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Chapter One: General Background 

In this chapter, we will be introducing the basic concepts necessary to understand 
composition operators and how they work. Our composition operators will act on a Hilbert 
space, specifically the Hardy space. We will begin with a discussion what a Hilbert space 
is, and what its properties are. 

Section One: Hilbert Spaces 

You will recall that in Euclidean 3-space the angle between two vectors can be mea­
sured using their dot ( or inner) product. In this section, we will introduce a more abstract 
notion of an inner product, and show how this idea can be used to add "Hilbert space" 
structure to a vector space. Many useful functions in the sciences have a Hilbert space as 
their natural domain. We will begin by defining an inner product on any complex vector 
space. We will also introduce the concept of the norm of a vector, which, as in the R 3 case, 
can be interpreted as the length of a vector, and prove the Cauchy-Schwarz inequality for 
inner product spaces. 

Definition 1.1: An inner product on a complex vector space V is a function cp : V x V -+ C 
such that for f,h,h,g E V, a1,a2 EC: 

1) cp(a1fi + a2f2,g) = a1<.fl(fi,g) + a2cp(f2,g); 

2) cp(g, !) = cp(f, g) {where cp(f, g) is the complex conjugate of cp(f, g) ); and 

3) cp(f, !) ~ 0, and cp(f, !) = 0 if and only if f = 0. 

Note that from 1) and 2), one can deduce that cp(g, a1fi + a2h) = a1 cp(g, ft)+ a2cp(g, h) 
in the following manner: 

cp(g, a1fi + a2h) = cp(a1fi + a2h, g) 

= a1cp(fi,g) + a2cp(f2,g) 

= a1cp(g, ft)+ a2cp(g, /2). 

Thus, the inner product is linear in the first coordinate variable, and conjugate linear in 
the second. Common notation for the inner product of two elements f and g is (!, g). 

Definition 1.2: An inner product space is a vector space with an inner product. 

Definition 1.3: A norm, on a vector space X is a function 'ljJ : X -+ [O, oo) such that: 
1) 'l/J(f) = 0 if and only if f = O; 

2) 'l/J(Af) = IAl'l/J(f); and 

3) 'l/J(f + g) ~ 'l/J(f) + 'l/J(g). 
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The norm of a vector f is commonly denoted 11/11- For R 3 , the function 'ljJ: R 3 ➔ [0, oo) 
such that 'l/J(x, y, z) = Jx2 + y2 + z2 is a norm. The following inequality will help us see 
that for an inner product space X, the function T : X ➔ [0, oo) such that T(/) = ff,!) 
is a norm. 

Theorem 1.4: ( The Cauchy-Schwarz Inequality): If f and g are in the inner product 
space X, then 

IU, g)I $ 7 (/)7 (g), 

where T: X ➔ [0, oo) is given by T(h) = J(h, h). 

Proof: Let f and g be in an inner product space V such that {/, /) = (g, g) = 1. Choose 
8 such that ei8 {!, g) = I{!, g)I. Then 

0 $ (ei8 f - g, ei8 f - g) = -2Re(ei8 f, g) + 2. 

Thus, because Re(ei8 f,g) = Re(ei8 {!,g)) = l{f,g)I, we have 

IU, g)I $ 1 = T(/)T(g), 

as desired. Now, let a and b be two arbitrary vectors in X. If either a= 0 orb= 0, then 
the inequality is trivially true (both sides are 0). If a and bare both non-zero, then 

a a b b 
(T(a)' T(a)) = (T(b)' T(b)) = 1 

so that 
a b 

1 ~ l(T(a)' T(b))I 

l(a , b)I 
-

T(a)T(b)' 

and thus we have, 
l(a,b)I $ T(a)T(b). 

Proposition 1.5: For any inner product space X, the function T : X ➔ [0, oo) defined by 
T(f) = ff,!) is a norm. 

Proof: We will show 'T satisfies each of the requirements in the definition of norm. 
1) For / = 0, T(/) = J{o,o} = 0. If T(/) = 0, then {/, /) = 0, and, by the definition of 

inner product, f = 0. 
2) T(An = J(AJ, An= ✓1A1 2 u, n = 1A1ff,n = 1A1Tu) 
3) 

T(/+g)=J{f+g,f+g) 

=JU,!)+ (g,g) + 2Re{f,g) 

$ ✓ (/, /) + (g, g) + 21(/, g)I 

$ ✓ T(/)2 + 'T(g )2 + 2T(/)T(g) 

= T(/) +T(g) 
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The last inequality follows from that of Cauchy-Schwarz. 

Thus, T is a norm and in the remaining text, when f is in an inner product space, 
II/ II will denote /([;7). The Cauchy-Schwarz inequality can now be rewritten: 

l(f,g)I ~ IIJIIIIYII• 

Definition 1.6: A metric on a complex vector space X is a function p : X x X ➔ [O, oo) 
such that: 

1) p(J, g) = 0 if and only if f = g; 
2) p(J, g) = p(g, !); and 

3) p(J, h) ~ p(J, g) + p(g, h). 

The metric measures the "distance" from one vector to another. Note that item 3) is the 
familiar triangle inequality, so named because in R 2 with the usual Euclidean metric, it 
says that the length of the any side of a given triangle is less than the sum of the lengths 
of the two other sides. In a normed vector space, it is easy to verify that p(f, g) == II/ - gll 
is a metric. Thus, any norm induces a metric, and therefore any inner product induces a 
metric via its associated norm. 

Definition 1. 7: A Hilbert space is a complex-linear, inner-product space which is complete 
in the metric induced by the·inner product. 

Recall that complete means that any Cauchy sequence in the space converges to a 
vector in the space. A Hilbert space is thus an abstraction of R3 • The inner product of 
two vectors is analogous to the "dot product" or "scalar product", and the norm of any 
vector is simply the "distance" to the origin. 

Examples 1.8: Some other common examples of a Hilbert space are: 
1) The set of complex numbers e, with an inner product: 

(a+ bi, c +di)== (a+ bi)(c + di). 

2) The set en of vectors with n complex entries, , with inner product (for (a(k));:5 E 
en): 

n-1 

((a(k)), (b(k))) = L a(k)b(k). 
k=O 

That this is an inner product is an exercise left to the interested reader. 
3) The space l2 , of all sequences (f (n))~=O of complex numbers such that: 

00 

L lf(n)l2 < oo, 
n=O 
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with inner product: 
00 

((a(n)), (b(n))) = L a(n)b(n), 
n=O 

is a Hilbert space, as shown below. 
4) For U the open unit disk centered at the origin, the Hardy space, denoted H 2 , is 

the set of all complex analytic functions on U whose Taylor expansions about zero 
have coefficients that are l 2 sequences. Thus an analytic function f : U ➔ C given 
by f(z) = ~~=O ](n)zn is in H 2 provided ~~=O lf(n)l 2 < oo (here we have used 
J ( n) to denote the n th taylor coefficent of / in its· expansion about zero, so that 

](n) = t<~lo) ). The inner product of/ and gin H 2 is: 

00 

(/,g) = L /(n)g(n) . 
n=O 

As the reader has surely noticed, H 2 and l2 are essentially the same Hilbert space: 
the mapping ~~=O f(n)zn ➔ (](n)) is a vector space isomorphism of H 2 onto l 2 that 
preserves the inner product. · 

5) From quantum physics, the space of the wave functions for all states of a given particle 
with a given energy is an inner product space. Clearly it is a vector space. With 
inner product (cpk , 'Pk')= f~

00 
'Pk(x)cpk1 (x)dx , this space meets the requirements for 

a Hilbert space. 

Theorem 1.9: The space l 2 is a Hilbert space. 

Proof : Note that l 2 is a complex-linear vector space because if/ and g are in 12 , then 
I(!+ g)(n)l2 ~ 2l/(n)l2 + 2lg(n)l2 for each n , and thus f + g is an l 2 sequence. 

Now we shall demonstrate that l2 has the other properties of a Hilbert space. Let N 
be a positive integer. Define FN and GN for f,g E l2 as FN = (1/(0)I , 1/(l)I, ... , 1/(N)I) , 
and GN = (lg(O)I , lg(l)I, ... , lg(N)I). Note that these are elements of cN+l. Then, using 
the inner product for cN+i defined above, as well as the Cauchy-Schwarz inequality, we 
see that: 

N 

L IJ(n)g(n)I = l(FN,GN)I 
n=O 

~ IIFNIIIIGNII 
N l N l 

= (L l/(n)l2
) ~ (L lg(n)l2

) 
2 

n=O n=O 

Thus, the series ~~oJ(n)g(n) converges absolutely, and therefore cp defined on l2 x l2 by 
cp( a( n) , b( n)) = ~ anbn is a well defined function, which takes on values in C. Showing 
that the cp satisfies the definition of an inner product .follows readily, and is left to the 
reader as an exercise. 
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Now we must establish that l 2 is complete. Suppose ( !k) k=O is a Cauchy sequence in 
l 2 , meaning that for each € > 0, there exists a non-negative integer m such that for all 
i > j > m, 11/i - fill < €. Then, for each non-negative integer n, we have 

so that (fk(n))k=o is a Cauchy sequence in C for all n. Since C is complete, (fk(n))k=o 
converges, and we may define the function F from the non-negative integers to C by 
F(n) = limk-+oo fk(n). We now claim that lim(fk) = F. We must show two things about 
F: first that Fis in l 2 , and second that limk-+oo IIF - !kllz2 = 0. As (!k)k=o is a Cauchy 
sequence, it is bounded in the l2 norm; that is, there exists a real number M such that for 
all k, ll!kll12 ~ M. Let P be a non-negative integer; for any integer K, 

p p 

L IF(n)l2 ~ L IF(n) - f K(n)l 2 + 
n=O n=O 

p 

< L IF(n) - !K(n)l 2 + M. 
n=O 

Because limK-+oo ~:=o IF(n) - !K(n)l 2 = 0 (by definition of F) , F is in l2 (because ~:=o IF(n)l2 ~ M for all P). 
We will now show that / K converges to F. Given € > 0, choose a non-negative real 

number R such that k, j 2 R implies II !k - Ji II ~ €. Then for k 2 R , and any Q in the 
non-negative integers, we have 

and the inequality holds because for every j 2 R, ~~=O lfi(n) - fk(n)l 2 ~ 11/j(n) -
!k ( n) 11 2 ~ €

2
• Then, since Q is arbitrary, II F - !k II z2 ~ € for any k 2 R, and therefore l2 

is complete. 

Definition 1.10: An orthonormal basis of a Hilbert space His an orthonormal subset of 
H such that His the closed linear span of the set. 

Recall the set {la : o: EA} of vectors in His orthonormal provided II/all = 1 for all 
o: E A, and {/{3, /-r) = 0 for /3, 'Y E A, and /3 =I= 'Y· Also recall that the linear span of a set 
is the set of all finite linear combinations of the elements of the set. Thus a vector g E H 
is in the closed linear span of {/ a : o: E A} if and only if g = limn-+oo ~;=O akf ak, where 
o:k EA and ak ~ C for all integers k. 

Definition 1.11: The dimension of a Hilbert space H, denoted dim H, is the cardinality 
of any orthonormal basis of H. (It can be shown that any two orthonormal bases of a 
Hilbert space have the same cardinality [3, Theorem 3.30].) 

5 



Recall that two sets have the same cardinality if there is a bijection between them. 
Note that dim en is n, and dim l 2 is ~0 , the cardinality of the natural numbers. (For 
example, a basis of l 2 is { (1, 0, 0, ... ), (0, 1, 0, 0, ... ), ... } . ) 

Recall also from linear algebra that, given any closed subspace M of the vector space 
Rn, any element of Rn can be expressed as the sum of a vector in M and a vector 
orthogonal to everything in M. The same is true for Hilbert spaces. 

Theorem 1.12: If M is a closed subspace of the Hilbert space H, and f is a vector in 
H, then there exist unique vectors g in M, and h in the set of vectors perpendicular to M 
such that f = g + h. 

The proof of this theorem can be found in Banach Algebra Techniques in Operator 
Theory by R. G. Douglas [3, Theorem 3.21]. 
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Section Two: The Hardy Space 

In the previous section, we defined the Hardy space H 2 • In this chapter we will explore 
some of its properties in preparation for our study of composition operators. 

The inner product on the Hardy space, as discussed in the last section, is 
00 

(!, g) = L f (n)g(n), 

where i(n) is the nth Taylor coefficient of f for the series centered at zero. The norm 
induced by this inner product is 

00 1 

11/11 = (L If (n)l2
) 

2 
· 

n=O 

Examples 1.13: The following are some examples of elements of the Hardy space. 

1) f ( z) = z2
, or any polynomial in z, is clearly in H 2

• 

2) f (z) = ez = ~ 00 ..!.. zn is in H 2 as ( ..!.. ) is an l2 sequence. 
L..in=O n! ' n! 

3) Any bounded, analytic function on U is an element of the Hardy space. ( See Theorem 
1.15 below.) 

4) Log(l- z) = L~=1(-1t-1 ¼zn is in H 2 , even though it is not bounded on U , as(¼) 
is an l 2 sequence. · 

5) Any function of the form f(z) = (1 - z)-P, is in H 2, for O ~ p < ½- (See Theorem 
1.17 below.) 

Another method of computing the norm of a function in the Hardy space is presented 
in the following theorem. 

Theorem 1.14: For/ analytic on U, 

00 A 1 12,r • L l/(n)l2 = lim - IJ(re'9 )l2 d0. 
n=O r➔l- 27r 0 

Proof: First, note that if both sides of the equation are infinite, the equality holds. Now 
let r ER be such that O < r < 1. If L~=O lf(n)l 2 < oo, then: 

1 12,r n 

1
2,r n n 

21r IL j(k)(ri9)kl2d0 = 2~ L j(k)rkeikO L j(k)(rke-ik9)d0 
O k=O O k=O k=O 

00 

~ L lf(n)l2
-

n=O 
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Because the power series representing / converges uniformly on the circle of radius r, it 
follows upon letting n ➔ oo that 

00 

SL lf(n)l
2

-

n=O 

The equality in the expression above shows 

r ~ _!_ 121r IJ(rei8)12dB 
21r 0 

is increasing in r. Thus, limr➔I- 2~ f
0

2,rlf(rei8)12dB exists and is less than or equal to 

L~=O lf(n)l
2

-

If limr➔l- 2
1
,r J;1rlf(rei8)j2dB is finite, then limr➔I- L~o r2klf(k)l 2 is finite. (Note 

we did not use finiteness of L~=O lf(n)l 2 to prove l1r f0

2
1r IJ(rei8)l2dB = L~o r 2klf(k)l 2

.) 

Fix n E Z, then 
n n 

~ lf(k)l 2 = lim ~ r2klf(k)l2 
~ r➔l- ~ 
k=O k=O 

S lim _!_ 1
2
,rlf(rei8)12dB. 

r➔ I - 21r 0 

Thus, because n is arbitrary, limr➔I- 2~ Jt,r lf(rei9 )l2dB ~ L~o lf(k)l 2 , and the theorem 
follows. 

This theorem can be readily used to prove items 3) and 5) above. 

Theorem 1.15: Any bounded, analytic function on U is an element of the Hardy space. 

Proof: Let g be an analytic function on U such that for all z E U, lg( z) I S M for some 
MER. Then 

and thus L~o lg(k)l 2 S M 2 < oo and g is in H 2
• 

Before proving the second of these two items, we will need the following lemma. 

Lemma 1.16: For Bin the interval [-f, f ], jsin Bl > I JI. 

Proof: By the mean-value theorem, there exists c between O and B such that !sin B -
sin OI = IBcos cl> 1!1- Thus, !sin Bl> 1!1-
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Theorem 1.17: Any function of the form h(z) = {l - z)-P, is in H 2 , for p < ½­

Proof: Let h and p be as above. Then, 

2.. l 2
1r 1 1 h ¾ 1 1 J 74,r 1 

·9 2 dB < - I ·0 12 dB + - I ·o 12 dB 21r O 11 - re' I P - 21r h Im{l - re' ) P 21r l!. 1 - re' P 
4 4 

,r 7,r 

~ _!_ ( r:r l(rsin B)-Pl2 dB + {TI ~1-2PdB) 
211" }h J~ y2 

4 4 

which is clearly finite because 2p < 1. Thus, h(z) = (1 - z)-P is in H 2 • 

Theorem 1.18: For any a E U , there exists an element k 0 of the Hardy space, which, 
for any f in H 2 has the following property: 

Proof: Let a be in U, and let k 0 be defined on U as follows: 

1 
k0 {z) = _ . 

1-az 

Note ka = :E~0 (az)k is in H 2
, as a is in U. Clearly (/, k0 ) = L~o f (k)ak = /(a). 

The function k 0 is called the reproducing kernel for H 2 at a, and can be used to obtain 
a growth estimate for any element of the Hardy space. 

Corollary 1.19: For f E H 2 and a EC, 

a < 11/11 
If( )I - (1- lal2)½. 

Proof: Using the Cauchy-Schwarz equality and k 0 as defined above: 
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Section Three: Linear Operators 

Definition 1.20: For vector spaces X and Y over the field F, a linear operator from X 
to Y is a function A : X ➔ Y such that A{a1x1 + a2x2) = a1A{xi) + a2A{x2) for all 
a1,a2 E F and x1,x2 EX. 

Recall that, for all linear functions S, S(0) = 0. We will say an operator from a vector 
space X to X is an operator on X. 

Examples 1.21: The following are some examples of linear operators on vector spaces: 

1) Multiplication by a 3 x 3 matrix is a linear operation on R 3 . 

2) The identity operator, I, is linear on any vector space. 

3) For linear operators S and T : X ➔ Y, any linear combination of S and T is a linear 
operator. 

4) In R 3 , rotation about any axis through 0, by say 30°, is a linear operation. ( Of course 
this operation is equivalent to multiplication by a 3 x 3 matrix, and is represented in 
example 1 ). ) 

5) For any sequence a = (a(0), a(l), ... ) in l2 , let V : l2 ➔ l2 be defined by V(a) = 
(a(l), a(2), a(3), ... ). {That is, remove the first entry in (a(n))~=o·) This operator is 
commonly called the backward shift operator. On H 2 , V g = g(z)~g(O) for all g E H 2 . 

6) Let U : l 2 ➔ l 2 be defined by U(a) = (0, a(0), a(l), ... ). This operator is commonly 
called the forward shift operator, and on H 2 , U f = z f ( z). 

7) Let 1-l(U) be the set of holomorphic functions on the open unit disk, and let cp E 1-l(U) 
be such that the range of cp is contained in U. Then the composition operator on 1-l (U) 
with symbol cp, denoted Gip is defined by Giph = h o cp. That Gip is a linear operator 
is easy to verify. 

8) For (ak)k=o bounded, the operator Ma on l 2 defined by Maa ➔ (aka(k)) is linear for 
all a E l 2 • 

9) Let H be a Hilbert space. Then the operator A9 : H ➔ C defined by A9 (J) = (/, g) 
for all / E H is a linear operator. 

In the list above, we have defined several operators on Hilbert spaces. Now we will 
discuss some properties of these operators, and will prove some helpful theorems regarding 
them. Note that example 7), the composition operator, will be analyzed extensively in the 
next chapter. 

Definition 1.22: An operator S from the Hilbert space X to the Hilbert space Y is 
bounded if there exists a positive real number M such that, for all x EX, IISxll ~ Mllxll­
In this case, we would say S is bounded by M. 

Theorem 1.23: Let S: X ➔ Y be a linear operator for Hilbert spaces X and Y. Then 
the following are equivalent: 



1) S is continuous. 

2) S is continuous at zero. 

3) S is bounded. 

Proof: Clearly 1) implies 2). Assume S is continuous at zero. Then there exists 8 > 0 
such that II/II< 8 implies IIS/11 < 1. Thus, for any nonzero g EX, we have 

and thus S is bounded. 
Now assume Sis bounded by M. Let E > 0. Then, for /i, '2 EX such that 11'1 - '211 ~ 

and S is continuous. 

IIS/i - S/211 = IIS(/i - '2)11 

~Mll!i-'211 

= €, 

Definition 1.24: The norm of a bounded linear operator S : X ➔ Y, denoted by II SIi , is 

given by IISII = sup{ 111~1i'I : x EX\ {O} }. 

Note that IISII =min{M: IISxll ~ Mllxll for all x EX}; in particular, IISxll ~ IISllllxll 
for all x EX. Also notice IISII = sup{IISxll: llxll = 1}. 

The notation for the operator norm and the norm of an element of a Hilbert space 
are the same, and should not be confused. The meaning of the norm notation should be 
clear from the context. Thus, the norms of the operators in examples 1.21 5) and 6) are 
1, and the norm of the operator in 8) is sup{ lak I : k E 0, 1, 2, 3, ... } . 

Proposition 1.25: Suppose T and Sare bounded linear operators on a Hilbert space H. 
Then TS is a bounded linear operator, and IITSII ~ IITIIIISII. 

Proof: First, we observe that TS(af + (3g) = T(aSf + (3Sg) = aTSf + (3TSg, and 

thus TS is linear. By definition, IITSII = sup { 11fi;1fll : / E H, f =I 0}. From the 

definition of norm, we see IITS/11 ~ IITIIIIS/11 ~ IITIIIISllll_/11, and thus 11fi;
1
{" ~ IITIIIISII , 

and IITSII ~ IITIIIISII. 

The following proposition identifies the norm of the operator in example 9) above. 

Proposition 1.26: The operator norm of Ag, as defined by Ag(!) = (!, g) for all f EH 
is llgll. 
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Proof: For 9 = 0, IIA9 II = 11911 = 0. Suppose 9 i= 0. Let B = { l<{J1?1 : f i= O}. Then 
IIA9 II = sup B. By the Cauchy-Schwarz inequality, 

l(f, 9)1 < ll/1111911 = 11911 
11/11 - 11/11 . 

Thus 11911 is an upper bound of B, and 11911 2:: IIA9 II- Now use the fact that f can take on 

any non-zero value in H {in particular 9), and l\{.,11>1 = tt!tf 2 = 11911- Thus, 11911 E B , and 

IIAgll 2:: ll911-

Definition 1.27: A bounded linear functional on a Hilbert space His a bounded, linear 
operator from H to the complex plane. 

In Example 1.21 number 9), we presented for any Hilbert space a class of bounded 
linear functionals. Now we show that all bounded linear functionals on any given Hilbert 
space belong to that class. 

Theorem 1.28 (The Riesz Representation Theorem): Let H be a Hilbert space, 
and Sa bounded linear functional with domain H. Then there exists a unique g EH such 
that for any f E H, S can be represented in the following form: 

SJ=(f,9). 

Proof: Let K, = ker S ( = {f E H: Sf = O} ). As Sis continuous, K, is a closed subspace 
of H. If K, = H, then Sf = (f, 0) , and we are done. For K, # H , there exists h E H such 
that 11h11 = 1 and his orthogonal to all k E K, (i.e. (h, k) = 0) by Theorem 1.12. Then, as 
h ~ K,, Sh# 0. Now, for f EH, (J - ( ~)h) EK,, as S(f - ( ~)h) = 0. Therefore, since 
h is orthogonal to K,, 

Sf 
0 = U- Shh,h) 

Sf 
=(f,h)- Sh 

or, for all f E H, Sf = (f, Shh) and thus, Sf = (f, g), for g = Shh. 
Now we shall prove that this g is unique. If (f, 91) = (f, 92 ) for all f E H, then for 

f = 91 - 92, subtracting gives {91 - 92, 91 - 92) = 0, and 91 = 92· 
Thus, Sf= (f,9), for unique 9 EH. 

For the remainder of this paper, we will be concerned with bounded linear operators 
on Hilbert spaces {focusing primarily composition operators). Any such operator T has a 
natural "companion", or "dual" operator T*, called the adjoint of T. The existence of this 
dual operator is established in following theorem. 

Theorem 1.29: For any bounded linear operator Ton a Hilbert space H there exists a 
unique bounded linear operator S such that for any f, 9 EH {T f, 9) = (f, S9). 
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Proof: For a fixed gin a Hilbert space H, let <p be defined by cp(f) = (T f, g) for f EH. 
It is easy to show that <p is a bounded linear functional on H, and hence there exists by 
the lliesz representation theorem a unique h E H such that cp(J) = (J, h) for all f E H. 
Let Sg = h. 

By definition of S, (T f, g) = (!, Sg) for/, g EH. It is easy to verify that Sis linear. 
Setting f = S g we obtain: 

IISgll 2 = l(Sg,Sg)I = l(TSg,g)I ~ IITIIIISgllllgll 

for g EH. Thus 11S11 ~ IITII, and Sis a bounded operator on H. 
To show that Sis unique, suppose S1 is another operator such that (!, S1g) = (T /, g) 

for f,g EH. Then (!, Sg - S1g) = 0 for f EH, and setting f = Sg - S1g we see that 
Sg - S1g = 0. Hence S = S1 and the proof is complete. 

Definition 1.30: For an operator Ton a Hilbert space H , the adjoint of T, denoted T* 
is the unique operator on H such that for f, g EH, (T f, g) = (!, T* g). 

The reader may verify that the adjoint of matrix multiplication is multiplication by 
the transpose. 

Proposition 1.31: For Uthe forward shift operator and V the backward shift operator 
on the Hardy space H 2 , U* = V. 

Proof: Let /, g E H 2 • Then· 

(J,U*g) = (Uf,g) 
00 

= L f(k)g(k + l) 
k=O 

= (!, Vg). 

Hence, (J,U*g- Vg) = 0 for all/, which implies U*g = Vg. 

Proposition 1.32: For a bounded linear operator S on a Hilbert space H, 11S11 -
sup{l(S/,g)I: II/II= 11911 = l}. 

Proof: Let/ and g be such that 11/11 = ll911 = 1, and let {l(S/,g)I: II/II= 11911 = 1} = L. 
We have 

l(S/,g)I ~ IIS/1111911 

= 11s111 

~ 11s1111111 

= 11s11, 

and thus 11S11 ~ sup L. Also, given h EH such that 11h11 = 1, (Sh, 11i:11 ) = IIShll, and sup 

L ~ sup{IIShll: 11h11 = 1} = 11S11, and the proposition is proven. 
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Proposition 1.33: For T a bounded linear functional on a Hilbert space H, IITII = IIT* 11-

Proof: Observe that for f and gin H, l{f, T*g)I = l(T/, g)I = l(g, Tf)I , and thus IITII = 
IIT* 11 by the proposition above. 

Lemma 1.34: Suppose that T is a bounded linear operator on a Hilbert space H, and 
III - TII < 1. Then Tis invertible, and 

1 1 
IIT- II ~ 1 - III - TU-

Proof: If we set TJ = III -TII < 1, then for N ~ M, we have 

N M N 

II L(I -T)n - Lu -T)nll = II L (I -T)nll 
n=O n=O n=M+l 

N 

< L IIJ-Tlln 
n=M+l 

N 

= L ,,,n 
n=M+l 

'r/M+l 
::;-1-, 

- T/ 

and the sequence of partial sums {~:= 0 (1 - T)n}N=O is Cauchy. If S = ~~=0 (1 - T)n , 
then 

TS= (I - (I-T)J(~(I-T)n) 

N 

= J~
00

([J - (J -T)] DI -Tt) 
n=0 

= lim [J - (I -T)N+l] 
N-+OCJ 

=I, 

since limN-+OCJ ll(I -T)N+l II = 0. Similarly, TS= I, so that Tis invertible, with T-1 = S. 
Further, 

N N 

11s11 = Jim II Lu - T)nll $; Jim L III -Tlln = 11
1 

11 · 
N-+OCJ N-+(X) 1 - J - T 

n=O n=O 

Definition 1.35: For an operator S: H ➔ H, where His a Hilbert space, the spectrum 
of S , denoted a(S), is defined by a(S) = {a EC : S - al is not invertible in H}. 
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The reader should observe that the set of eigenvalues of a linear operator is a subset 
of its spectrum. We will now examine some examples of spectra of linear operators. 

Examples 1.36: 

1) For T : R 3 ➔ R 3 defined by multiplication by a 3 x 3 matrix, a(T) is the set of 
eigenvalues of T. 

2) For U : H 2 ➔ H 2 the forward shift operator, a(U) = {,\ E C : 1,\1 ~ l}. This is 
proven below. 

3) For V : H 2 ➔ H 2 the backward shift operator, a(V) = { ,\ E C : 1,\1 ~ 1 }. This 
follows easily from 1) above, and the fact that a(T) = a(T*), where the bar denotes 
the complex conjugate of all the elements of the set (the proof of which is left to the 
interested reader). 

We will show below that spectra of operators on infinite dimensional Hilbert spaces 
consist of more than just eigenvalues. First we will prove some more general properties of 
the spectrum. 

Theorem 1.37: For an operator S : H ➔ H where H is a Hilbert space, a(S) is closed 
and bounded. 

Proof: Let ,\ E C \ a(S), so that S - )'1 is invertible. We will show B = { a : la - ,\I < 
ll(s-ln-111} CC\ a(S) is open. Let a EB. Then 

ll(S - ,\J)-1(S - al) - Ill= ll(S - ,\J)-1(S - al - (S - ,\1))11 

~ !IS- ,\Jll-1 11(,\- a)III 

~ I,\ - alllS - .XJll-1 

< 1. 

Thus, (S - ,\J)-1 (S - al) is invertible, and therefore S- al is invertible, and C \ a(S) is 
open. 

For boundedness, we will show a(S) C {z EC: lzl ~ IISII}. If 1,\1 > IISII, then 

1 > ~ = II S II = III - (I - S )II 1,\1 .X ,\ ' 

so that I - f is invertible by the above lemma. Therefore, ,\ E C \ a(S) (as S - ,\J = 
,\(1-f)), and a(S) is bounded. 

The following theorem is proved in Banach Algebra Techniques in Operator Theory 
by R. G. Douglas [3, 2.29]. 

Theorem 1.38: For an operator S : H ➔ H where H is a Hilbert space, a( S) is non­
empty. 
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Thus, by the preceding theorems, a(S) is a non-empty, compact subset of C. 

Definition 1.39: The spectral radius of an operator T on a Hilbert space H, denoted 
r(T), is a real number equal to sup{I.-\I : ,,\ E a(T)}. 

Observe that as a corollary of the preceeding definition and theorem, r(T) ::::; IITII­

Proposition 1.40: For U: H 2 ➔ H 2 the forward shift operator, a(U) = { ,,\ E C : I.-\I ::::; 
l}. 

Proof: First, we will show U - ,,\J is not surjective for,,\ EU. For 1 to be in the range of 
U - .-\I, g(z) = z~.x must be in H 2 , which it is not, as it is not analytic on the disk. Thus, 
U - ,,\J is not onto, and ,,\ E U is in the spectrum of U. As the spectrum is closed, all ,,\ 
such that I.-\I ::::; 1 must be in a(U). Note that ,,\ E C such that I.-\I > 1 cannot be in the 
spectrum, because IIUII = 1, and r(U)::::; IIUII. 

We remark that Uhas no eigenvalues. Suppose,,\ is an eigenvalue of U. Then 

(Uf)(z) = .-\f(z) 

for some f =p O in H 2 • Hence, 
f(z)(z - .-\) = 0, 

so that f (z) = 0, except at ·,,\. This is a contradiction, because f must be continuous (it 
is, after all analytic). 
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Chapter Two: Composition Operators 

In this chapter, we will discuss composition operators on the Hardy space, focusing 
primarily on the computation of norms of these operators. 

Section One: Introduction 

In this section, we will introduce some basic facts about composition operators, and 
begin our analysis of bounds on the norms of these operators. We will begin by discussing 
possible forms of compostion operators. 

Proposition 2.1: Let cp: U ➔ Ube analytic. Then / o cp E 1-l(U). 

Proof: Chain rule. 

Thus, for cp : U ➔ U analytic, the operator Ccp on 1-l(U) defined by Ccpf = f o cp 
maps 1-l(U) into 1-l(U). Recall that Ccp is the compostion operator on 1-l(U) with symbol 
cp. 

Examples 2.2: The following are several examples of functions from the disk into a subset 
of the disk. Thus, any of these functions could be the symbol of a composition operator. 

1) cp(z) = a for a EU. 

2) cp(z) = az for a EU. 

3) Any polynomial in U which takes the unit disk into itself, e.g. cp( z) = ¼ z2 + ¾ z. 

4) Linear fractional functions of the form f~iz for p E U. 

5) Let f E 1-l(U) be bounded and non-constant. Then for M = sup{l/(z)I : z E C} , 
cp(z) = 11;) is a symbol of a compostion operator. 

Definition 2.3: A bounded linear operator T is said to be a contraction if for each 
/ E 1-l(U), IIT/11 ~ II/II- Note this is equivalent to IITII ~ 1. 

The following theorem shows that the Hardy space H2 , a subset of 1-l(U), is preserved 
under Ccp. The proof presented here is an adaptation of that which appears in Composition 
Operators and Classical Function Theory by Joel H. Shapiro (4, Section 1.3]. 

Theorem 2.4 (Littlewood's Theorem): Suppose cp E 1-l(U) has range contained in U 
and satisfies cp(O) = 0. Then Ccp(H2

) ~ H 2
• Moreover, for each/ E H 2

, II! o cpll ~ 11/11-

Proof: Let V : H 2 ➔ H 2 ( the backward shift operator) be such that for / in H 2 , 

V f(z) = L~=O f(n + I)zn. Note that f(z) = f(O) + zV f(z) , and vn J(O) = f(n). Now 
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suppose f is a polynomial. Then f o cp is bounded on U, so that f o cp E H 2
• Now, 

f(cp(z)) = /(0) + cp(z)(V f)(cp(z)) 

or, 
C'{Jf = f (0) + M'{JC'{J V f, 

for Ml{) the multiplication operator (that is multiplication by cp). As cp(0) = 0, all terms 
of the power series for cp have a factor of z, and therefore M'{JC'{J V f is orthogonal in H 2 

to /(0). Thus, 
IIC'{J/11 = l/(0)12 + IIM'{JC'{J V f 11 2 

< l/(0)12 + IIC'{J V 1112
• 

This is true because Ml{) is contractive on H 2 (which can be readily proven using the 
integral definition of norm). Now substitute V f, V 2 f, V3 f , ... for / in the above equations, 
and 

IIC'{J V 111 2 ~ l(V /)(0)1 2 + IIC'{J v2 111 2 

IIC'{J v 2 f 11
2 ~ l(V2 /)(0)12 + IIC'{J V3 f 11

2 

IIC'{J yn f 11
2 ~ l(Vn /)(0)1 2 + IIC'{J yn+l f 11 2 

· 

Adding these together gives 

n 

IIC'{J/11 2 ~ L l(Vk /)(0)1 2 + IIC'{J yn+I /11 2 
• 

k=O 

As f is a polynomial, allow n be the degree off, so that yn+l f = 0. Then 

n 

IIC'{J/11 2 ~ L l(Vk /)(0)12 

k=O 
n 

= L lf(k)l2 

k=O 

Thus, Cl{) is an H 2-norm contraction when restricted to the set of polynomials in z. 
Now suppose f is not a polynomial. Let f n be the n th partial sum of its Taylor series. 

Then fn -+ f, and 11/nll ~ 11/11. Let m and n be positive integers. Then fn - fm is a 
polynomial, and thus IIUn - fm) o cpll ~ llfn - fmll- Thus Uno cp) is a Cauchy sequence, 
and therefore converges to some g E H 2 • Because f n converges in H 2 , and hence pointwise 
on the unit disk U, we see that g = f o cp. Thus, Cl{) preserves H 2 • Now, as f n o cp -+ f o cp 
and 11/n ° cpll ~ II/nil, II/ 0 cpll ~ 11111. 

Having proved a composition operator with symbol that vanishes at zero preserves 
H 2 , we will now prove that an arbitrary Cl{) preserves H 2 • To do this we will express a 
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given C'() as CwCo:p, where 1/,(0) = 0 and aP is a special automorphism on the disk, as 
defined below. 

Definition 2.5: Given p E U, the special automorphism from U ➔ U , denoted ap, is 
defined by O'.p ( z) = f ~;z • 

Note the special automorphism interchanges p with 0 (that is ap(0) = p and ap(P) = 
0), and ap = a;1

. 

Lemma 2.6: For all p EU, C0 P maps H 2 to H 2 , moreover Cap is bounded on H 2 and 

IICo:pll ~ M· 
Proof: Suppose f is holomorphic in a closed neighborhood of the closed unit disk, RU 
for R > 1. Then 11/11 2 = 2~ J;1r lf(ei9)l2dB by theorem 1.14. Using a change of variable, 
we see 

II/ 0 apll 2 = ~ f
2

1r lf(ap(ei9 ))1 2 dB 
21r lo 

= ~ {21r lf(eit)l21a l(eit)ldt 
21r lo p 

= ~ {21r l/(eit)l2 1 - IP!2 dt 
21r lo 11 - pe'tl2 

< 1 - IPl2 ~ {21r lf(eit)l2dt 
- (11 - lpl)2 21r lo 
= l+IPl111112. 

1- IPI 

Theorem 2. 7: If <p : U ➔ U is analytic, then C'() : H 2 ➔ H2 , and 

1 + lcp(O)I 
1 - lcp(0)I" 

Proof: Note that for p = cp(0) and 1/, = ap o <p, 1/, goes from U to U and fixes 0. By the 
self-inverse property of ap, <p = ap o 'lj;, or C'() = CwCo:p. We have already shown that 
C,µ is a bounded contraction, and the product of two bounded operators is bounded by 

proposition 1.25. Using the just proven lemma, we see IIC'()II ~ IICwllllCo.p II ~ ~~:~~~. 

Thus C'() is a bounded linear operator on H 2 • Hence, there exists another bounded 
linear operator c; such that (C'()/, g} = (/, C'()g} for all /, g E H 2 • In general, determin­
ing the image of a H 2 function under c; is difficult. However, it is less difficult for a 
reproducing kernel in H2 . 
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Propostion 2.8: For Cr.p and ka as above, c;k0 = kr.p(a)· 

Thus, Cr.p maps the set of Hardy space reproducing kernels into itself. Adjoint com­
postion operators are the only bounded linear operators on H 2 that have this property. 

Theorem 2.9: Suppose T: H 2 ➔ H 2 is a bounded linear operator, and given any a EU, 
there exists {3 EU such that Tk 0 = k13. Then T* = Cr.p for some t.p E 1-l(U) taking U into 
itself. 

Proof: Define t.p: U ➔ C by t.p(a) = (T*z,k0 ). Note t.p E 1-l(U) (t.p(a) = (T*z)(a)). Let 
no EU be arbitrary. We have 

t.p( ao) = (T* z, ka0 ) 

= (z, Tk00 ) 

= (z, k130) 

= f3o, 

for some {30 E U, by hypothesis. Thus, t.p( a0 ) = {30 E U, and we see that t.p is an analytic 
self-map of U. 

Now we must show Cr.p = T*. Let f E H 2 be arbitrary, and suppose a EU. We have 
seen that Tka = kr.p(a)· Now, {(Cr.p -T*)f, ka) = U, (c; - T)ka) = U, kr.p(a) - Tka) = 0, 
and thus ( Cr.p - T* f) (a) = 0, and as a is arbitrary, ( Cr.p - T* f) = 0 

We have already proven that IIT* II = IITII for all bounded linear operators, and thus 
we can readily assert II c; II = II Cr.p II- We will use this fact in the following section to 
establish a lower bound on the norms of compostion operators. 

We will conclude this section with a brief discussion of the spectrum of compostition 
operators. Much research has been done in this area. For example, the following is known. 
Suppose t.p E 1-l(U) is such that t.p(U) is contained in some polygon contained in U. Then 
there is a point a EU such that t.p(a) = a and a(Cr.p) = {0} U {t.p'(a)n: n = 0,1,2, ... }. 
However, the proof of this result is beyond the scope of this paper. It is easy to establish 
a special case of this, as we will show below. 

Propostion 2.10: For t.p(z) = Az, where IAI < 1, a(Cr.p) ={An: n = 0, 1, 2, ... }. 

Proof: For t.p as above and f = zn, Cr.pf = (A)nf. Thus, An is an eigenvalue of Cr.p , 
with eigenvector f. This works for all n ~ 0, and thus O is also in the spectrum , as the 
spectrum must be closed. To show that this is the entire spectrum, let us look at Cr.p - a.I 
for a~ {An : n = 0, 1, 2, ... }. Cr.p - al is invertible, with inverse T: H 2 ➔ H 2 defined as 
Tf ( ) = '°'oo i(n)z" 

Z L..,n=O .\" -a 
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Section Two: Norms of Composition Operators 

In the last section we analyzed some general properties of composition operators. In 
this section we shall look at some more specific properties of their norms and adjoints. 

Theorem 2.11: For cp: U ➔ U analytic, and Ccp thus from H 2 to H 2
, 

1 + lcp{O)I 
1 - lcp(O)I" 

Proof: We have already seen the proof of the second inequality (Theorem 2. 7). For 
the first, we will look at how c; operates on the reproducing kernel k0 • Recall that 
IICcpll = 11c;11, from an earlier proof. Then IICcpll ~ 11c;111, as 11c;11 is a sup. Now, 

11c;111 = 11c;koll 
= llkcp(O) II 

= ✓ (kcp(O)' kcp(O)) 

( 
1 ) ½ 

- 1 - lcp{O)l2 . 

For general symbols cp, these are the best estimates possible, as we will show below. 

Lemma 2.12: For the special automorphism aP on the disk, 

Proof: 

1 - I ap ( z) I 2 = 1 - I P - ~ 12 

1-pz 

1 I 2 2 - I 1 - pz 12 ( 1 - pzl - IP - z I ) 
1 

- ll _ :fizl2 {{1- pz){l - pz) - (p - z)(p- z)) 

1 
- ll _ fizl 2 {1 + IPl

2
lzl

2 
- IPl

2 + lzl
2

) 

II - 1Pzl2 (1 - IPl2)(1 - lzl2). 
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Proposition 2.13: For ap as defined above, IIC0 P II=~-

Proof: We have already seen in the previous section that IIC0 p II ~ ~- We shall begin 

b 1 ki IICopkt3II c {J U y oo ng at llkt3 II , 1or E . 

lie II > IICopk.ell 
Op - Ilk.ell 

_ llkop(/3) II 
- Ilk.ell 

d (J ~ th· b /i+jpT an , as ➔ IPI, 1s ecomes y I=jpj· 

( 
1 - lfJl2 ) ½ 

- i - lap(fJ)l2 

i - lfJl2 

11 - z5fJl2 
l- lPl2 , 

Proposition 2.14: The lower bound estimate is the best possible. 

Proof: Let cp E H 2 be defined by cp( z) = p for some p E U. Then for I ;/ 0 in H 2
, 

IICcpl II ll(P)I 
11111 =m 

- IU, kp)I 
- 11/11 
< 11/llllkpll 
- 11111 
= llkpll 

= ✓ 1 -
1
1Pl2 • 

Thus IICcpll ~ ✓ 1_jPl2 = ✓ l-l:(o)l2, and, as ✓ l-l:(o)l2 is also a lower bound on IICcpll, it 
must be the norm. 

If we restrict our attention to certain classes of symbols, we can get better estimates, 
as we shall examine in the next section. 
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Section Three: Norm Calculations 

Recall that in the previous sections we established, by proving IICr.pll = IIC;II and 

IIC.nkoll = ✓ 1 'that IIConll > ✓ I I \o)l2· Generally, we have 11c.,,11 > sup{IIC,nkoll}, .,., l-lr.p(O)l2 .,., - - r.p - .,., 

where k0 is the nomalized reproducing kernel at a (that is Ilka II = 1). Thus, 

11c.,,11 ~ sup { 1- lal
2 

} 
1-jcp(a)l2 :a EU 

= sup{ 
1- r2 } 

1- lcp(rei8)12 : 0 ~ r < 1,0 ~ 0 < 21r . 

In this section, we will use these results to establish a better lower bound for the norm of 
a certain class of composition operators. 

We shall begin by defining a class of function which we will work with throughout this 
section. 

Definition 2.15: Let a, b, c, d E C, with d =/; 0. A linear-fractional transformation (fre­
quently written LFT) 'l/;: C ➔ C is a function of the form 'l/;(z) = ~;t~-

In general, the calculation of norms of composition operators can be very complicated, 
and yield results that are not easy to interpret or work with. The following theorem will 
illustrate this by displaying the norm of a very simple class of compostion operators ( see 
[2, theorem 3]). 

Theorem 2.16: Let cp(z) = sz + t, wheres, t EC, and Isl+ ltl ~ 1. Then 

Due to the difficulties in determining the norms of composition operators, we shall 
attempt the easier task of improving the lower bound for the norm of composition op­
erators with linear-fractional symbol of the form cz~d. First we will prove the following 
proposition, in order to facilitate this analysis. 

Proposition 2.17: A non-constant linear-fractional transformation of the form 'l/;(z) = 
cz~d is an analytic self-map of U if and only if jbj + jcj ~ jdj. 

Proof: Note that in general, band c cannot be equal to zero, because if they were, then 
'l/; would be a constant function (with value O or ~). 

We shall first prove that if 'l/;(z) = cz~d is an analytic self map of U then lbl + lcl ~ ldl. 
As 'l/; is analytic, z t-t cz + d has no zeros over U , and therefore lei ~ !di , or !Id! - !ell == 
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ldl - lcl. By definition of self-map, 11/i(z)I = I cz~dl < 1 for all z E U. Note that the 
continuity of z H lcz + di gives that lbl ~ lcz + di for all z in the closed unit disk. Thus, 

C ,','d h . . 1 1or z = d c on t e umt c1rc e, 

lbl ~ lcz + di 
-lcld 

=lc~+dl 

= Id- lcldl 
ldl 

d 
= lldl - lclllldll 

= ldl-lcl­

Thus, ldl ~ lcl + lbl. 
Now assume that lbl + lcl ~ ldl. Then 1/i(z) = cz~d is analytic over U because 

z H cz + d has no zeros for z E U, as lcl < ldl (recall b ¥- 0 because 1j,, is nonconstant). 
Now, for z = rei8 where r < 1, 

b lbl 
1cz +di= lcz + di 

< lbl 
- lldl - lclrl 

lbl 
< ldl-lcl 
< ldl-lcl 
- ldl-lcl 
= 1. 

The second (strict) inequality is true because c ¥- 0. Therefore, 1/J(z) is an analytic self-map 
of U. 

We will now examine the bounds on IIC,t,II where 1/J(z) = cz~d is an analytic self-map 

of U. We will do this by finding the supremum of l-l!(:e~ 8)l 2 over r and 8. We will now 

proceed by looking at l-l,t,( ~e• 8) 12 , and establishing a maximum over 8 for fixed r. For 

cp( z) = _b_ and z = rei8 
cz+d ' 

1 1 

We must therefore minimize lcrei8 + di over 8. 
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with the last equality proven in the preceding proposition. This is a minimum because for 
B such that B + arg(c) = arg{d) + 1r, jcrei8 + di will be minimized, and will equal ldl - rlcl­
The fraction thus becomes 

1 
lbl2 ' l - (jdj- clr) 2 

and the lower bound on the norm is thus 

(2.18) sup{ 
{1 - r 2 ){ldl - lclr)2 

{ldl - lclr)2 - lbl 2 : O ~ r < l}. 

Note then that to get a lower bound of the norm of IIC'PII, we must compute the 
supremum over r of the fraction within the radical in the expression above. Using the 
basic methods of calculus, this is equivalent to finding the zeros of the fraction below, 
which is the derivative of the fraction in the radical above, 

2{ldl - lclr)(lcllbl2 + ldllbl2r - ldl 3r - 2lcllbl2 r 2 + 3lclldl2r 2 - 3ldllcl2r 3 + lcl3r 4
) 

(lbl2 - ldl2 + 2lclldlr - lcl2r 2)2. 

This is the same as finding the zeros of q(r) = lcllbl2+ldllbl2r-ldl3r-21cllbl2r 2+3lclldl2r 2
-

3ldllcl2r3 + lcl3r 4 for O ~ r < 1. This can be done using Ferrari's formula, however the 
result is too long and complicated to be of any use. We will therefore look at supremums 
for specific values of b, c, and d. 

Examples 2.19: Let cp(rei8 ) = .~+ . ere d 

1) Using formula 2.18, we see that when b = 2, c = -1, and d = 3, 

{l - r 2 ){3 - r)2 

{3 - r)2 - 4 

= ✓-r4 + 6r3 
- 8r2 

- 6r + 9 . 
r 2 - 6r + 5 

To find the bound, we must determine the maxima of this last term, which, using the 
basic methods of calculus, becomes a problem of finding the zeros of 12-25r+ 10r2 -r3 • 

These are 3, 7±133", and 7-133". Clearly 1 < 3, 1.±.f33'. Thus, the maximum we seek is 

at r = 1-133", where the value of the bound is 44$3'~'13, or approximately J2.095. 
Note we know this critical point yields the supremum because at r = 0, the derivative 

of (l~~;~~=~)2 

is positive(~~), whereas at r = 1, the derivative is negative(-½). Note 

that this value of J2.095 is larger than the estimate given by IIC'PII ~ J 1 
, which 

1-lip(O) 12 

yields Ii= Jl.800. 
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2) Again, using formula 2.18, we see that for b = 2, c = 4 + 3i, and d = 7, 

(1 - r 2 )(7-5r)2 

(7 - 5r)2 - 4 · 

Finding a maximum of this over r using calculus requires finding the zeros of 28 -
405r + 450r2 -125r3, which are r = ½, r = 11\%®, and r = 11

- 1%®. Once again, 

only 0 ~ 11 - 1%® < 1, and thus the maximum is at approximately r = .0753, where 
the value of the bound is approximately Jl.094. Note that the value of the derivative 

f (l-r
2H7- 5r)

2 
. 56 d h al f th d . t· 1 . 13 d th o (7_ 5r) 2 _ 4 at zero IS 405 , an t e v ue o e enva 1ve at IS - 10 , an us 

we know the critical point at r = .0753 is the supremum. The estimate for the bound 
of this operator using the method of the last section is Jl.088. Thus we see that this 
bound is not always a great improvement over the original bound estimate, but in 
some cases is a significant improvement. 

We will now present a proof that the above estimate is always better than the bound 
established in the last section. 

Theorem: Let b, c, d be non-zero elements in Ube such that ldl ~ lbl + lcl. For 'l/J : U ➔ U 
defined by 'l/J(z) = cz~d' 

1 . { 
1 - l'l/J(0)l2 < sup 

Proof: For any 'l/J of this form, l'l/J(0)l2 = I ~12, and thus, 

1 
-----
1 - l'l/J(0)l2 

'tXT ·n al { (l-r
2
~qdl-!clr)

2 
0 < 1} 'tU ·11 d b 1 k" ne WI now an yze sup (!di- c r) 2 -lbl 2 : _ r < . ne WI procee y oo mg 

h al f (1-r2)(,d!-!cjr)2 - - (1-r2)(jdj-jcjr)2 - jdj2 . 
at t e v ues o (ldl-lc r) 2-lbl2 near r - 0. At r - 0, (ldl-lclr)2-lbl2 - · ldl2-lbl2, which 

is equal to the estimate from the previous chapter. The derivative at r = 0 is (~drd~fi/~} 2 , 

which is positive, and thus the function is increasing in some neighborhood of r = 0, 
from the continuity of the derivative. Thus, there exists € > 0 such that for r = E, 

(l-r
2
)(,d!-!c!r)

2 
~dl

2 d h th th · h · 1 f (!di-le r)2-lbl2 > !di -lbl2, an ence e eorem 1s proven, as t ere exists an e ement o 

{ (1-r2 )(!d!-!c!r) 2 
} • • !d!2 

(ldl-lclr)2-lbl2 : 0 ~ r < 1 which 1s greater than ldl2-lbl2, and therefore the supremum 
is greater as well. 

26 



References 

[1] J. Caughran and H. J. Schwartz, Spectra of compact compositition operators, Proc. 
Amer. Math. Soc. 51 (1975), 127-130. 

[2] C. C. Cowen, Linear fractional composition operators on H 2 Integral Eqns. Op. Th. 
11 (1988), 151-160. . 

[3] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New 
York, 1972. 

[4] J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition 
operators on H 2 , Indiana Univ. Math. J. 125 (1973), 471-496. 

[5] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, 
New York, 1993. 

27 




