x1 + w12x2

w21x1 + w22x2

w31x1 + w32x2

 = σb(

w11x1 + w12x2

w21x1 + w22x2

w31x1 + w32x2

) =
σ(w11x1 + w12x2 − b1)
σ(w21x1 + w22x2 − b2)
σ(w31x1 + w32x2 − b3)


where σb maps the dimension of the output neurons to the same dimension. Thus if
we have y1, . . . yn output neurons at each layer, we have

σb(

y1...
yn

) =
σ(y1 − b1)

...
σ(yn − bn)


Thus, equation 4.1 becomes

Figure 7. Non Linear Transformation

Example 4.1. Let’s consider a helpful, but slightly unrealistic example. Suppose we
have images representing two numbers: a 1 and a 0. A one would be a 3× 3 matrix
with values down the middle. A 0 will also be a 3× 3 matrix but with values all the
way across the perimeter. Let’s consider that our data set has just a 1 and a 2.

1 =

0 5 0
0 8 0
0 1 0

 , 0 =

1 3 4
1 0 5
3 7 6
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Note that if we vectorize both matrices, which is common in neural networks, the
number in vector for will be

1 =



0
5
0
0
8
0
0
1
0


0 =



1
3
4
1
0
5
3
7
6


Imagine we constructed a two-layer neural network, with 9 input neurons and one
output neuron. See

Figure 8. Neural Network Example

As explained later, the values of our weights will be randomly initialized. Nev-
ertheless, their values would determine the value of the neurons in the final layer.

σ


[
4 4 3 3 1 6 7 9 10

]



0
5
0
0
8
0
0
1
0




= σ

([
37
])
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σ


[
4 4 3 3 1 6 7 9 10

]



1
3
4
1
0
5
3
7
6




= σ

([
205
])

Both the non linear activation function and the bias vector work in tandem to
improve our network’s ability to make accurate predictions on complicated problems.
Applying the activation function first introduces this non linearity to our function,
allowing our network to recognize more complex patterns. Secondly, together with
the bias vector it helps normalize the values of neurons between a certain range.
The bias vector helps determine the cut-off in how neurons will transitions between
a certain range. For example, consider a commonly used activation function where
each neuron is scaled to a value between 0 and 1.

σ =
1

1 + e−βx

It’s graph looks like

Figure 9. Logistic Sigmoid Function

In this example, the activation function transitions between 0 and 1 at the x
value of 0. This would represent the bias vector having values of 0. Suppose we
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wanted the transition to occur at some value b. We would set the value of the bias
vector to b, and our graph would be

Figure 10. Logistic Sigmoid Function Shifted

Thus, while the activation function determines the shape of the curve that
will normalize the values of our neurons, the bias vector gives us flexibility in how
these neurons are normalized. They determine the cut-off which transitions numbers
between a certain range.

The sigmoid function allows us to interpret outputs as probabilities between
0 and 1. This sigmoid function, is mainly used for binary classification problems;
when we want our output to be one of two classification. The soft max activation
function is a combination of multiple sigmoid functions. It can can be used to assign
probabilities in classification problems with more than two outputs.

σ(z)j =
ezj∑K
k=1 e

zk

There are many other activation functions that can be used to introduce non
linearity to each layer. However, it is important that these functions are differentiable
almost everywhere. As we will see later, this will make the process of optimizing the
network much easier.

Let’s formalize the architecture of a neural network.
Let a

(l)
j be the value of the j-th activation unit in the l-th layer. Note that

activation units in each layer will affect activation units in the next layers. If there
are M (l−1) activation units at the (l − 1)-th layer, we have

a
(l)
j = σ

M(l−1)∑
i=0

w
(l)
ji a

(l−1)
i + wj0
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We can view the bias wj0 as a special weight parameter by setting a
(l)
0 = 1 in each

layer. Then

a
(l)
j = σ

M(l−1)∑
i=0

w
(l)
ji a

(l−1)
i

 .

for 1 ≤ l ≤ L, where L is thte total number of layers.
This equation is stating that every activation unit is the result of summing

all the weight-input vector connections and applying the activation function to the
result. A neural network takes values in the input layer and uses forward propa-
gation through the hidden layers. We define forward propagation as the action
of neurons “propagating” forward to the next layer through the edges connected to
them. Consider the previous picture

Figure 11. Forward Propagation

with

σb

w11 w12

w21 w22

w31 w32

[x1

x2

]
=

w11x1 + w12x2

w21x1 + w22x2

w31x1 + w32x2

 = σb(

w11x1 + w12x2

w21x1 + w22x2

w31x1 + w32x2

) =
σ(w11x1 + w12x2 − b1)
σ(w21x1 + w22x2 − b2)
σ(w31x1 + w32x2 − b3)


Consider that a1 = σ(w11x1 + w12x2 − b1)) =

∑2
i=1 w1ixi − w10. where w10 = b1.

4.2. Gradient Descent
We previously described how the process of forward propagation depends on the

weights in the network. We will now describe how these weights are selected.
In neural networks, we utilize gradient descent to take an initial selection

of weights whose values are often initialized randomly and update them through an
iterative process until our total error is close to 0. This error is computed with respect
to a set a data that includes input values and the correct output values which we call
the “training data.”

Before we consider gradient descent in the context of neural networks, let’s
consider the problem of optimizing general function f : RN → R. Recall the definition
of the gradient.
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Definition 4.2. The gradient of a scalar-valued differentiable function f of several
variables is the vector ▽f whose value at point p is the vector whose components are
the partial derivative of f at point p. For f : Rn → R, its gradient ▽f is defined at
the point p = (x1, x2, . . . , xn) for the n-dimensional vector

▽f(p) =


∂f
∂x1

(p)
∂f
∂x2

(p)
...

∂f
∂xn

(p)


We now describe the process for finding a local optimum f(w∗) of a function,

f : Rn → R, if it exists. We start with an initial guess w0 and then iterate according
to the rule

wi+1 = wi − λi(▽f)(wi))
T

which, under the right conditions, the the sequence f(w0) ≥ f(w1) ≥ . . . will converge
to a local minimum.

The variable λ is called the step size. This will tell us the rate we will walk
against the gradient. It is also called the learning rate. This is a tuning parameter
in an optimization algorithm that determines the step size at each iteration while
moving toward a minimum of a loss function.

In simple terms, the gradient helps us known what direction to walk in to find
the local minimum, and the learning rate tells us how big a “step” we will take in that
direction. If our learning rate is too high, we could imagine over-stepping the local
minimum. If our learning rate is too low, it would be computationally inefficient to
get to the minimum. See the image below

Figure 12. Learning Rate

In practice, if a suitable learning rate is chosen, gradient descent should return
a vector of weights which minimizes the error.
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Given a weight vector w, we define E(xn,w, tm) =
1

2
||y(xn,w) − tn||2, then

E(w) can be defined E(w) =
N∑

n=1

E(xn,w, tn) where xn, tn with n = 1, . . . n are a

collection of inputs and desired outputs respectively. E(w) quantifies how close the
network is getting to the desired output in the training data. We will use gradient
descent to minimize the error function. Note that y(xm,w) will be the vector y where
each yj = a

(L)
j .

Our job is to choose the weights of the neural network which minimizes E(w).
Gradient descent, tells us which direction to move the weights in so that E(w) moves
closer towards its local minimum.

Note that by equation 4.1,

a
(l)
j = σ

M(l−1)∑
i=0

w
(l)
ji a

(l−1)
i


Assuming the network has l layers and layer l − 1 has N neurons, we have

yj = a
(l)
j σ

(
N∑
i=0

wjia
(l−1)
i

)
.

We have
▽E(x) =

∂E(x,w, t)

∂w
(l)
ji

for all l = 1, . . . , L and all i, j.

4.3. Backpropagation
One of the most popular methods to evaluate the gradient of the error function

E(w) for a neural network is known as backpropagation. In particular it computes,
∂E(w)

∂w
(l)
jk

by evaluating

∂E(xn,w, tn)

∂w
(l)
ji

for 1 ≤ n ≤ N .
Applying the chain rule, we have

∂E(xn,w, tn)

∂w
(l)
ji

=
∂E

∂a
(l)
j

∂a
(l)
j

∂w
(l)
ji

In what follows, we will be evaluating various auxiliary partial derivatives using a

recursive process. The following notation will be helpful. Let δ
(l)
j =

∂E

∂a
(l)
j

. Now, we

have
∂E(xn,w, tn)

∂w
(l)
ji

= δ
(l)
j

∂a
(l)
j

∂w
(l)
ji

.
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We will now use the chain rule to compute the derivatives on the right side.

Using a
(l)
j = σ

M(l−1)∑
r=1

w
(l)
jr a

(l−1)
r

, we have
∂a

(l)
j

∂w
(l)
ji

= σ′

M(l−1)∑
r=1

w
(l)
jr a

(l−1)
r

 a
(l−1)
i .

For l < L, we compute δ
(l)
j recursively in terms of δ(l+1)

i , (1 ≤ i ≤ M (l+1)), as follows

δ
(l)
j =

M(l+1)∑
i=1

∂E

∂a
(l+1)
i

∂a
(l+1)
i

∂a
(l)
j

=
M(l+1)∑
i=1

δ
(l+1)
i

∂a
(l+1)
i

∂a
(l)
j

where
∂a

(l+1)
i

∂a
(l)
j

= σ′

M(l)∑
r=1

w
(l+1)
ir a(l)r )

w
(l+1)
ij , since a

(l+1)
i = σ

M(l+1)∑
r=1

w
(l+1)
ir a(l)r

.

For l = L, we have δ
(L)
j =

∂E

∂a
(L)
j

=
∂

∂a
(L)
j

M(L)∑
r=1

(a(L)r − tn)2

 = a
(L)
j − (tn)j.

Note that if are trying to find the value of some ∂E(xn,w,tn)
∂w

(l)
ji

, and have already

computed ∂E(xn,w,tn)
∂w

(l+1)
ji

,
(∑

i δ
(l+1)
i

∂a
(l+1)
i

∂a
(l)
j

)
should already be known! If we start by

computing the weights at the last layer, computing the weights of layers after are
much more computationally efficient!

Lemma 4.3. The backpropagation algorithm goes as follow

1) Apply an input vector xn to the network and forward propagate through the
network to find the activations of all the hidden and output units.

2) Evaluate δk for all the output units.

3) Backpropagate the δs to obtain δj for each hidden unit.

4) Use these values to evaluate ∂En

∂w
(l)
ji

= δ
(l)
j

∂a
(l)
j

∂w
(l)
ji

for each w
(l)
ji at each layer l.

In conclusion, we will determine a certain number of data points which we will
perform gradient descent and backpropagation on. For methods like batch we will
use every data point for this process. Methods like stochastic gradient descent, will
choose a random number of data points to conduct this process. However, what
matters is that for every data point, we will utilize backpropagation to compute the
gradients for each weight. We will then use gradient-descent to move each weight
in the direction away from the gradient closer to the local minimum. We will then
repeat this process for some list of data points, at each data point moving closer to
the local minimum.

In practice, the training data-sets can be very large. In the example above, we
utilized batch-gradient descent and defined the loss function with respect to all
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the data-points. However, this can be computationally expensive. A different idea
is to define the cost with respect to some randomly selected subset of data points at
each step of the descent. This is called stochastic gradient descent.
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CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

5.1. Convolution as a Sliding Dot Product
Particularly for image-processing, most neural networks have multiple layers

that involve convolution before they reach fully-connected layers. The purpose of
convolutional layers is to extract features from the input image. The input layer
will be some input image which can be represented with an m × n matrix A where
each entry corresponds to a pixel in the image. This is the standard for grey-scale
pictures. However, for color images where we are using the RGB color model, each
RGB component of the image is represented by a matrix. Viewing these three separate
m×n matrices as one object, we obtain a higher-dimensional version of a matrix called
a tensor.

Consider the case of a grey-scale image represented by the following matrix

A =


3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9


We can consider the following 9 different sub-matrices A1, . . . A12 respectively

3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




3 3 2 1 0 5

0 0 1 3 1 6

3 1 2 2 3 7

2 0 0 2 2 8

2 0 0 0 1 9




Convolution involves performing a dot-product operation between each sub-

matrix and a pre-determined kernel matrix. The kernel matrix is the matrix that
slides through every sub-matrix and performs a dot-product operation. The kernel
represents some feature in the image that we are trying to recognize. Each entry in
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the output matrix says something about the similarity between the kernel and the
corresponding sub-matrix that was used to compute the dot product. Suppose our
kernel matrix is

K =

0 1 2
2 2 0
0 1 2


. The result of the convolution of A with k would beA1 ·K A2 ·K A3 ·K A4 ·K

A5 ·K A6 ·K A7 ·K A8 ·K
A9 ·K A10 ·K A11 ·K A12 ·K

 =

 12 12 17.0 35
10.0 17.0 19.0 41
9.0 6.0 14.0 44


Consider how we got A4 ·K

1 ∗ 0 + 0 ∗ 1 + 2 ∗ 5 + 2 ∗ 3 + 1 ∗ 2 + 6 ∗ 0 + 2 ∗ 0 + 1 ∗ 3 + 7 ∗ 2

Note that the dot product of a matrix with itself is the square of its magnitude,
so values in the matrix output that are close to the magnitude squared of the kernel,
indicate that that part of the matrix held some important pattern. This is why con-
volution is so effective at feature extraction. As we will explain later, convolutional
neural networks still have fully-connected layers at the end of the network.

5.2. Convolution as Matrix Multiplication
It can be shown that convolving a vector with another vector is equivalent to

multiplying a vector by a circulant matrix.
Let’s define a circulant matrix

Definition 5.1. A circulant matrix, C, is a matrix of the form

C =



c0 c1 c2 . . . cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

... . . . . . . . . . c2
c1

c1 . . . cn−1 c0


where each row is a cyclic shift of the row above it. The structure can also be
characterized by noting that (k, j)-entry Ckj is given by

Ckj = cj−k (mod n)

We write j − k (mod n) to refer to the index 0 ≤ i ≤ n− 1 such that
i ≡ j − k (mod n).

Definition 5.2. Given a,x ∈ Rn, we define the convolution of a and x, denoted a⋆x,

to be the vector whose kth component is
n∑

l=1

ak−lxl for 1 ≤ k ≤ n.

39



The fact that definition 5.2 implies the following lemma can be easily verified.

Lemma 5.3. For a, x ∈ Rn, we have a ⋆ x = y = Cax where Ca where Ca is a
circulant matrix made up of the ak

Ca =


a0 an−1 . . . a1
a1 a0 . . . a2
... . . .

...
an−1 an−2 . . . a0



y = a ⋆ x = Cax =


y0
y1
...

yn−1

 =


a0 an−1 . . . a1
a1 a0 . . . a2
... . . .

...
an−1 an−2 . . . a0




x0

x1
...

xn−1

 = Cax.

Thus, the convolution of one vector convolved over the other is equivalent to a
matrix vector product, where the corresponding matrix is a circulant matrix. How-
ever, in most image processing applications, our input will not be a n dimensional
vector, but rather a m× n matrix.

5.3. Convolution of Grey-Scale Images
Let’s return to our original example. If our training data set is a collection of

grey-scale images with corresponding labels, each image in the set would be a matrix.
Like the example we introduced on page 39, see example 5.3, we would be convolving
some matrix kernel over a each image matrix. It can be shown that we can also
represent this operation as matrix multiplication, albeit with a slight twist.

Lemma 5.4. For any kernel K, the linear transform for the convolution by K is
represented by the following block matrix

A =


Circ(K0, :) Circ(K1, :) . . . Circ(Kn−1, :)

Circ(Kn−1, :) Circ(K0, :) . . . Circ(Kn−2, :)
...

...
...

...
Circ(K1, :) Circ(K2, :) . . . Circ(K0, :)


that is if X is an n× n matrix, and Y is the result of a 2− d convolution of X with
K where for all i, j we have

Yij =
∑
p∈[n]

∑
q∈[n]

Xi+p,j+qKp,q

then vec(Y ) = A vec(X)
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Thus, the vectorized output of convolution on a matrix input, is equivalent to
vectorizing the original input and multiplying it by a doubly block circulant matrix.

Let’s bring up some important properties of convolution; sparse connectivity,
parameter sharing, and equivariant representation. These ideas are explored
in greater detail in [4].

First, note that convolutional layers, unlike fully-connected layers, involve sparse
connectivity. Compare this to when we viewed convolution as matrix-multiplication
from 5.3. a1 · k a2 · k a3 · k a4 · k

a5 · k a6 · k a7 · k a8 · k
a9 · k a10 · k a11 · k a12 · k


In a fully-connected layer every output entry is calculated using all of the input
entries. However, note that in the matrix above, every entry is not calculated using
every entry from the input matrix A. Rather, each convolution output entry depends
only on the entries from the corresponding sub-matrix.

The figure below further visualizes the idea of sparse connectivity. The first
image in the figure shows sparsely connected neurons, while the second image shows a
fully-connected layer, where every input neuron is connected to every output neuron.

Figure 13. Sparse Connectivity

Similarly, convolutional layers involve parameter sharing. This means that we
are using the same set of weights applied to different input elements. This idea is
made obvious first when viewing convolution as a sliding dot-product; we are applying
the same kernel across every sub-matrix. Also, consider an arbitrary circulant matrix

c0 c1 c2 . . . cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

... . . . . . . . . . c2
c1

c1 . . . cn−1 c0
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Notice that each row of the circulant matrix contains the same set of weights.
Therefore, the resulting vector product only uses weights c0, . . . cn−1 for every com-
putation!

Finally, consider the idea of translation equivariance. To do this, let us introduce
the idea that circulant matrices commute.

Definition 5.5. Define the circular left-shift operator, S⋆ : Rn → Rn by

S⋆[x0x1 . . . xn−1]
T = [x1 . . . xn−1x0]

T

so we have (S⋆x)k = xk+1 for all x ∈ Rn.

Definition 5.6. Define the circular right-shift operator, S : Rn → Rn by

S[x0 . . . xn−2xn−1]
T = [xn−1x0 . . . xn−2]

T

so we have S(x)k = xk−1 for all x ∈ Rn.

Lemma 5.7. [?] A matrix M is circulant ⇔ it commutes with a circulant shift opera-
tor, S such that SM = MS. This also leads to shift invariance or shift equivariance.
Think of an n− vector x as as a function of Zn then SMx = MSx. Taking an input
vector and shifting it a certain number and then multiplying it by a circulant matrix
is equivalent to shifting everything in the circulant matrix by the same number and
then multiplying it by the vector x

[1]
Figure 14. Geometric view of Convolution

Lemma 5.8. If C(u) is a circulant matrix and C(v) is also a circulant matrix it is
true that

C(u)C(v) = C(u)C(v)

Example 5.9. Consider two circulant matrices C1 and C2 where

C1 =


1 2 1 4
4 1 2 1
1 4 1 2
2 1 4 1

 , C2 =


3 7 0 1
1 3 7 0
0 1 3 7
7 0 1 3
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We can see that

C1 × C2 =


33 14 21 20
20 33 14 21
21 20 33 14
14 21 20 33

 , C2 × C1 =


33 14 21 20
20 33 14 21
21 20 33 14
14 21 20 33


Thus, it is obvious why circulant matrices are powerful for image recognition!

They are able to find patterns no matter where they appear because they are trans-
lationally equivariant!

5.4. Computing Convolutions using Fast Fourier Transform
We previously discussed how multiplying a circulant matrix by a shifted vector

is equivalent to multiplying a circulant matrix by the original vector and then shifting
the product.

Note that both shift operators can be represented as circulant matrices! To
see, examine the matrix representations of the shift operators

Sx =


0 1
1

. . . . . .
1 0




x0

x1
...

xn−1

 =


xn−1

x0
...

xn−2



S⋆x =


0 1

. . . . . .
1

1 0




x0

x1
...

xn−1

 =


x1
...

xn−1

x0


It can be seen that S⋆ is the transpose of S. Furthermore, note that both matrix
representations are circulant matrix as S = C0,1,0,...,0 and S⋆ = C0,...,0,1

Lemma 5.10. We can construct a basis of n eigenvectors for the left-shift operator
S⋆ on Rn where each eigenvector is wm where

wm =
[
1 pm p2m . . . pm(n−1)

]T
,m = 0, . . . , n− 1,

where
p = ei

2π
n .

Lemma 5.11. Each eigenvalue of a left shift matrix can be written as λm = ei
2π
n
m

How does this help us easily compute circulant matrices? Consider that we can
write any circulant matrix as a linear combination of left shift matrices. Therefore,
we can write any matrix-vector product of a circulant matrix and a vector Cx(x)
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as multiplying the linear combination of left-shift matrices and the vector which is
equivalent to retaining the weights of the combination and replacing each S with its
corresponding eigenvalue and multiplying by the vector. Consider the example below
where we have

Example 5.12.

C =

1 3 2
2 1 3
3 2 1

 = 1

1 0 0
0 1 0
0 0 1

+ 2

0 0 1
1 0 0
0 1 0

+ 3

0 1 0
0 0 1
1 0 0


= 1I + 2S + 3S2

We can see that we can write C as a linear combination of the left shift matrices such
that C = 1I + 2S + 3S2.

Note that now we have that for any vector wm

Cvm = (I + 2S + 3S2)vm

which is equivalent to
1Iwm + 2Swm + 3S2wm

Further note that we should be able to write each Swm as λmvm. Therefore, we write
Cwm, finally, as

Cwm = 1wm + 2λmwm + 3λ2
mwm = (1 + 2λm + 3λ2

m)wm

Remark 5.13. As in the previous example, every circulant matrix can be decomposed
as a polynomial in S. It is then easily verified that all circulant matrices commute
(Lemma 5.8).

The lemma below formalizes Example 5.12.

Lemma 5.14. The eigenvalues of a circulant matrix µk are equal to

µk =
n−1∑
l=0

xle
−i 2π

n
kl, k = 0, 1, . . . , n− 1

where each row of the circulant matrix is some permutation of x0, . . . , xl

Proof. Note that we can find find the eigenvalues of any circulant matrix Cx such
from the eigenvectors of the shift operator wm where

Cxwm = λmwm ⇔


x0 xn−1 . . . x1

x1 x0 x2
... . . . ...

xn−1 xn−2 . . . x0




1
pm
...

pn−1
m

 = λm


1
pm
...

pn−1
m
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Consider the first row of the equation*. It is

λm(x0 + xn−1pm + . . .+ x1p
n−1
m = x0 + x1p

−1
m + . . .+ xn−1p

−(n−1)
m

which is equal to
n−1∑
l=0

xlp
−l
m =

n−1∑
l=0

xlp
−ml =

n−1∑
l=0

xle
−i 2π

n
ml = x̂m

Therefore, we can conclude that circulant matrices are simultaneously diagonal-
izable. We can write any circulant matrix vector product as a linear combination of
the eigenvalues of the left-shift operator and the corresponding vector. This makes it
computationally efficient for computer to compute circulant matrix-vector products
as it simply requires recalculating the eigenvalues of shift matrices which are easily
computed.

5.5. PCA in Convolutional Neural Networks
Can principle component analysis be used in conjunction with convolutional

neural networks? Both principle component analysis and convolution are used to
find the most important patterns in the data. For PCA, this data reduction is based
on variance and co-variance, while in convolution we reduce the data by looking for
particular patterns which will help lead to the correct prediction. What if we were to
apply PCA to a dataset and then train a convolutional neural network on the reduced
set? We performed this test on the MNIST dataset. We compared the effectiveness
of using a unchanged data-set and a dataset reduced through PCA trained on the
same convolutional neural network. Both networks had the same structure, as seen
below.

model = Sequential()
model.add(Conv1D(64, (3,3), activation = ‘‘relu"))
model.add(Conv1D(64, (3,3), activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 3, strides = 1, padding = ‘‘valid"))
model.add(Conv1D(32, (3,3), activation = ‘‘relu"))
model.add(Conv1D(32, (3,3), activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 3, strides = 1, padding = ‘‘valid"))
model.add(Conv1D(16, (3,3), activation = ‘‘relu"))
model.add(Conv1D(16, (3,3), activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 3, strides = 1, padding = ‘‘valid"))
model.add(Conv1D(8, (3,3), activation = ‘‘relu"))
model.add(Conv1D(8, (3,3), activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = (2,2), strides = 1, padding = ‘‘valid"))
model.add(Flatten())
model.add(Dense(16, activation = ‘‘sigmoid"))
model.add(Dense(10, activation = ‘‘softmax"))
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Note that our dataset was made of different grey-scale images of numbers from 0− 9.
Therefore, in the original data set, each data point was a 28× 28× 1 matrix with a
corresponding 10-dimensional vector which signified what number it was. See

However, remember that PCA requires that each data point be a vector. Therefore,
before applying PCA, we had to reshape each data point into a 28×28 = 784 dimen-
sional vector. We then reduced the data to only include the principal components
which explained 99 percent of the total variance. This reduced each data point to a
331 dimensional vector. Furthermore, even though we used the same general structure
for the neural network, because our input data were now one-dimensional vectors, our
convolution was no longer two-dimensional convolution, but one-dimensional convo-
lution. Thus our structure was as follows

model = Sequential()
model.add(Conv1D(64, 3, activation = ‘‘relu"))
model.add(Conv1D(64, 3, activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 3, strides = 1, padding = ‘‘valid"))
model.add(Conv1D(32, 3, activation = ‘‘relu"))
model.add(Conv1D(32, 3, activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 3, strides = 1, padding = ‘‘valid"))
model.add(Conv1D(16, 3, activation = ‘‘relu"))
model.add(Conv1D(16, 3, activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 3, strides = 1, padding = ‘‘valid"))
model.add(Conv1D(8, 3, activation = ‘‘relu"))
model.add(Conv1D(8, 3, activation = ‘‘relu"))
model.add(MaxPooling1D(pool_size = 2, strides = 1, padding = ‘‘valid"))
model.add(Flatten())
model.add(Dense(16, activation = ‘‘sigmoid"))
model.add(Dense(10, activation = ‘‘softmax"))

We found that our standard convolutional neural network was 98.84 percent accurate
on the training data. It however took around 15 hours to train the network to the
data. See

Note that total time is in seconds and that 54101.34850502014 seconds is equivalent
to 15.028 hours.
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Conversely, our convolutional neural network which was trained on the data
reduced through principal component analysis was around 92 percent accurate on the
training data, but only around 4.73 hours to train. (17050.66984653473 seconds is
equivalent to 4.73 hours). See

Therefore, we found that although applying PCA to the data before training it on the
same convolutional neural network decreased the accuracy by around 6 percent, it
also had a 68 percent decrease in running time. In conclusion, it seems that principle
component analysis is a valid way to reduce the running time of training a network.
Some things to consider going forward is different ways to apply principle component
analysis to two-dimensional data. Our method required flattening the data and and
applying one dimensional rather than two-dimensional convolution to it. Methods of
principle component analysis that do not require vectorized data might see a decreased
loss in accuracy, while also maintaining the decrease in running time.
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