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CHAPTER 1. INTRODUCTION

1.1. The Parable of Campestria

Nestled in the Quadratus Mountains, there was once a great kingdom that
thrived for centuries before its collapse. Campestria, as the kingdom is known to
us, attributed her prosperity almost entirely to geography. The Campestrian lands
were completely flat and her border formed a perfect rectangle, bounded by a treach-
erous mountain range whose snow-capped peaks melted into gentle streams in the
spring. Chilly waters snaked down the mountains’ slopes and uniformly irrigated the
Campestrian fields each year. Her communal harvests were consistent and bountiful,
and in turn, her people were jovial and content, albeit uneducated.

For many years, Campestria flourished under the rule of Paritius the Sixth, the
latest of a long and proud dynasty. The old man was well-liked — his people found him
compassionate and strong-willed, though not once unfair — but the Campestrians grew
anxious as his beard whitened, for Paritius lacked a successor. Each day at sunset,
the king fell to his knees in prayer, begging the patron goddess of Campestria for an
heir. “Let not my fathers’ line end at Six” he pled. “Bring Seven to the Paritians!”

On the first day of spring, when the mountaintops began to melt, the king awoke
to find seven identical boys placed in a crib at his doorestep. Paritius wept, for the
goddess had answered his prayers: these infants were to be his sons. Ever in support
of fairness, though, the king realized a greater task was now at hand: Campestria had
to be divided into seven regions of equal area, one for each son. Paritius knew he could
accomplish this goal with rectangular regions, but feared that in this case an over-
zealous governor could build walls along his borders and block water from reaching the
neighboring regions. Wisely, then, Paritius set out to separate Campestria into seven
triangular regions, each with equal area. “How hard could it be?” he thought. “All
that’s required is the placement of some points and some lines within a rectangular
boundary.” He spent the whole day attempting to separate his kingdom, but to no
avail. Frustrated by his failure, Paritius mandated that every man in the kingdom
submit to him a valid plan: the best drawing would allocate Campestria for his sons.

One week later, Paritius set out into his kingdom to collect the plans. He
stopped first at a small cottage, where he was greeted by a modest farmer. The king
entered into the cottage and immediately demanded a glass of wine, so that the two
might drink together while admiring the farmer’s drawing. The farmer scrambled to
fetch the wine and timidly said “The task was impossible, sir.” He had made no plan.
Outraged, Paritius accused the man of treason and condemned him to exile over the
mountains. The farmer begged Paritius to stay for the afternoon, to drink, and to
reconsider his sentence, but the king replied “My decision is final. Our drink together
will be your last in Campestria.” The farmer became incensed (the punishment was
unfair!) and slipped poison into the wine, knowing that his exile was a death sentence
in all but name. Thus began the collapse of Campestria.

Following the king’s death, his seven infant sons were elevated to the throne
simultaneously, as no alternative arrangements had been made. As they aged, rivalry



and jealousy broke out between them. Campestria was soon ripped apart by a series of
bloody civil wars, and the once-glorious kingdom would never rise from the conflicts.
It would be easy to debate whether jealousy or greed was the primary cause of
Campestria’s demise, as indeed philsophers and historians are so often accustomed,
but Paul Monsky proved both arguments to be unfounded in 1970 [12]. He showed
that the farmer was right all along: Paritius had requested the impossible. One
cannot divide a square (or rectangle, as will be discussed in Chapter 2.2) into an
odd number of triangles with equal areas. Had more effort been used to understand
the nuances of placing points and lines, the downfall of Campestria may have been
avoided. Welcome, dear reader, to my thesis. It’s a story about points and lines.

Figure 1. Equidissections of a rectangle (like Campestria) are created by placing
points and lines within its boundary. Monsky’s Theorem shows that there is no
equidissection of a rectangle into an odd number of triangles [12].

1.2. Points and Lines and Incidence (oh my!)

When faced with complicated problems, scientists from many disciplines often
reduce the “trickier” aspects into simpler, more manageable elements. Physicists learn
the behavior of a system by understanding the effects of the many individual forces at
play; ecologists comprehend ecosystems via the interrelationships of all the life they
contain; and neuroscientists approach memory, behavior, and consciousness through
the structures and functions of neurons. In a similar manner, many problems in
ancient and modern geometry can be boiled down to the relationships between points
and lines, subject to various constraints. For example, the parable in Section 1.1
describes a question originally posed to mathematicians as the equidissection problem:
can a rectangle be dissected into an odd number of non-overlapping triangles, each
with equal area? As Paritius described in the parable, this problem can be approached
by placing points within the boundary of a rectangle and connecting them with line
segments, subject to the constraints that the connected regions must be triangular,
that there must be an odd number of these regions, and that each region has an equal
area. Monsky’s proof makes use of this approach, focusing on vertices and edges
instead of triangles [12].

In other words, when faced with a problem in geometry pertaining to two-
dimensional objects, it is often helpful to examine the configuration of their one-
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and zero-dimensional boundary components: points and lines. The equidissection
problem and many others like it can therefore be re-framed as questions of whether
or not a particular configuration (or family of configurations) is realizable. This
thesis will focus almost exclusively on the realizability of various configurations, a
topic which, like much of mathematics, has surprising depth and richness despite its
easily-accessible appearance. To discuss realizability is to discuss incidence — that is,
which points lie on which lines — and so this section will introduce the relationship
between incidence theorems and geometric configurations.

First, we must introduce some basic concepts and notations. As noted repeat-
edly above, points and lines are the key players in our discussion of incidence theorems.
It’s not an easy task to properly define these objects, as they seem so pictorially in-
tuitive. In his Elements, Euclid defines a point as “that which has no part.” If that
definition makes no sense to you, dear reader, you're not alone. Imagine instead a
pinprick in a piece of paper that, no matter how greatly magnified, remains infinitesi-
mally small. The figures presented throughout this thesis might increase their size for
ease of viewing, but keep in mind that points are particular, incredibly tiny locations.
One can hopefully understand why points are considered zero-dimensional objects,
being infinitesimal in both length and width. Lines, alternatively, have infinite length
and infinitesimal width (or vice versa); thus, lines are the one-dimensional analogs to
zero-dimensional points.

Definition 1.1. Let P be a set of points in the (Euclidean) plane. An ordinary
line is a line containing exactly two elements of P. A connecting line contains at
least two elements of P.

It is apparent from these definitions that every ordinary line is a connecting
line, but not every connecting line is an ordinary line. This nuance will play a key
role in various results throughout the later sections. We now have the language to
begin a discussion of incidence. The following postulates, albeit trivial, underpin our
understanding of the subject:

Postulate 1.2. A point is contained by an infinite number of lines.
Postulate 1.3. Two (distinct) points are contained by a unique line.

There is no such postulate for a collection of three distinct points; the vertices of
an equilateral triangle yield a counterexample. Thus, results pertaining to incidence
become interesting when the collinearity of three or more distinct points is at play.

Definition 1.4. Let A, B, and C be not necessarily distinct points. If A, B, and C'
are contained by the same line, then they form the collinear triple denoted (ABC).

When the number of points in consideration increases, it becomes less and less
obvious which collinear triples are formed, if any at all. Incidence theorems therefore
provide a greater understanding of the relationship between sets of points and the lines
that contain them. The results of these theorems are often not obvious, but provide
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A,B,C A,B C

Figure 2. Up to labeling, there are three ways to arrange three points on a line.
Postulate 1.2 applies to the left representation; Postulate 1.3 applies to the right.

profound insight into our understanding of various geometries. We will explore this
connection in the upcoming chapters. Throughout this thesis, an incidence theorem
will take the following form: if some set of points forms some set of collinear triples,
then at least one other collinear triple is also formed. To approach the study of
incidence theorems may seem daunting — there are an infinite number of possibilities
to understand — but families of these theorems emerge quickly. Particularly, it is
easy to categorize incidence theorems by their realizability. In the next section, we
will introduce the relationship between geometric configurations and their underlying
algebraic structures.

1.3. From Geometry to Algebra (and Back Again)

This thesis examines the realizability of various geometric configurations, a topic
for which there are two ways of framing the problem. The first approach is visually
intuitive and asks “Where can we view these configurations?” The second approach is
equivalent, but much more abstract. It asks “What algebraic structure is required to
construct these objects?” This thesis will repeatedly stress the importance of the con-
nection between algebra and geometry illustrated by the study of configurations. So,
how is realizability determined? Many strategies exist (some are better than others
for different configurations), but it turns out that in many cases, the ways in which
an incidence theorem can be proven informs the realizability of its corresponding ge-
ometric configuration. Given its rich history and large number of proofs, the famous
Sylvester-Gallai Theorem exemplifies this phenomenon well. In this section, we will
present two proofs of this theorem and unpack its realizability to better characterize
the focus of this thesis. The theorem is stated below.

Theorem 1.5 (Sylvester-Gallai). Let P be a finite set of points in the plane, not all
of which are collinear. Then P has an ordinary line.

We note that the hypothesis of this theorem requires P to contain at least three
distinct points in the plane, since every two points are collinear. An alternate (but
equivalent) statement of the theorem says that if P is a finite set of points in the
plane, then there exists a line that passes through either exactly two points in P
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or every point in P. Many mathematicians have successfully provided proofs of this
theorem, but M. Aigner and G. Ziegler describe Leroy Kelly’s 1958 proof as “simply
the best” in their anthology of the theorem’s proofs [4]. Yes, this theorem is important
enough to warrant such a text. Kelly’s proof is incredibly straightforward and easy to
visualize, earning its designation as best. We provide our version of this proof below.

E’

Figure 3. An illustration of Kelly’s proof of the Sylvester-Gallai Theorem.

Kelly’s Proof of Theorem 1.5 ([9]). For the sake of contradiction, suppose that every
connecting line of points in P contains at least three points. Then there exist a point
p € P and a connecting line ¢ such that p ¢ ¢. Since P contains a finite number
of points, there are choices for p and ¢ that are closer in terms of distance than all
other such pairs of points and lines. An extension of Postulates 1.2 and 1.3 requires
that there is a point p’ € £ such that the segment pp’ is perpendicular to ¢. Recall
that ¢ contains at least three points in P by assumption: at least two of these points
lie on one side of p’. Denote these points by b and ¢ such that b lies between p’ and
c on £. Note that b may coincide with p’. Postulate 1.3 guarantees the existence of
the connecting line ¢ which contains both p and c¢. As above, there is a point b € ¢/
such that the segment bb’ is perpendicular to ¢. Then the triangles 77 = bb'c and
T, = pp'c are similar, with 77 C T, due to our choices of b and ¥'. It follows that the
length of bb' is less than that of pp’, thereby violating our assumption that p and ¢
are the closest point-line pair. Then by contradiciton, ¢ is an ordinary line. O

Although tidy and concise, some mathematicians have criticized Kelly’s usage
of overcomplicated machinery; namely, the notions of Euclidean distance and perpen-
dicularity. H. S. M. Coxeter, for example, describes this proof as “like using a sledge
hammer to crack an almond.” Geometers really do have a way with imagery. Coxeter
asserted that “parallelism and distance are essentially foreign to this problem, which



is concerned only with incidence and order.” The proof which he provided (I like to
imagine in aloof defiance) is provided below.

Cozxeter’s Proof of Theorem 1.5 ([6]). For the sake of contradiction, suppose that ev-
ery connecting line of points in P contains at least three points and that not all points
in P are collinear. It follows that some three of these points form a triangle in the
plane. We denote these points by a,b, and ¢, and the triangle that they form by
T = abc. Let L, be the set of all connecting lines containing both a and at least one
other element of P. If ¢ is not parallel to the line bc, then ¢ intersects bc. Suppose
that ¢ € L, intersects bc at the point p’ and that p’ is not an element of P. Then
if a connecting line of points in P is not parallel to ¢, it meets ¢ either at a, p’, or
some other point. Travelling in the direction from a to p’, denote the first of these
intersection points that does not belong to the set P by p. Note that p may coincide
with p’. As chosen, no connecting line of points in P meets ¢ beteween a and p. We
will obtain a contradiction by proving the existence of such a connecting line.

Since p ¢ P, we know that p lays on a connecting line containing at least three
points in P. Denote these points by ¢, 7, and s in such a way that q is between p and
r, but s is not. Then since a,r € P, we know that a third point ¢t € P exists on the
connecting line containing a and r. There are two cases to consider. First, suppose
that ¢ is between a and r. Then the the connecting line st intersects ¢ between a and
p by Pasch’s Theorem (a line that enters a triangle must exit the triangle) [6]. Next,
suppose that ¢ does not lie between a and r. Then the connecting line gt intersects ¢
betweeen a and p. Thus we reach a contradiction, so 1" = abc cannot exist. O

Figure 4. An illustration of Coxeter’s proof of the Sylvester-Gallai Theorem. We
place the point ¢ somewhere on the line containing a and r.

While definitely more cumbersome, Coxeter’s proof relies only on the notion of
order, in contrast to the many properties required by Kelly’s Proof. The difference
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between the proof styles exemplifies the realizability of the Sylvester-Gallai Theorem’s
corresponding geometric configuration. What we hope to show throughout this thesis
is that fewer geometric properties required to prove an incidence theorem correspond
to a more widely-realizable configuration. For example, Kelly’s approach to proving
the Sylvester-Gallai Theorem utilizes the concepts of length and angle (perpendicu-
larity), both of which arise from axioms of Euclidean geometry, whereas Coxeter only
uses ordering in his proof. Configurations that are realizable regardless of distance
and angle are called projective configurations, as they can be realized in projective
space. A full discussion of projective geometry will follow in the next chapter. It fol-
lows that since the proof of the Sylvester-Gallai Theorem requires ordering, then so
too does the underlying algebraic structure of its corresponding projective configura-
tion. Namely, we see that the configuration can be realized over the projective plane
CP?, but not RP?. However, this conclusion makes little sense without knowledge of
projective space, its axioms, and its transformations, so the next chapter will discuss
these topics at length.



CHAPTER 2. FROM GEOMETRY TO ALGEBRA

The final paragraph of the previous chapter may have come across as nonsensical to
those not well-versed in projective geometry. A space without distance or angle comes
across rather abstractly. In this chapter, we hope to elucidate projective geometry
as it pertains to our study of configurations and their realizability. We will focus
particularly on two-dimensional projective planes, describing various methods for
their construction and their underlying algebraic structures along the way. In short,
we provide a fundamental connection between algebra and geometry.

2.1. The Projective Plane

Although it may appear daunting, the study of projective geometry — particu-
larly that of the projective plane — is remarkably intuitive. Imagine yourself in the
passenger seat of a car driving down a highway in Kansas. Perhaps the sun is set-
ting in front of you; perhaps a certain cloud formation strikes your fancy; perhaps
you just really like the highway. Whatever your motivation, you feel compelled to
sketch the scene in front of you. As you draw, you notice that the boundaries of the
highway begin to creep closer to one another as they approach the horizon, where
they finally meet at a point. We know that these lines are parallel in actuality, of
course. When we draw, though, we often take the idea of perspective into considera-
tion absentmindedly. In order to convey the “three-dimensionality” of the world on a
two-dimensional medium, parallel lines must meet somewhere. Surprise, dear reader,
you're not in Kansas anymore. Welcome to the projective plane.

e

e i

\/ W

Figure 5. In this drawing, the parallel sides of the highway meet at a point.
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Artists understood projective geometry centuries before its mathematical for-
malization. In fact, Gérard Desargues relied heavily on the concept of perspective in
art to inform his studies while pioneering the subject in the early seventeenth cen-
tury. He also noticed the phenomenon of the aforementioned highway drawing; that
parallel lines in Euclidean space will intersect in projective space. We call such points
of intersection ideal points, and the collection of all ideal points forms the ideal line
in the projective plane. Intuitively, we can visualize an ideal point by “adding” it to
the end of a line, so we often refer to ideal points as points at infinity. It follows that
one-dimensional projective space is a circle. Formally, an n-dimensional projective
space is defined as the union of a projective space of dimension n — 1 with an n-
dimensional Euclidean space. It follows that in two dimensions, the projective plane
is formed by adjoining a line at infinity to the Euclidean plane. Mathematicians have
successfully axiomized projective geometry by building upon this intuition, though we
focus on the (two-dimensional) plane for the purposes of this thesis. A wide swath of
projective planes exists, varying with respect to their underlying algebraic structure.

Definition 2.1. A projective plane K satisfies the following three axioms:
1. There is a unique line containing every two points in K.
2. There is a unique intersection point for every two distinct lines in /.
3. There are at least four points in K such that no three form a collinear triple.

The first axiom relates the two fundamental objects of geometry; the second,
known as the elliptic parallel, serves as the crux of projective geometry; and the third
provides a lower bound on the number of possible points in a finite projective plane.
The astute reader will note that this definition suggests the existence of other axioms
of projective geometry and will question their omission. The definition above provides
the most general framework for a projective plane. When necessary, other axioms are
assumed to help prove certain results. It turns out that these additional axioms help
to restrict the possible underlying algebraic structures of projective planes, so at this
point we recall some abstract algebra.

Definition 2.2. A ring (R, +,-) is an ordered triple such that (R, +) is an Abelian
group, that - is associative over R, and that - distributes over + from both the left
and the right for elements of R.

Definition 2.3. A skew field is a ring with the property that every nonzero element
has a multiplicative inverse.

Definition 2.4. A field is a skew field such that - is commutative.

We are naturally familiar with a variety of number systems, most of which
provide natural examples and counterexamples to the definitions above. The integers
Z form a ring, for example, but the positive integers Z, fail to satisfy this definition
since they lack additive inverses. The quaternions create a skew field, but the “clock
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integers” 7Z/127Z lack multiplicative inverses for every element: we see that 3k # 1
(mod 12) for every value of k. The real numbers R and the complex numbers C are
both fields, just to name a few. In particular, the integers modulo p form the finite
field F, for every prime p. We hope to show that differences in underlying algebraic
structures imply differences in projective planes, and vice versa.

2.2. Field-Based Projective Planes and Transformations

In the previous section, we discussed the axioms that all projective planes must
satisfy and thereby (perhaps indirectly) outlined how to construct a projective plane
axiomatically. We now shift our attention to a more direct construction rooted in al-
gebra: the process of projectivizing a vector space. This method restricts the resulting
projective planes to those defined over a field. With that being said, projectivizing a
vector space allows us to gain great insights into the realizability of various configu-
rations. In this section, we will outline the process of projectivization, then discuss
the projective transformations that arise as a byproduct.

Let V be an n-dimensional vector space over a field F. We “remove” the origin to
consider V\{(0,...,0)} and define the equivalence relation ~ such that (z1,...,z,) ~
(@), ... 2)if (z1,...,2,) = (k2), ..., kal) for some nonzero k € F. Defined formally,
we projectivize this vector space as follows:

PR = VA{(0,...,0)} / ~

To gain a more geometric perspective, we note that lines through the origin in V
correspond to points in PF"~!, and that planes through the origin in V correspond
to lines in PF""!. Generally, we say that m-dimensional objects through the origin
in V correspond to (m — 1)-dimensional objects in PF"~'. Thus, we say that the
projective plane obtained by projectivizing a three-dimensional vector space V is the
set of all lines containing the origin. This intuition allows us to understand that,
while larger than R?, the projective plane is indeed two-dimensional.

It may seem difficult to visualize the projective plane abstractly, but its coor-
dinatization should ease our understanding. Each point in the projective plane is
assigned homogenous coordinates, which we denote using brackets and colons. For
example, the point (5,0,0) in R? corresponds to the point [5 : 0 : 0] in PF2. Due
to the construction of PF?2, though, we recognize that homogeonous coordinates are
equivalence classes in the projective plane. Thus, the point (5,0,0) also corresponds
to[1:0:0],[—6:0:0],and [ : 0: 0] in PF? - these are different names for the same
point of projective space. In fact, every point on the line y = 2 = 0 corresponds to
[1:0:0] in PF% With this intuition, we can now better understand how to visualize
the projective plane. It thus becomes clear that lines through the origin in 3-space
correspond to points in the projective plane.

Suppose that V = R3 for ease of visualization, although any three-dimensional
vector space will suffice, and let p = (z,v, z) be a nonzero point in R3. Then there is
a vector ¥ pointing from the origin to p, defined explicitly by ¢ = (z,y, z). Then the
corresponding unit vector v = ¥/||U|| points from the origin to a point on the unit
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sphere in R3 for all p # (0,0,0). We denote this point by p’ and obtain homogenous
coordinates for p by writing the components of p’ with brackets and colons. It should
be noted that these homogenous coordinates are simply representatives of their re-
spective equivalence classes, though assigning them unit length in R? allows a more
standardized understanding.

Figure 6. We obtain homogenous coordinates in RP? by computing p’ from p.

Proposition 2.5. Let V be a three-dimensional vector space defined over a field F.
Then PF? satisfies Definition 2.1.

Proof. Since V is a vector space, there is a unique plane that contains every two
distinct lines through the origin in V. Thus there is a unique line containing every
two points in PF?. Similarly, we know that every two planes containing the origin
in V intersect at a line through the origin. It follows that every two lines in PF?
intersect at a point. Finally, note that 0 and 1 are distinct elements of F since F is
a field. Then [0:1:0],[1:0:0], [1:0:1],and [0:1: 1] are elements of PF? such
that no three are collinear. O

At this point in the chapter, the reader might ask “but why?” In short: algebraic
constructions yield geometric generalizations. Recall that in Chapter 1.1, we stated
that Monsky’s Theorem holds over any rectangularly-bounded region, though our
example only involved one set of dimensions. It turns out that this generalization
arises as a byproduct of the affine transformations — dilation, rotation, translation,
and reflection — which we may apply since the rectangle in question is embedded
in the affine plane. The “big picture” idea of this section is that projectivizing a
vector space over some field allows us to make use of projective transformations in
the subsequent chapters for ease of our proofs. We define and explore the projective
transformations below.
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Definition 2.6. Let F be a field and consider PF2. If a map T : PF? — PF?
preserves every collinear triple, then 1" is a projective transformation.

What do these transformations actually look like? Here, we exploit the definition
of projectivization to categorize these maps. In linear algebra, we learned that every
invertible 3 x 3 matrix M (over F) acts on F? by sending lines through the origin
to lines through the origin. These matrices are elements of the general linear group
GL3(F). As mentioned above, lines in F* correspond with points in PF? under
projectivization. Thus, M acts on PF? by mapping points to points. It can be
shown that M is incidence-preserving and is therefore a projective transformation.
Further, we recall that projectivization is invariant under scalar multiplication. For
every nonzero k € F, then, we know that kM is invertible and induces the same map
as M on PF%. When defined up to scalar equivalence, these matrices are elements of
the projective general linear group PGL3(F). Formally, PGL3(F) is the quotient of
GL3(F) by its center {kl3: k € F\ {0}}. For the purposes of this thesis, we restrict
our attention to only these transformations.

Theorem 2.7. Fvery element of PGL3(F) is a projective transformation.

Just as the projective plane extends the affine plane, the group of projective
transformations extends the group of affine transformations Affy(F). Recall that an
affine transformation f is a combination of rotations, dilations, translations, and
reflections. Algebraically, we say that f is some composition of an invertible 2 x 2
matrix A and addition of a vector v. Extending f to a projective transformation
T requires that we define it appropriately on the ideal line. The embedding o :
Affy(F) — PGL3(F) explicitly realizes this extension, where o(f) = 7. A more
formal definition of this embedding is found in Remark 2.8 below.

Remark 2.8. ]ff{x] = A{x] + v, then o(f) =T is the 3 x 3 matriz [161 11}] :
Y Y

Understanding the group of projective transformations allows us to better com-
prehend the behavior of points and lines in the projective plane. We now provide a
series of results that enrich our study and ameliorate subsequent proofs.

Lemma 2.9. Let p,q,r € PF? such that p = [py : p2 : p3], ¢ = [q1 : @2 : q3], and
r=[ry:ry:r3]. Then p,q,r are collinear if and only if the following equation holds:

b1 D2 P3
@1 ¢ q3|=0.
L Tre T3

Proof. Note that p, g, r are collinear if and only if the lines £, {,, {, € F? are coplanar,
where each ¢; contains the origin and corresponds to the point ¢ upon the projectiviza-
tion of F*. Then ¢, ¢,, {, are linearly dependent over F and so det[¢,(,(,] = 0. Since
determinants are preserved through transpose, we also have det[(,(,(,]T = 0. Tt
follows that det[pqr] = det[pgr]’ = 0, thereby proving the given statement. ]
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Lemma 2.10. Let p,q,r,s € PF? be distinct and such that no three are collinear.
Then there exists a unique f € PGL3(F) such that f(p) =[1:0:0], f(¢) =[0:1:0],
f(r)=10:0:1], and f(s)=[1:1:1] [10].

Proof. Let f~' € PGL3(F) correspond to the matrix A = [a;;] where 1 < i,j < 3.
1
Then there is some nonzero k; € F such that kyp = A- [0| = [a11 a12 a13]. Thus, we
0
have determined the first row of A up to some nonzero scaling factor. Similar logic
allows us to define the second and third rows up to nonzero scaling factors ks, k3 € F'.
Explicitly, the second and third rows are koq and ksr, respectively. It follows that
1
s = A- | 1] if and only if there is some nonzero k; € F such that kys = k1p+keq+ksr.
1
We re-scale this equation in such a way that k4 = 1. Then since p, ¢, r are linearly
independent, this system of three equations in three unknown variables has a unique
solution (ki, ks, k3). We note that since k4 is independent from any two other k;, the
matrix A is invertible and thus defines a projective transformation. We also note that
A is unique up to scale [10]. O

Corollary 2.11. Let p,q,r € PF? be distinct. Then p,q,r are non-collinear if and
only if some f € PGL3(F) satisfies f(p) = [0 :0 : 1], f(¢g) =[1:0 : 0], and
f(r)y=10:1:0].

Corollary 2.12. Let p,q,r € PF? be distinct. Then p,q,r are collinear if and only if
some f € PGL3(F) satisfies f(p) =[1:0:0], f(¢) =[1:0:1], and f(r)=[0:0:1].

Proof. Let p = [py - p2 : pal, ¢ = a1 : @2  gs), and r = [ry : 73 : 3], and suppose
that p,q,r are collinear. Then since p, q,r are distinct, we may write r as a linear
combination of p and ¢. Now, we consider the matrix

kipi kips Eips
A_l = 1 i) X3 )
kory  korg  kors

where k1, ko are nonzero elements of F and = = [z : x5 : x3] is linearly independent
from kip and kyr. Thus, A~! is an invertible 3 x 3 matrix and is thereby a projective
transformation; so too is its inverse. Simple computations reveal that:

1 0 1
A_l 0] = klp, A_l 0] = /{?27”, A_l 0] = klp + k'g?“.
0 1 1

It follows that the matrix A is the projective transformation that we desire. Now,
suppose that some f € PGL3(F) satisfies f(p) =[1:0:0], f(¢) =[1:0:1], and
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f(r)=10:0:1]. Then f corresponds to some invertible matrix M and we write:

my Mo M3
]\4_1 = [Ty MMy Mg
my Mg Mg

where each m; € F. The following results follow naturally:

p=[my:mgy:ms]
q = [m1 4+ my7: mg + mg : m3 + myg

r = [mz7:mg:my
Then ¢ is a linear combination of p and 7, so p, ¢, r are collinear. O

Corollary 2.12 can be extended to show generally that there is a projective
transformation that maps any three distinct and collinear points to any other three
distinct and collinear points. Similarly, Corollary 2.11 shows that there is a projective
transformation that maps any three distinct and non-collinear points to any other
three distinct and non-collinear points. These results allow us to better comprehend
how points and lines behave in the projective plane. For much of the remainder of
this thesis, we will apply these transformations to ameliorate our proofs.

2.3. Configurations and Realizability

With a more solid understanding of the projective plane and its associated
group of transformations, we may (finally) begin a formal discussion of projective
configurations and their realizability. Below, we provide some preliminary definitions.

Definition 2.13. A configuration is a pair (P, L), where P is a set of points and L is
a set of triples generated from points in P. A projective configuration can be realized
in at least one projective plane.

In other words, a configuration is an abstract “desire” of a certain geometry
where the points and lines have been prescribed. Since £ is made up of triples, the
definition only makes sense if (P, L) has a realization in the projective plane.

Definition 2.14. A realization of a projective configuration (P, £) in PF? is a map
p: P — PF? such that for every £ € £, the image p({) is collinear.

Explicitly, realizations map abstract triples to collinear triples in the projective
plane. There are many different ways to realize a configuration, though.

Definition 2.15. A realization p is combinatorially complete if it is injective. Oth-
erwise, the realization is combinatorially degenerate. If the image p(P) is contained
by a single line, then the realization is fully collinear.

Thus, there are four flavors of realizability for us to consider. A realization can
be both combinatorially complete and fully collinear, for example. Before launching
into that discussion, though, we conclude this chapter with two motivating examples
of projective configurations and the realizability.
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Lemma 2.16 (General Tetrahedron). Let (P, L) be a projective configuration where
P ={A,B,C,D} and L = {(ABC), (ABD), (BCD)}. Any realization of (P, L) is

fully collinear.

Proof. For the sake of contradiction, suppose that a realization does not form (ACD),
so A, C', and D determine the vertices of a non-degenerate triangle. There are two
cases to consider for the position of B, without loss of generality. First, suppose that
A = B. Then (BCD) implies (ACD), yielding a contradiction. Next, suppose that
A # B. Then there is a line ¢ containing both A and B. It follows from (ABC)
that C' € £ and from (BCD) that D € ¢. Thus, A, B, D are collinear and we reach a
contradiction. We conclude that the realization must form (ACD) and thereby that

the realization is fully collinear. O]
A
—e o o —
A B C D
B C

Figure 7. An illustration of Lemma 2.16. Every realization must be fully collinear.

Corollary 2.17 (Distinct Tetrahedron). Let (P, L) be a projective configuration
where P = {A,B,C,D} and L = {(ABC), (BCD)}. If a realization of (P, L) is
combinatorially complete, then it is fully collinear.

Since they only contain four points, the above configurations are perhaps the
easiest to visualize and comprehend. In each case, full collinearity is attained inde-
pendent of field; that is, coordinates are not required to prove these results.

Definition 2.18. A projective configuration is universally realizable if it can be re-
alized over every projective plane.

There are many configurations that are not universally realizable, though, and
the majority of this thesis will investigate such configurations. Many canonical results
of projective geometry correspond to not universally realizable configurations, for
example. One of these famous theorems is that of Desargues, which we will show
introduces some additional structure to Definition 2.1. It is by nature an incidence
theorem and is presented below.
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Theorem 2.19 (Desargues’s Theorem). Let A, B,C, D, E, F,O be distinct points in
a projective plane such that (ADO), (BEO), and (CFO) are collinear triples. Then
there exists a line £ on which the following pairs of lines intersect: AC and DF; BC

and EF; and AB and DE.

Some visual clarity is provided in Figure 8. Desargues’s Theorem holds in any
projective space with dimension greater than or equal to 3, but there are many fla-
vors of the projective plane over which this theorem fails: we refer to these planes
as non-Desarguesian. If a projective plane is Desarguesian, then it can be assigned
coordinates over some skew field. In the context of this thesis, assuming the validity
of Desargues’s Theorem allows us to conclude that various projective configurations
are realizable over skew fields. It follows that a projective configuration corresponding
to the assumptions of Desargues’s Theorem is not univerally realizable. In the subse-
quent chapters, we will make expressively clear the cases in which this assumption is
necessary. It should be noted that in the vast majority of extant literature on projec-
tive geometry (e.g. [5, 8]), Desargues’s Theorem is discussed in close proximity to the
theorem of Pappus, another wildly influential result. For example, Hilbert (somewhat
inaccurately) states that “any theorems concerned solely with incidence relations in
the [Euclidean projective] plane can be derived from [Pappus’ Theorem]” [8].

Figure 8. An illustration of Desargues’s Theorem, which only holds over skew fields.

Theorem 2.20 (Pappus’s Theorem). Let P = {A,B,C,D,E,F,G,H,I} be a set
of points in the projective plane. If P forms the collinear triples (ABC), (ADH),
(AEI), (BDG), (BFI), (CEG), (CFH), and (GHI), then P induces (DEF).

As with Desargues’s Theorem, it turns out that Pappus’s Theorem only holds
over specific types of projective planes. Specifically, a Pappian plane can be assigned
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Figure 9. An illustration of Pappus’s Theorem, which only holds over fields.

coordinates over some field. Any projective configuration corresponding to the as-
sumptions of Pappus’s Theorem is thereby not universally realizable. There are many
other axioms of projective geometry that prove useful for our studies. Marchisotto
proved that by adding two additional axioms to our definition of a projective plane,
we restrict our focus to those which extend a field [11]. The first of these axioms is
that of Fano, which states that the three diagonal points of a complete quadrangle
are never collinear. Assuming this axiom also requires that these projective planes’
underlying algebraic structures cannot have characteristic 2. The Fano plane thus
does not satisfy this axiom, for example, and so the Fano configuration (discussed
subsequently in Chapter 3.1) is thereby not realizable in this context. Marchisotto’s
final assumed axiom requires that if a projective transformation leaves three points
on a line invariant, it leaves every point on that line invariant. Marchisotto goes
on to prove that assuming these axioms restricts our focus to Pappian planes alone,
illustrating a powerful connection between algebra and geometry. This proof will be
discussed in more detail in Chapter 4.

Just as all fields are by definition skew fields, so too are all Pappian planes by
definition Desarguesian. In other words, Pappus’s Theorem implies Desargues’s. For
the purposes of this thesis, Pappian planes allow us to make sweeping generaliza-
tions about the realizability of various projective configurations, mostly due to the
convenience of their coordinatization. If a configuration is not universally realizable,
assigning coordinates to its realization often ameliorates the proof. Thus, the results
of Lemma 2.10, Corollary 2.12, and Corollary 2.11 will greatly ease our understand-
ing. With this in mind, we will investigate the different flavors of realizability for a
variety of configurations in the subsequent chapters.
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CHAPTER 3. SYMMETRIC PROJECTIVE
CONFIGURATIONS

The central purpose of this thesis is to investigate the relationships between the
constructions of various projective configurations and the algebraic structures under-
lying the planes over which they are realizable. If that sentence intimidates you, dear
reader, fret not. This topic seems insurmountable at first, but there are more easily
accessible avenues into this study which we hope to use as an entry into a larger
discussion of realizability. In this chapter, we will investigate symmetric configura-
tions, whose various symmetries allow us to make several generalizations due to the
properties of projective transformations (discussed in the previous chapter), which
in turn ameliorate the examination of their realizability. We say that a projective
configuration is symmetric if each point lies on the same number of lines and every
two points are joined by exactly one line. The configurations corresponding to the
theorems of Desargues and Pappus, for example, are both symmetric in nature. This
chapter will focus primarily on two such configurations, the Fano configuration and
the Hesse configuration, as gentle and accessible introductions to our study.

3.1. The Fano Configuration

In Chapter 2.2, we outlined the process used to projectivize any given field.
We note that the smallest projective plane is the projective Fano plane P(F5)?, con-
structed over F5, the field with two elements. This section will examine the corre-
sponding Fano configuration and discuss its realizability. In the process, we hope to
make more clear the connection between projective configurations and the underlying
algebraic structures of the fields over which they may be realized.

E

A B C

Figure 10. A realization of the Fano configuration in the projective Fano plane P(F5)?2.
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Definition 3.1. The Fano configuration is a configuration F = (P, L) such that
P = {AB,C,D,E,F,G} and L = {(ABC), (ADG), (AEF), (BFG), (BDE),
(CDF), (CEG)}.

Remark 3.2. Fach point in F lies on exactly three lines.
Remark 3.3. FEzxactly one line joins every two points in F.

It follows quickly from these remarks that the Fano configuration is symmetric.
Indeed, mathematicians studying incidence geometry (e.g. [5, 8]) often refer to the
Fano configuration as 73, where the numeral 7 denotes the number of points contained
in F and the subscript 3 describes the number of lines passing through each point. It
is worth emphasizing that this notation only applies to symmetric configurations. In
the next section, we will discuss the Hesse configuration 9, and its connections with
83. First, though, we will discuss the realizability of the Fano configuration.

Theorem 3.4. Let F be a field. The Fano configuration has a combinatorially com-
plete realization over PF? if and only if F has characteristic 2.

Proof. Suppose F has a combinatorially complete realiztion over PF2?. Lemma 2.10
allows us to assume that A = [1 : 0: 0], B=1[0:1:0], D =1[0:0:1], and
F =1]1:1:1]. Now write that C' = [¢; : ¢g : ¢3]. Since (ABC) is collinear,
Lemma 2.9 requires that the following equation holds:

1 0 O
0 1 0|=c3=0.
C1 Cgp C3

A similar computation arising from (C'DF) yields that ¢; = ¢. Thus, we write that
C = ey : ¢ 2 0]. Since ¢; must be nonzero, we re-scale so that C' = [1 : 1 : 0] Nearly
identical processes help us to locate E and G. First, write that E = [e; : e : e3].
Then since (BDE) is collinear, Lemma 2.9 requires that the following equation holds:

0 1 0
0 0 1|=e=0.
€1 €9 €3

The computation arising from (AEF) yields that es = e3, and so we write that
E =1[0: ey : ey]. Since e; must be nonzero, we re-scale so that £ = [0 : 1 : 1].
Next, we write that G = [g; : g2 : g3]. Applying Lemma 2.9 to the collinear triples
(ADG) and (BFG) determines that go = 0 and that g; = g3, respectively. Thus,
G =[g1:0: ¢1]. Since g; must be nonzero, we re-scale so that G = [1 : 0 : 1] Finally,
we apply Lemma 2.9 to (CEG) to yield the following equation:

=1+1=0.

_ O

1
1
0
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Then F has characteristic 2 by definition. Now, suppose that F has characteristic 2.
Then we may realize F in the following coordinates:

A=1[1:0:0]
B=[0:1:0]
C=1[1:1:0]
D=1[0:0:1]
E=[0:1:1]
F=[:1:1]
G=1[1:0:1]
This realization of F is combinatorially complete. O]

3.2. The Hesse Configuration

At the end of Chapter 1.3, we discussed the Sylvester-Gallai Theorem and its
corresponding geometric configurations. In this section, we will examine at length the
Hesse configuration, perhaps the best-known counter-example to the Sylvester-Gallai
Theorem, discussing in the process its combinatorial degeneracies and realizability.

Figure 11. A schematic of a combinatorially complete realization of the Hesse config-
uration. It can be realized over the projective plane PC?, but not over PR2.
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Definition 3.5. The Hesse configuration is a configuration H = (P, L) such that
P ={A B,C,D,E,F,G, H,I} and £ = {(ABC), (BDI), (CEG), (ADG), (BEH),
(CFI), (AFH), (BFG), (DEF), (AEI), (CDH), (GHI)}.

Though perhaps unclear from its definition alone, the Hesse configuration is
indeed symmetric. The following remarks outline its symmetries in a condensed
fashion; these results will aid in our understanding of the configuration and play a
large role in several upcoming proofs.

Remark 3.6. Each point in H lies on exactly four lines.
Remark 3.7. Fxactly one line joins every two points in H.

As noted in the previous section, many texts (e.g. [5, 8]) refer to the Hesse
configuration as 94. There is a strange connection between this configuration and 83;
namely, in the fields over which they are realizable. Previous mathematicians have
investigated the realizability of the combinatorially complete Hesse configuration,
but no known sources have examined its combinatorial degeneracies. Throughout
this section, we aim to investigate every combinatorially-possible Hesse configuration
to provide an anthology of its realizability. We begin by addressing the realizability
of its combinatorially complete configuration. While the following result has been
stated previously, a satisfactory proof remains absent in the source material. We
address this issue below.

Theorem 3.8. A combinatorially complete realization of H exists over PF? if and
only if some x € F satisfies the equation ®> —x +1 = 0.

Proof. Suppose that a realization of H in PF? is combinatorially complete. We
assume that A=[1:0:0,,B=[0:1:0,D=1[0:0:1],and F=[1:1:1] by
Lemma 2.10. Now write that I = [i; : is : i3]. Since (BDI) is collinear, Lemma 2.9
requires that the following equation holds:

01 0
0 0 1|=—i=0.
i iy i3

A similar computation arising from (AFET) yields that iy = i3. Thus, we re-scale to
write that 7 =[0:1: 1]. We use nearly identical methods to locate the points C, F,
G, and H. First, write that C = [c; o 1 s3], F = [fi: foa: f3], G = [g1 : g2 : g3),
and H = [hy : hy : hg]. Applying Lemma 2.9 to (ABC') yields that ¢5 = 0. Similarly,
Lemma 2.9 requires that go = 0 from (ADG), that fi = fo from (DEF), and that
hy = hs from (BEH). Thus, we have the following:

C=lc1:c:0] F=[fi:fi:fs] G=[g1:0:935] H=][hi:hy:h]

Since the realization of H is combinatorially complete, we know that F # D. It
follows that f; # 0, so we re-scale and write F' = [1 : 1 : f*]. By the same logic, we
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know that H # B. Then h; # 0, so we re-scale and write H = [1 : h* : 1]. Next, we
apply Lemma 2.9 to (CDH), yielding that co = ¢;h*. We note now that if ¢; = 0,
then C'= [0 : 0 : 0] which is impossible. It follows that ¢; # 0 and re-scaling allows us
to write that C' = [1 : h* : 0]. Similarly, we apply Lemma 2.9 to (BF'G) and discern
that g3 = g1f*. We see that if gy = 0, then G = [0 : 0 : 0] which is impossible. It
follows that g; # 0 and re-scaling allows us to write that G = [1 : 0 : f*]. For the
sake of clarity, we now have the following:

C=[1:h":00 F=[1:1:f1 G=[1:0:f1] H=[1:h":1]

At this point, there are four collinear triples that we have not yet applied Lemma 2.9
to: (CEG), (CFI), (GHI), and (AFH). For the first three of these four, applying
Lemma 2.9 shows that h* + f* = 1. Applying the lemma to (AF H) requires that
h*f* = 1. We will now manipulate these equations to prove the statement in the
forward direction.

First, recall that the realization of H is combinatorially complete. Thus, C' # A
and G # A. It follows from these constraints that h* # 0 and f* # 0, respectively.
We now combine the two equations to yield h* 4+ f* = h* f*. Then we have

We conclude from this equation that 0 = (h*)*> — h* + 1. Now, suppose that some
x € F satisfies 2> — x +1 = 0. Then we may realize H in the following coordinates:

A=1[1:0:0]
B=[0:1:0]
C=[1:2:0]
D=[0:0:1]
E=[1:1:1]
F=[1:1:1-zx
G=[1:0:1-zx
H=[:xz:1]
I=[0:1:1]
This realization of ‘H is combinatorially complete. O

Corollary 3.9. A combinatorially complete realization of H exists in PC?. Such a
realization does not exist in PR?.

We now use this result in an attempt to explicity outline over which fields the
combinatorially complete Hesse configuration is realizable. While rather tangential for
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the purposes of this thesis, additional information can be found in [13]. Suppose that
F is a field with characteristic greater than 3. Then the quadratic formula guarantees
that 22 — 2 + 1 = 0 has a solution over F if and only if v/—3 € F. Equivalently, we
know that —3 must be a square in F. Through arguments of quadratic reciprocity,
we may characterize the finite, prime fields that satisfy such a property.

Lemma 3.10. If F, is a finite field with p = 3, then x = 2 satisfies 2> —x +1 = 0.

Lemma 3.11. Let F, be a finite field with p > 3. Some x € F, satisfies the congru-
ence 2 = —3 (mod p) if and only if p=1 (mod 6).

Proof. We make use of the Legendre symbol and quadratic reciprocity [13]. By defi-
nition, there exists an z € F,, satisfying 22 = —3 (mod p) if and only if we have:

(5)-G)6) -

There are two cases to consider in satisfying this equation.

1. First, suppose that (_71) = (%) = 1. We know that if (_?1) =1, thenp =1
(mod 4). We thereby obtain through reciprocity that (%) = (£). By definition,
we know that (£) = 1 if p = 2® (mod 3) for some = € F,,. We note now that
2 = 22 (mod 3) has no solutions and that p #Z 0 (mod 3) since p is a prime
greater than 3. Thus, we need only consider the case where p = 1 (mod 3),
which occurs when p =1 (mod 12).

2. Now, suppose that (5}) = () = —1. If (3}) = —1, then p = 3 (mod 4). It

follows through reciprocity that (%) = —(£), so once again we investigate the
cases in which (£) = 1. We need only consider the case where p =1 (mod 3),

sop =7 (mod 12).

The only relevant cases occur when p =1 (mod 12) or p = 7 (mod 12); equivalently,
we may write that p =1 (mod 6). O

Lemma 3.12. A finite field F contains a root to x°> —x + 1 = 0 if and only if it has
characteristic p =3, p=1 (mod 6), or is an even-degree extension over F,,.

Proof. Let F be a finite field over F,, and let f(z) = 2> + 2+ 1 € F,[z]. Suppose
that F contains a root w of f. If f(z) is reducible, then F, contains a root of f, and
if the characteristic of F is not 2, then F,, contains v/—3. It follows from Lemma 3.11
that either p =3 or p =1 (mod 6). Otherwise, f(x) is irreducible. Since w is a root
of f over F,, it follows that [F,(w) : F,] = 2. Then we know that

[F:Fp| =[F:Fy(w)][Fy(w) : Fy.

It follows that F' is an extension of even degree over F,. In other words, we conclude
that F = F ., where k is even.
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Suppose now that p = 3 or p = 1 (mod 6). Then Lemmas 3.10 and 3.11
guarantee the existence of a root w of f in F,. If F,, does not contain such a root,
then z? + z 4+ 1 is irreducible over F,, and thus K := F,[z]/(z* + = + 1) is a field.
It follows that [K : Fp] = 2, so K = F,2 for some odd prime p. Now, suppose that
F is an even-degree extension over F,, so F = F for some even k. We know that
F,m C Fp. if and only if m|n. Since 2|k, we know that K C F and we conclude that
F must contain a root w of f. m

These results allows us to characterize the finite fields over which the combi-
natorially complete Hesse configuration is realizable, but there are many other cases
to consider, each with its own question of realizability. The task of investigating
the Hesse configuration’s combinatorially degenerate flavors seems daunting at first
glance. We carefully and systematically examine these possibilities with the intent of
reducing the number of necessary considerations as painlessly as possible. We begin
by addressing the more easily-digestible examples.

Lemma 3.13. Any realization of the Hesse configuration on exactly one line that
contains n distinct points is universally realizable if 1 <n < 9.

The remaining combinatorially degenerate Hesse configurations all contain at
least two distinct lines, thereby complicating the question of realizability. The next-
simplest class of these configurations, in which all points but one lie on a line, remains
relatively easy to examine. First, we introduce a more general result pertaining to
similar collections of points in the projective plane.

Proposition 3.14. Let P be a subset of n > 4 distinct points in a projective plane.
If at least three points are collinear in every subset of P containing four points, then
at least n — 1 of the points in P are collinear.

Proof. The result follows quickly for n = 4; we proceed by induction on n, assuming
that the statement is true for n — 1. Consider now n distinct points py, pa, ..., Pn,
such that pi,ps,...,pn_2 are collinear. By the inductive hypothesis and without loss
of generality, assume that p,_; is not collinear with the first n — 2. Then there are
three possibilities for the placement of p,,. First, suppose that p,, is not collinear with
D1, P2, - - -, Pn_s but lies on a line containing p, 1 and p; for 1 <i < n — 2. Consider
the four points p,, pn—1, pj, and pi, where j # k. No three of these points are
collinear, contradicting the initial assumption. Next, suppose that p, is not collinear
with p1, pe, ..., pn_2 and does not lie on a line containing p,_1 and p; for 1 <i < n—2.
Consider the four points p1, pa, pn_1, and p,, no three of which are collinear. Thus, we
reach a contradiction of the initial assumption. Finally, suppose that p, is collinear
with pi,pa, ..., pn_o. The desired result follows immediately, and we conclude that
at least n — 1 of the n points are collinear in the projective plane. O

This proposition allows us to consider the configurations in which all but one
of their points lie on a line more generally. The following lemma extends this result,
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showing that many of the combinatorially degenerate varieties of the Hesse config-
uration cannot be realized over any field. It may be helpful to revisit Remarks 3.6
and 3.7 while examining the following proofs.

Lemma 3.15. Let P be a set of 6 < n <9 distinct points in a projective plane such
that exactly n — 1 are collinear. Then P cannot be a realization of H.

Proof. Since every pair of points in H is joined by a line and each point is contained
by exactly four lines, we know that P cannot be a realization of H. O

A significant number of combinatorially degenerate cases still remain: we cat-
egorize these configurations with respect to the number of distinct points contained
in their realizations from this point on, as opposed to the number of distinct lines.
The two subsequent lemmas further reduce the number of cases necessary to con-
sider using arguments of collinearity. Their results allow us to narrow our search and
consider arrangements of at most six distinct points in the projective plane.

Lemma 3.16. If exactly eight points in any realization of the Hesse configuration are
distinct, then all eight are collinear.

Proof. Without loss of generality due to the symmetry of H, suppose that A = B.
Immediately, we obtain the collinear triples (AEH), (AFG), and (ADI). Using
Corollary 2.17, the triples (AEH) and (AEI) guarantee that A, E, H, and I are
collinear. Applying Corollary 2.17 again, (GHI) requires A, E, G, H, and I to be
collinear. Now (CEG) similarly places C' on this line, (ADI) adds D, and (DEF)
then guarantees full collinearity. O]

Lemma 3.17. If exactly seven points in any realization of the Hesse configuration
are distinct, then all seven are collinear.

Proof. We consider three cases without loss of generality, due to the symmetry of H.

1. First, suppose that A = B = C. Immediately, we obtain the collinear triples
(AEH), (AFG), (ADI), (AFI), (ADH), and (AEG). It follows from Corol-
lary 2.17 that there are three lines ¢, {5, and /{3 such that A, E,G, H € /;,
A F,G,I € ly, and A,D,H, I € {3. Applying Corollary 2.17 again shows that
0y = 0y = {3, thereby implying the full collinearity of H.

2. Next, suppose that A = B = D. We obtain the collinear triples (AEF), (AEH),
(AFG), and (ACH) from this equality. Corollary 2.17 requires three lines ¢,
ly, and f3 such that A,E,F.H € {1, A,E,F,G € {5, and A,C,E,H € /s.
Applying Corollary 2.17 again guarantees that ¢; = 5 = {3, thereby implying
the full collinearity of H.

3. Finally, suppose that A = B and D = E, both without loss of generality.
The collinear triples (ADI), (ADH), (AFG), and (CDG) are induced imme-
diately. Corollary 2.17 shows that there are three lines ¢, /5, and /3 such that
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A D HITel,,C D E GE/l,,and A, F,G,H € (5. As above, applying Corol-
lary 2.17 again requires that ¢; = 5 = {3, thereby implying the full collinearity
of the realization of H.

With all possible cases considered, the given statement is confirmed. O

The remaining combinatorially degenerate realizations of the Hesse configura-
tion can be sorted neatly into two categories: those which contain five distinct points
where no three are collinear, and those which contain no such five points. The next
lemma shows that configurations belonging to the former cannot be realized in any
projective plane.

Lemma 3.18. If some subset of a realization of H contains five distinct points, then
three points in this subset induce a collinear triple.

Proof. Let p1, ps, p3, pa, ps be distinct points in the projective plane, no three of which
induce a collinear triple. For the sake of contradiction, we assume that these points
form a subset of H — this proof attempts to ‘construct’ the Hesse configuration with
these points. It follows from Remark 3.7 that ten distinct lines {e; }12; are determined
by these points, each joining exactly two points of the subset. Without loss of gen-
erality due to the symmetry of H, let A = p; and B = po, supposing that A, B € {1,
A, ps € by, A, py € U3, and p3, py € £4. We know that C' € ¢; from the collinear triple
(ABC) and claim that either C' = A or C' = B.

To prove the claim, suppose that C' # A and C' # B for the sake of contradiction.
By Lemma 3.6, we know that exactly four lines must pass through C'. Three of these
must be distinct, joining C' with ps3, ps, and ps, respectively. These three lines must
also be distinct from the aforementioned ten lines, as C' # A and C' # B. Then
thirteen distinct lines exist in the configuration, but H admits at most twelve such
lines. We thus reach a contradiction and conclude either that C' = A or that C = B.

Now without loss of generality, let D = p3. By similar logic as above, we have
that either G = A or G = D to satisfy (ADG). We also know that without loss of
generality one of F' and H coincides with py. We know that F' # p4 since neither A
nor D lies on the line containing B and p4. Similarly, we know that H # p, since
D does not lie on the line containing B and ps. Thus, we reach a contradiction and
conclude that py, ps, p3, ps, ps cannot form a subset of the Hesse configuration. O

Now only one class of combinatorially degenerate realizations of the Hesse con-
figuration remains to be examined: those containing four distinct points such that
no three are collinear. The following series of lemmas allows us to show that these
configurations cannot be realized over any field.

Lemma 3.19. The Hesse configuration cannot be realized over exactly four distinct
points such that no three induce a collinear triple.

Proof. For the sake of contradiction, suppose that H is realized over a set of distinct
points P = {p1,p2,ps3,ps}. Without loss of generality, let A = p;, B = po, and
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D = p3. Then to satisfy the collinear triples (ABC'), (ADG), and (BDI), we require
that C' be equal to one of A and B, that G be equal to one of A and D, and that [
be equal to one of B and D. Now we see that E # py by (AEI), so p4 is equal to at
least one of F' and H (the only remaining points in P). If py = F, then we violate
(BFG@). The collinear triple (CDH) is similarly violated if p, = H. We thus reach a
contradiction, so H cannot be realized over P. O

We may combine the results of the two previous lemmas to write that if a subset
P = {p1,p2, p3, pa} of a realization of the Hesse configuration contains four distinct
points such that no three induce a collinear triple, then there is a point P € P distinct
from P and that forms the collinear triple (Pp;p;) for some 4, j. The lemmas below
further extend this result.

Lemma 3.20. The Hesse configuration cannot be realized over five distinct points
where exactly three induce a collinear triple.

Proof. For the sake of contradiction, suppose that H is realized over a set of distinct
points P = {p1, p2, p3, P4, ps }. Note that Remark 3.7 requires p; and ps to be contained
by four distinct lines and the remaining points to be contained by three. Without
loss of generality, let A = p;, B = py. We know without loss of generality that one of
D and G is equal to ps, that one of F and I is equal to ps, and that one of F' and H
is equal to ps. The remaining points must either be equal to A or to their respective
p;. First, suppose that p; = D. Then (BDI) requires either that I = B or [ = D,
neither of which is possible. Suppose now that ps3 = G. Then (BFG) requires that
F' be equal to either B or GG, neither of which is possible. O

If H is realized over five distinct points P = {p1, p2, p3, p4, ps} that form only
(p1p2ps) without loss of generality, then previous results allow us to conclude that
there is a point ¢ € P distinct from P that induces another collinear triple.

Lemma 3.21. The Hesse configuration cannot be realized over siz distinct points that
induce exactly two collinear triples.

Proof. For the sake of contradiction, suppose that H is realized over a set of distinct
points P = {p1, p2, p3, 4, D5, Pe - Without loss of generality, we consider two cases.

1. First, suppose that P forms the collinear triples (pipeps) and (pspsps). Note
that Remark 3.7 requires that each point in P be contained by four distinct
lines in this case. Without loss of generality, let A = p;, B = p3. We know
without loss of generality that one of D and G is equal to ps, that one of E and
I is equal to p4, and that one of F' and H is equal to p5. The remaining points
must either be equal to A or to their respective p;. First, suppose that p3 = D.
Then (BDI) requires either that I = B or I = D, neither of which is possible.
Suppose now that p3 = G. Then (BFG) requires that F' be equal to either B
or GG, neither of which is possible.

27



2. Next, suppose that P induces the collinear triples (pipeps) and (p1psps). Re-
mark 3.7 requires that ps, ps, and pg be contained by four distinct lines, while
the remaining points are contained by three. Without loss of generality, let
A = py, B =py, and D = py; it follows that G is equal to one of A and D.
Without loss of generality, one of E and [ is equal to ps, and one of F and H
is equal to pg. It follows by construction that C' = p3. Then since [ is collinear
with both A and B, the configuration guarantees that I = ps. It follows from
(CFI) that F = pg. Then (AFEI) requires that £ be equal to one of A and I,
both of which violate (DEF).

In either case we reach a contradiction, thus confirming the given statement. O]

It follows that if a subset P = {p1, p2, ps, P4, D5, ps } of a realization of the Hesse
configuration forms exactly one or two collinear triples, then there is a point ¢ €
P distinct from P. We know, however, that any combinatorially degenerate Hesse
configuration that contains seven distinct points that lie on more than one line cannot
ever be realized. At this point, we have successfully described all combinatorially-
possible Hesse configurations. This fact may be difficult to believe, but the symmetry
of H allows us to generalize many of its combinatorial degeneracies; a close reading
of the previous lemmas will affirm this fact. A natural question now emerges: what
can be said about the Hesse configuration’s realizability? This section’s results have
shown that many combinatorially-possible Hesse configurations are never realizable;
the table below outlines those with realizability.

Combinatorial Description of Realization of H Realizability
All points collinear with any number of them distinct Universal
Three distinct points with exactly two collinear Universal
Four distinct points with exactly three collinear Universal
Five distinct points with exactly four collinear Universal
Combinatorially complete All F containing v/—3

Table 1. All combinatorial possibilities over which H may be realized.

It should be noted that H shares similar properties of realizability with another
symmetric configuration, 8. In particular, both combinatorially complete configura-
tions are only realizable over fields containing v/—3, and the combinatorially degener-
ate flavors of these configurations are realizable either never or always. These proofs
related to 83 have been omitted from this thesis for the sake of reducing redundancy;,
but follow nearly-identical logic as those presented throughout this section. A larger
discussion of the connections via realizability of various symmetric configurations re-
mains open, though we predict that there may be powerful underlying connections
between the structures of configurations and their corresponding fields. In the next
chapter, we examine at length various asymmetric configurations and discuss how to
“encode” an algebraic constraint into a projective configuration.
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CHAPTER 4. THERE AND BACK AGAIN

In the previous chapter, we investigated symmetric projective configurations due to
their ease of understanding. Their symmetries allowed us to utilize many tools —
transformations, coordinates, etc. — in examining their realizability. In the process,
we showed that if the combinatorially complete Fano configuration is realized over
a projectivized vector space, then the underlying field must have characteristic 2.
Similarly, the combinatorially complete Hesse configuration must be realized over a
field containing v/—3. We can write these conditions algebraically, by z + z = 0
and 22 — x + 1 = 0, respectively. A natural question arises from this observation:
can we ‘encode’ any such algebraic condition into a projective configuration, and if
they exist, what do these configurations look like? In this chapter, we will discuss
a powerful construction that allows us to create such configurations and investigate
their structures.

4.1. Geometric Operations in the Projective Plane

In Chapter 2, we mentioned that if Pappus’s Theorem holds in a projective plane
(and thereby Desargues’s Theorem also holds), then that plane can be coordinatized
over a field. This claim was bold to make without proof, although Marchisotto does
so beautifully in her 2002 paper [11]. She approaches the proof axiomatically, by
expanding Definition 2.1 with three additional assumptions. These axioms are:

4. Every line contains at least three points.
5. The three diagonal points of a complete quadrangle are not collinear.
6. A transformation that fixes three distinct, collinear points fixes the whole line.

Marchisotto adopts these axioms to narrow our study to a world in which Pappus’s
Theorem holds. As she proves in her paper, this world inherently connects the pro-
jective plane to an underlying algebraic field structure. In the process, Marchisotto
also defines geometric operations in the projective plane that correspond to addition,
subtraction, multiplication, and division in the algebraic sense. In this section, we
outline these operations for the purposes of our thesis, then make use of them to
‘encode’ algebraic constraints into projective configurations. For each operation, we
let ¢ be a line containing the points O, E, and M. The point O will serve as the
additive identity, F will serve as the multiplicative identity, and M will serve as an
ideal point, or “infinity.” We define the four operations on ¢\ {M} in order to yield
a field-based coordinate system [11].

We first investigate the geometrically-defined additive operation. Let A, B be
points on ¢\ {M}. Choose P to be a point not on ¢, and ) to be a point on the
line OP. Then define R = QM N PA and S = PM NQ@B. Let C = RS N{; then
we define C' := A + B. From this construction, we ascertain that O corresponds to
the additive identity element. Note also that E plays no role in this construction; we
will show shortly that E corresponds to the multiplicative identity element [11]. A
depiction of geometrically-defined addition can be found below in Figure 12.
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Figure 12. A depiction of A + B = C' using geometrically-defined addition.

We define subtraction by finding a point —B € ¢ such that —B + B = 0, using
addition as defined above. The subtraction of B from A then corresponds to the
addition of A and —B. Expanding upon the construction of addition above, define
L=QMNPB and K =0ORNPM. Let —B = KL N/; then repeating the process
of geometrically-defined addition reveals that —B + B = O, as desired.

Figure 13. Using the equation A + B = C, we find the point —B € /.
Next, we outline the process of obtaining geometrically-defined multiplication

in the projective plane. Once again, let A, B be points on ¢\ {M} and pick P to be
a point not on ¢. Then choose a point () on the line EP. We define R = AP N QM
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and S = PONQEB. Let C = RSNY¥; then C := A x B. Unlike addition, we
note that both O and F contribute to this construction, from which we can show
that E corresponds to the multiplicative identity element. For both addition and
multiplication, the proofs of closure and associativity fall directly from the axioms
assumed by Marchisotto [7, 11].

Figure 14. A depiction of A x B = C' using geometrically-defined multiplication.

Geometrically-defined division is constructed in a similar manner to subtraction;
we seek the multiplicative inverse of a given point on ¢\ {M,O}. As with multiplica-
tion, let B be a point on £\ {M,O} and pick P to be a point not on ¢. Then choose
a point @ on the line EP. We seek the point B~! € £\ {M} such that Bx B~! = E.
Define L = QM N PB and K = PO N EL. Let B~ = QL N ¢; then repeating the
process of geometrically-defined multiplication shows that B~'xB = E. If we were to
allow B = M, then B~! = O. However, since we require B € £\ {M, O}, division by
zero can never occur. Thus, this geometrically-defined operation directly corresponds
to division as we know it in the algebraic sense [11].

Geometrically-defined addition is commutative based upon its construction,
and it follows from the assumed axioms that geometrically-defined multiplication
is also commutative. One may also verify that geometrically-defined multiplication
distributes over addition. A natural question is whether these operations rely on our
choices of P and @), for instance; Marchisotto shows that all four of these operations
are well-defined. Proofs for all of these properties can be found in [11], though they
remain omitted from this thesis for the sake of clarity. Thus, we conclude that these
operations (in conjunction with the axioms that render them valid) identify a field
structure with £\ {M} and allow us to coordinatize the projective plane as PF2.

It is natural to wonder how we might extend the reach of these operations.
Callie Garst [7] defined a geometrically-defined “square root” operation, allowing us
to locate the point X*/2" for any non-negative X € ¢\ {M} and k,n € Z. This
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Figure 15. We find the point B~! so that we may geometrically divide by B.

work allows us to define any polynomial equation over F of the following form using
a geometric perspective in PF2:

x4 cr? + - 4t =0,

where ¢1,¢9,...,¢, € F and ey, e9,...,e, € Z or e1,€9,...,6, =k/2" for k,n € Z. In
the next section, we expand upon these operations and provide a method for creating
configurations that correspond to a wide swath of polynomial equations over F.

4.2. Encoding Algebraic Conditions

Our geometrically-defined operations allow us to visualize addition, subtraction,
multiplication, and division in a field-based projective plane. In other words, we
have a basis for performing arithmetic computations from a geometric perspective.
We ask of you now, dear reader, to recall back to the days of elementary algebra.
After learning the times tables, for example, many curricula transition to solving
linear equations: having a grasp of the arithmetic operations allows us to explore
more complex and beautiful mathematics. In this section, we hope to provide a
similar expansion. Although it may not seem immediately intuitive, Marchisotto’s
geometrically-defined operations correspond to projective configurations in the plane.
We define the configurations corresponding to addition and multiplication below.

Definition 4.1. The addition configuration is a configuration A = (P, L) where
P={0,A,B,C,P,Q,R,S,M} and L = {(OPQ), (BQS), (ARP), (CRS), (MRQ),
(MPS), (OAB), (OAC), (OAM), (ABC), (ACM), (BCM)}. A realization of A is
Marchisotto if it renders M distinct from O, A, B and if it renders P not collinear
with O, A, B,C, M.

Definition 4.2. The multiplication configuration is a configuration M = (P, L)
where P ={O,FE,A,B,C,P,Q,R,S,M} and L = {(OPS), (EPQ), (ARP), (BQS),
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(CRS), (MRQ), (OAB), (OEB), (OEA), (OAC), (OAM), (ABC), (ACM), and
(BCM)}. A realization of M is Marchisotto if it renders M distinct from O, A, B
and if it renders P not collinear with O, E, A, B,C, M.

Proposition 4.3. Let V be a three-dimensional vector space over F, where the char-
acteristic of F is not 2. Then A and M are Marchisotto realizable over PF2.

In Chapter 1.3, we discovered that the realizability of many symmetric con-
figurations hinges upon finding solutions to polynomial equations over F. We now
attempt the reverse: given a polynomial equation over F, we will encode that equation
into a projective configuration.

Definition 4.4. Let f be a polynomial equation over F. The encoding of f is a
configuration &€ such that a combinatorially complete realization of & exists over PF?
if and only if F' contains a root to the equation.

To begin our discussion of encodings, we recall from Chapter 3 that a com-
binatorially complete realization of the Fano configuration requires that PF? has
characteristic 2. When considering the corresponding geometrically-defined opera-
tions of the equation z + x = 0, we note that A = B and set C' = O. This encoding
is defined below.

Definition 4.5. The Encoding of x+x = 0 is a configuration £ = (P, L) where P =
{0,A,P,Q,R,S,M} and L = {(OPQ), (AQS), (ARP), (ORS), (MRQ), (MPS),
(OAM)}. A realization of & is Marchisotto if it renders M distinct from O, A and if
it renders P not collinear with O, A, M.

Figure 16. A depiction of the Encoding of x + x = 0.

The astute reader may note that any combinatorially complete realization of
& violates Marchisotto’s assumption of the axiom 5 above. Here, we emphasize the
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crucial distinction between geometrically-defined addition and the configuration based
upon its construction. We note that &; is a symmetric configuration by construction.
In particular, we see that any combinatorially complete realization of & consists
of seven points, each of which lies on exactly three lines of £. It follows that &;
is isomorphic to the Fano configuration . We conclude that any combinatorially
complete realization of £ in PF? implies that F has characteristic 2. It can be shown
that any combinatorially degenerate realization of & is universally realizable. Not
all encodings yield symmetric configurations that ameliorate our studies, though. We
investigate one such encoding below.

Recall that a combinatorially complete realization of the Hesse configuration
exists in PF? if and only if there is an € F such that 2> — 2 + 1 = 0. To encode
this condition in a configuration, we perform three geometrically-defined operations
in the projective plane. We first use geometrically-defined multiplication to perform
the computation A x A = B. Next, we use geometrically-defined subtraction to
yield B — A = C'. We apply geometrically-defined addition once more to calculate
E+ C =D and set D = O. For both addition and multiplication, we recall that the
choice of P is arbitrary [7, 11]. For the sake of convenience, then, we let P be the
same for both operations and choose @), ), to apply for every use of their respective

operations.
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Figure 17. A depiction of the Encoding of 22 — 2+ 1 = 0.

Definition 4.6. The Encoding of x> —x+1 = 0 is a configuration & = (P, L) where
P={0,E,A -A,B,C,P,Q,,R,.,5,Q4,Ri, Ry, R3, 51,5, M} and L = {(OQS,),
(0Q..P), (0S,P), (OR,S,), (EQ,P), (EQ,Rs), (ERsP), (AR, P), (AR Ry), (AR, P),
(AQ*S*)7 (_AQ+SI)7 (BR2P>? (BR*52)7 (CQ-O—S?)? (CR251)7 (Q*R*M)v (PSISZ)u
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(PS1 M), (PSsM), (OR3S), (OEA), (OEB), (—AOE), (—AEA), (OEA), (ABC),
(ABM), (ACM)}. A realization of & is Marchisotto if it renders M distinct from
O,E, A, —A, B, C and if it renders P not collinear with O, E, A,—A, B,C, M.

Theorem 4.7. A combinatorially complete and Marchisotto realization of & in PF?
exists if and only if some x € F satisfies 22 —x +1 = 0.

Proof. Suppose first that a combinatorially complete realization of & in PF? exists.
Then using the geometrically-defined operations, we see that AxA— A+ FE = O. Now
suppose that some x € F satisfies 2> — 2 + 1 = 0. Then we choose z to correspond
with A € P and can construct & as defined. O

Unlike the Fano configuration and &, however, we note now that & is not
symmetric and therefore is not isomorphic to the Hesse configuration. We also note
that there is a degree of flexibility with our construction; since our choices of P, (), Q.
allow for four degrees of freedom, we see that some choices “reduce” the resulting
configuration. For example, if we pick @, Q4 to form the collinear triple (Q;QM),
then Ry = R,. Regardless of these reductions, though, & remains not isomorphic to
H. We hope that future work will further investigate these reductions and provide
a more rigorous understanding of their flexibility. Nevertheless, we have provided a
preliminary method for encoding any polynomial equation over F of the following
form into a projective configuration in PF?:

x4 cx? + - 4t =0,

where ¢y, ¢o,...,¢, € F and ej,ey,...,6, € Z or ey,€s,...,e, = k/2" for integers
k,n. The results of this chapter hinged on geometrically-motivated operations and
constructions. In the next chapter, we will introduce topological intuition to our
study as we define a family of incidence theorems that originate from projective
configurations, then provide an investigation of the family’s realizability.
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CHAPTER 5. A WHOLE NEW WORLD

Until now, this thesis has investigated two-dimensional projective configurations made
up of one-dimensional lines and zero-dimensional points. The requirement that our
configurations be embeddings in the projective plane arises primarily from our focus
on collinear triples: three points required to lie on the same line. We note that by
definition, a collinear triple defines a degenerate triangle. A natural and simple ques-
tion arises: “Can we learn anything about configurations in the projective plane by
requiring these triangles to be non-degenerate?” By allowing our one-dimensional ob-
jects to acquire a second dimension, the resulting configurations they determine may
extend into a third dimension. This new understanding of projective configurations
allows us to infuse our study of incidence theorems with some topological intuition.
In this chapter, we will outline a family of incidence theorems that arise from this
perspective and provide two proofs of their realizability.

5.1. Triangulations and Incidence

When first introducting the notion of projective configurations in Chapter 2, we
provided Lemma 2.16 as a motivating example for a fully collinear and universally
realizable configuration. In particular, we showed that for a set of four points, three
collinear triples guarantee full collinearity of the whole set. This result also assisted in
many of the proofs in Chapter 3. As mentioned previously, it can often seem difficult
to visualize the interplay of many collinear triples abstractly. Thus, picturing these
triples as formerly non-degenerate triangles provides a greater ease of understanding.
In this new context, we may rephrase Lemma 2.16 as follows: if three faces of a
tetrahedron degenerate to lines, then so too does the remaining face. Hence, the
lemma earns its name.

In this chapter, we once again use Lemma 2.16 to inform a much broader study.
Before presenting our main theorem and its results, though, we provide some prelim-
inary definitions and background knowledge in elementary topology. Just as a curve
generalizes the concept of a line, so too does a surface generalize the concept of a
plane. Lines and planes must exhibit “straightness,” while curves and surfaces are
not subject to this requirement. A surface embedded in three-dimensional space is
called closed if it is the boundary of a solid; otherwise, it is open. More technically,
a closed surface is compact and without boundary. Topologists distinguish between
surfaces by investigating properties called invariants. For example, connectedness is a
topological invariant: if two surfaces differ in their number of connected components,
then they are not homeomorphic (read: the “same”).

In the 1700s, Leonhard Euler attempted to categorize surfaces by describing
their structure regardless of bending or flexibility. Known as Euler characteristic,
this metric was proven after Euler’s death to be a topological invariant and is one of
the most well-known elements of mathematics to date. Euler characteristic relies on
shockingly simple machinery to understand: counting the faces, edges, and vertices
present in a simplicial triangulation of a surface. The main theorem presented in this
chapter also hinges upon simplicial triangulations.
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Definition 5.1. A (two-dimensional) simplicial triangulationis a triple T = (V, E, T)
that satisfies the following:

1. V is a finite set of vertices.
2. E is a set of edges determined by unordered pairs {A, B} where A, B € V.

3. T is a nonempty set of triangles determined by unordered triples of vertices
{A,B,C} where A,B,C € V.

4. If A € T and {A, B} C A, then {A, B} € E.

As defined, triangulations can be drawn using pictures that correspond to geo-
metric objects. In Figure 18 below the triangulations correspond to the disk D?. We
say that a simplicial triangulation is happy if it satisfies the property that for every
A € T, there exists a finite, nonempty subcomplex Sx = (Va, Ea,Ta) of T such
that each edge in Ex is contained in exactly two elements of Tao and A € Th. We
note that every simplicial triangulation of a closed surface is happy.

Figure 18. The left triangulation satisfies Definition 5.1; the right does not. Neither
triangulation is happy, since only one triangle contains each boundary edge.

There are an infinite number of valid simplicial triangulations for any object,
since each triangle can be subdivided into at least three more triangles by placing
points and line segments in its interior. See [1, 2, 3] for more details. We note that the
smallest triangulation of a closed surface consists of four vertices and four triangles
that determine a tetrahedron.

Definition 5.2. Let 7 = (V, E,T') be a happy simplicial triangulation. We say that
T contains a subdivision if there are vertices x,y, and z in V' and edges {z,y},{y, 2},
and {z,z} in E, but {z,y, z} is not an element of T

Definition 5.3. Let 7 = (V, E,T) be a simplicial triangulation. The corresponding
configuration to T is (V,T).
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For example, consider a planar tetrahedron, which is a simplicial triangula-
tion of the disk D?. Let its four vertices be denoted A, B,C, D. Then E = {{A, B},
{A,C}, {A, D}, {B,C}, {B,D},{C, D}}. Similarly, T = {{ABC},{ABD},{ACD},
{BCD}}. The corresponding configuration to this triangulation is (V,7T), which in-
forms Lemma 2.16. The difference between a simplicial triangulation and its corre-
sponding configuration is subtle and becomes visible when realizations are consid-
ered. In particular, a simplicial triangulation does not require much structure from
the triples in 7', while any realization of its corresponding configuration forces the
triples to be collinear.

Definition 5.4. Let 7 = (V, E,T) be a happy simplicial triangulation. A realization
of (V,T) is orientable if it is possible to assign orientations to each triangle in 7" such
that for every edge e € F, the two triangles containing e have opposite orientations.

Theorem 5.5. Let T = (V,E,T) be a happy simplicial triangulation. Suppose that
A, € T and consider the configuration T' = (V, T\ {A,}). In any orientable real-
1zation of this configuration, the vertices of A\, are collinear.

We now provide two proofs of this theorem. The first proof, while more accessi-
ble, requires more complicated machinery and thus restricts the number of projective
planes over which 7’ may be realized. Just as with the Sylvester-Gallai Theorem
presented in the first chapter, our second proof uses arguments of collinearity (and is
thereby slightly more involved) to apply much more generally.

Field-Based Proof of Theorem 5.5. Let F be a field with characteristic not equal to
2, and let T’ be realized over PF2. For the sake of contradiction, suppose that the
vertices of /\,, are not collinear in the realization of 7’. We assume that there is
a line £ € PF? that contains no points of the realization; the proof will only apply
in this case. We declare this ¢ to be the ideal line and note that PF?\ {¢} is an
affine plane. We will work in PF?\ {¢} for the remainder of this proof so that area
calculations bear some meaning. We assign each line segment in the realization an
(arbitrary) orientation such that we travel in the direction from v; to v; for i < j. We
attribute the value z;y; — z;y; to every such edge e;;, where x;, z;,y;, y; correspond
to the respective first and second affine coordinates of v; and v;.

We claim that three vertices v;, v, v;, are collinear if and only if e;; —e;; +¢;, = 0.
Recall that the area of a triangle in the plane is determined by its vertices:

1 1 1
if T = vvjvy, then Area(T) = = |z; x; |-
Yi Y Yk

Suppose that v;, vj, v are collinear, so Area(7") = 0. Then the resulting determinant
TiY; — TjYi — TiYk + TipYi + Ty — TiY; = €ij — € + ej; = 0. Now suppose that
eij — ek +ejp = 0. Then z,y; — x;y; — 2y + 2py; + 9k — xy; = 0, so Area(T') = 0.
Thus, v;,v;, vy, are collinear.
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Recall that the realization of T is orientable, and assign an orientation to each
triangle in the realization; without loss of generality, choose “counterclockwise,” as
depicted in Figure 19. Notice that we may calculate the total area of two adjacent and
oriented triangles by adding their respective areas. Let T} = viv3vy and Ty = v1vovy
(denoted such that the vertices occur in the order of the orientation of the triangles).
Then 2Area(T7) = e13 — ea3 — €12 and 2Area(Ty) = e13 + ea4 — e14. It follows that
2Area(Ty + Ty) = e13 — ea3 — €14 + e94. Notice that the ejs terms vanish from this
sum. In other words, terms corresponding to shared edges of adjacent triangles do
not appear in calculations of total area.

Figure 19. Orienting the triangles T, T, and their respective edges.

We now compute the area of the realization of 7’ by adding the areas of its
component triangles. Suppose that A, = {vy,vs, v} (such that the vertices occur in
the order of the orientation of the triangle). Recall that Area(A;) =0for1 <i <mn-—1
since the vertices of these triangles are collinear upon realization. Then:

Total Area = Area(A;) + Area(As) + - - - + Area(A,,)
=04+0+---+ 0+ Area(A,).

Now note that since 7T is a happy simplicial triangulation, exactly one other triangle
in T contains each of the edges ejs, €93, €13, respectively. Then we have:

Area(A,,) = Area(A1) + Area(Aq) + -+ - + Area(4,,)

2Area(A,) = (e13 —ea3 —e€12) + - +ep+ - +ep+--—e
= (e13 —e13) + -+ (€23 —€93) + - - + (e12 — e12)
=0
Then Area(A,,) = 0 and we conclude that vy, ve, v3 are collinear. O

Though rather effective, this proof makes use of machinery that restricts the
number of projective planes over which 7" may be realized. Since we rely on coordi-
nates, this proof only applies to projective planes defined over fields. Further, since
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the area function utilizes the fraction 1/2, such a field cannot have characteristic
equal to 2. For instance, this proof does not apply to the Fano plane. Finally, if
the realization of the corresponding configuration to 77 is “big enough” that no such
¢ € PF? exists, this proof does not apply. To rectify this issue, we provide a more
general, less restrictive proof for the theorem below.

Collinearity-Based Proof of Theorem 5.5. Let T’ be realized in some projective plane.
Let A, = {vy,v9,v3} and for the sake of contradiction, suppose that vy, vy, v3 are not
collinear in the realization. Then wvq, vy, v3 form a non-degenerate triangle in the
projective plane. We will proceed by induction on k, the number of vertices in V.
Recall that the the fewest number of vertices in a happy triangulation is four — they
make four triangles that determine a tetrahedron — so we suppose first that £k = 4. In
this case, Lemma 2.16 yields the desired contradiction. For induction, assume that
the statement holds for all £ < n and suppose now that & = n + 1. We consider
the collection of vertices that share an edge with v; and label them without loss of
generality as py,...,pn in cyclic order, as shown below in Figure 20.

P,

Figure 20. A local depiction of 7' with py, ..., p, denoted about vy, vy, and vs.

First, suppose that v is distinct from each p; and that each p; is distinct from
pir1. Since {vy,ve,p1} € T, it follows that p; must lay on the line vyv,. Similar
logic necessitates that each p; lay on the line vyvy, whence we consider the triple
{v1,v3,pn} € T. Then vz must lay on the line vjve, and so the three points are
collinear in the realization of 7.

Next, suppose that v; is not necessarily distinct from each p; and that each p;
is not necessarily distinct from p;,; in the realization. In other words, the realization
of 7/ maps an edge in E to a point in the projective plane. Suppose that this edge
is not part of a subdivision. Then this realization is equivalent to that of a simplicial
triangulation with fewer vertices. Namely, this triangulation does not contain the
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contracted edge, nor does it contain the two triangles adjacent to the contracted
edge, nor does it contain one of the vertices that determines the contracted edge.
Abrams and Pommersheim illustrate this reduction well in [1]. In other words, this
triangulation contains n vertices and so the induction hypothesis states that vy, vo,
and vs are collinear.

Suppose now that the edge is part of a subdivision. Then this realization is
equivalent to that of a simplicial triangulation with fewer vertices. If the subdivision
occurs on the exterior of the triangle determined by vy, v9, and vs, then the equivalent
simplicial triangulation does not contain any of the triangles within the subdivision, as
shown in [1]. It follows that this triangulation does not contain the omitted triangles’
interior vertices. Then this triangulation consists of at most n vertices, and so the
induction hypothesis states that v;, v9, and v are collinear. If the triangle determined
by vy, vo, and v lays on the interior of the subdivision, then the equivalent simplicial
triangulation contains at least one fewer triangle than the original, does not contain
the contracted edge, and does not contain one of the vertices that determines the
contracted edge. Thus, this triangulation consists of at most n vertices and the
induction hypothesis states that vy, v9, and vs are collinear. O

This proof hinges only upon arguments of collinearity and thus allows the theo-
rem to apply to a much broader swath of projective planes; in fact, this proof renders
the theorem valid for every projective plane satisfying Definition 2.1. Thus, while
more tedious and perhaps less visualizable, our collinearity-based proof acts as the
Coxeter to our field-based proof’s Kelly.

5.2. Moving Forward

Dear reader, we've come a long way over the course of the last five chapters.
After building intuition about both axiomatic and field-based projective planes, we
discussed various projective transformations belonging to PG L3(F). We then defined
the various flavors of projective configurations and launched into an investigation of
certain configurations and their realizability. In particular, we examined the Fano con-
figuration and the Hesse configuration at length. Our results from Chapter 3 prove
that these configurations can be realized over PF? in a combinatorially complete
fashion if and only if some = € F satisfies either z +x = 0 or 22 — 2 + 1 = 0, respec-
tively. We expanded upon these conclusions in Chapter 4, where, using Marchisotto’s
geometrically-defined operations, we outlined how to encode into a configuration any
polynomial equation over F of the form

T 4 cx? + -+ e =0,

where ¢1,¢9,...,¢, € F and ey, ey,...,¢, € Z or ey,€9,...,¢, = k/2" k,n € Z. In
Chapter 5, we went down a different path and investigated how topological intu-
ition influences our studies of configurations and realizability. Specifically, we defined
happy simplicial triangulations and provided two proofs to a novel theorem in the
process. Now, we look forward to where future researchers may pick up this labor.
Many natural questions emerge from the work of this thesis. The first chapter
may inspire a budding mathematician to work (in the fashion of my thesis advisor)
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on area relations and equidissections. From the second chapter, one may wonder if a
group of projective transformations exists over skew fields (or rings!) and if so, how
to describe such an object. The third chapter bears the question of whether or not all
combinatorially degenerate realizations of projective configurations hold over every
projective plane. One may expand upon the fourth chapter and outline a technique
for encoding any polynomial equation over F into a projective configuration. Finally,
I hope that the fifth chapter compels future researches to infuse machinery from other
disciplines into their studies. In addition to these listed above, Garst’s thesis poses
many open questions at its completion [7].

This thesis and its contents matter to me because I chose to make them matter;
without passion, our work has no meaning. Thank you, dear reader, for allowing me
to share my passions with you. If at the end of the day you do not understand the
projective plane, configurations, or realizability, I hope that you have gained a greater
appreciation for the importance of points and lines. The simple things do indeed have
beautiful and nuanced complexity. Rest now, for the sun is setting on Campestria.

ite domum saturae, venit Hesperus, ite capellae.
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