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Introduction 

There are many ways to define chaos in everyday language. For example, 

synonyms of chaos include disorder and turmoil. Certainly, the term also connotes 

randomness and complexity. Mathematically, one may define chaos in relation to the 

behavior of discrete dynamical systems, i.e., the behavior of operators (functions) under 

iteration. R. Devaney, in his book An Introduction to Chaotic Dynamical Systems [l], 

gives a rigorous definition for chaos in such systems. Devaney's definition, as we shall 

see, preserves the everyday notions of chaos. That is, a chaotic system by Devaney's 

definition is characterized by complex, turbulent behavior. 

In contrast, when the word linear describes mathematical structure, one almost 

certainly assumes that structure has a simple, orderly character. Indeed, the words simple 

and orderly describe the dynamics of a linear operator on a Euclidean space of finite 

dimension. Devaney himself describes such operators as having "extremely simple 

dynamics" [l, p. 190]. Moreover, in much of the literature describing chaos and chaotic 

operators, one often encounters the statement "nonlinearity gives rise to chaos." 

It would seem, then, that chaos and linearity are incompatible. Not so! In fact, 

linear operators on infinite dimensional spaces may be chaotic (although, as the reader will 

shortly see, linear operators on finite dimensional spaces must fail to be chaotic). I first 

learned that chaotic linear operators exist at a colloquium talk given by J. H. Shapiro of 

Michigan State University. Although much of the talk was beyond my understanding at the 

time, the apparent discrepancy between the simplicity of linearity and the richness of 

chaotic behavior was intriguing. In the following paper, I will present an example of a 

chaotic linear operator on an infinite dimensional vector space. 
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Section 1: Preliminaries 

Before moving into a rigorous discussion of chaos, we first introduce some 

elementary concepts from the study of discrete dynamical systems. Let (X, d) be a metric 

space (that is, a set on which there is a distance function d, called a metric). Let T be an 

operator mapping X into X. Our study will be concerned with the behavior of the orbits of 

points in X under T. 

Definition. Let x e X. The orbit of x under T , denoted G T(x), is given by 

GT(x) = { T0 x : n = 0,1,2,3, ... }. 

For example, if S: R ➔ R is given by Sx = -½ x, then G 5(2) = { 2, -1, ½, - ¼, ½, ... }. 

We will also consider points of X whose orbits under T are periodic; we call such 

points periodic points. 

Definition. Let x e X. We say x is a periodic point (for T) provided that T0 x = x, 

for some positive integer n. In such a case, we say x has period n under T. 

For example, the real numbers 0 and -1 are periodic points of period 2 under the operator 

Tx = x2- 1. With these basic definitions in place, we can present a rigorous definition for 

chaos in the context of an operator on a metric space. 

We adopt R. Devaney's definition of chaos [1, p. 50]. Let X be a metric space 

with metric d, and let T : X ➔ X. In the following definition and in the sequel, for a given 

x e X and E > 0, b(x,E) denotes the open ball centered at x of radius E: b(x,E) = {ye X: 

d(x,y) < E }. 

Definition. The operator Tis said to be chaotic on X, or simply chaotic, provided 
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(a) T has sensitive dependence on initial conditions, meaning that there exists a 

6 > 0 such that, for any x e X and E > 0, there exists a y e b(x,E) with 

d(Tnx, Tny) > 6, for some n; 

(b) the set of periodic points for Tis dense in X, meaning that given any open 

ball b in X contains a periodic point for T; 

(c)* X contains a universal vector for T, meaning that there is an x e X such that 

GT(x) is dense in X. 

The reader can verify, for example, that the operator Ton [0, 21t) given by T(x)=2x mod 

21t is in fact chaotic [l, p. 50]. Recall that a metric space is separable if it has a countable 

dense subset. The set of real numbers, taken with the standard Euclidian metric, is an 

example of a separable metric space; the rational numbers constitute a countable dense 

subset of the reals. Note that if a metric space admits an operator with a universal vector, 

then the metric space is necessarily separable--the orbit of the universal vector is a 

countable dense set. 

In this paper, we will focus on operators on a special type of metric space, called a 

Hilbert space. Before defining a Hilbert space, we must first define an inner product. 

Definition. Let L be a vector space over the real numbers. The function /: L x L ➔ 

R is an inner product on L provided 

(a) /(ag + bg, h) = a/(g, h) + b/(g, h), for g,h in L and a,b in R; 

(b) /(g, h) = /(h,g), for g,h in L; 

(c) /(g,g) ~ 0 for gin L, and /(g,g) = 0 if and only if g is the zero vector. 

(for convenience, we often express /(g,h) simply as (g,h)) 

* Requirement (c) given here is equivalent to Devaney's requirement of "Topological Transitivity". 
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A vector space equipped with an inner product is called an inner product space. The 

reader is already familiar with one example of an inner product space, namely (Rn,•), the 

n-dimensional Euclidean space with the standard dot or scalar product. Another example is 

the space C[0,1] of continuous real-valued functions on the unit interval, with inner 

product J; f g dx, for f and g in C[O, 1]. In inner product spaces, the inner product induces 

an additional structure, called a norm. 

Definition. A norm on a vector space L is a function II II : L ➔ R satisfying: 

(a) II g II ~ 0 for g in L, with II g II = 0 if and only if g is the zero vector, 

(b) II g + h II ~ II g II+ II h II, for g, h in L; 

( c) II ag II = I a I II g II, for g in L and a in R. 

(Property (b) above is often referred to as the triangle inequality.) 

As mentioned above, an inner product on a space L induces a norm II II on L, given by 

II g II = (g,g)112 for all gin L. The reader can easily verify that this function is in fact a 

norm (the triangle inequality follows from the Cauchy - Schwartz Inequality: 

l(f,g)I ~ II f 1111 g II). We are now ready to introduce the definition of a Hilbert space. 

Definition. An inner product space X is called a Hilbert space provided X is 

complete in the metric d, given by d(x,y) = II x - y II, where II II is the norm induced by 

the inner product. (Recall that a metric space is complete provided any Cauchy 

sequence in the space converges to an element of the space.) 

The reader may verify that (Rn,•) is in fact a Hilbert space; the metric here is precisely the 

standard Euclidean metric. The space C[O, 1] with the inner product mentioned above is not 

a Hilbert space, as completeness fails. 

Another example of a Hilbert space is ,Q 2, the collection of all sequences of real 

numbers whose terms are square summable. Specifically, l 2 is given by 
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1 2 = {(xi): xi e R for i = 0,1,2, ... , and L x/ < 00 }. 

i=O 

The inner prcxluct is given by 

00 

(( xi ), ( Yi)) = L (xi Yi). 
i=O 

00 
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The norm on ,Q 2 is given by II ( xi ) II = [ L x/] 112, for all ( xi ) in ,Q 
2• When convenient, 

i=O 
we adopt functional notation for a sequence X = ( xn ); that is xk, the kth term of X, may 

be expressed as X(k). The space ,Q 2 is of particular interest to us since it will be the 

domain and target space for the chaotic linear operator presented later. 

At this point, it is necessary to go deeper into the structure of Hilbert spaces. 

Definition. Let S be a subset of a Hilbert space H. S is orthonormal provided that, 

given any two elements sand tin S, 

(s,t) = { 6 if s = t 
if s + t 

S is said to be a maximal orthonormal subset of H provided that if S ~ W ~ H and 

W is orthonormal, then S = W. 

Definition. Let H be a Hilbert space(-# {O}). A subset S of His an orthonormal 

basis for H provided that S is a maximal orthonormal subset of H. 

It can be shown that every nonzero Hilbert space has an orthonormal basis (see [2], p. 75). 

Just as for finite dimensional spaces, the cardinality (order) of any two orthonormal bases 

of a Hilbert space His the same. Moreover, the dimension of H, denoted dim H, is equal 

to the cardinality (order) of any orthonormal basis of H. The dimension of Rn is n, since 
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an orthonormal basis for R0 is the set {vi: i = 1, ... ,n} ,where the kth coordinate of vi, 

v i(k), is given by 

if k = i 
if k + i , for k = 1, 2, . . . ,n. 

On the other hand, the dimension of 12 is countably infinite. To see this, consider 

the set fJJ = {ei e 1 2: i = 0,1,2,3, ... }, where e;(k) is given by 

if k = i 
if k + i , fork = 0,1,2,3, .... 

It is clear that fJJ is a countably infinite set, and it's easy to verify that fJJ is in fact an 

orthonormal basis for ,e 2• 

Finally, we must define a linear operator, and also present some elementary facts 

about linear operators on Hilbert spaces. 

Definition. Let T be an operator on a vector space X. We say that T is linear 

provided that 

(a) T(x +y) = Tx + Ty 

(b) T(ax) = aTx 

for any x and y in X and any scalar a. 

Here are some examples of linear operators. Let A be any m by n matrix. Representing 

elements of R0 and Rm as column matrices, we may define an operator f mapping R0 into 

Rm by f(x) = Ax. It is easy to verify thatf is linear. Now consider the operator B: ,e2 ➔ 

,e 2 defined by [Bm](k) = m(k+ 1). The operator B is called the backward shift: clearly 

B(m(0), m(l), UJ-(2), ... ) = ( m(l), 0(2), ... ). Also, we may define a forward shift 
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operator F: 1 2 ➔ 1 2 by F(ID(0), W(l), ID(2), ... ) = ( 0, W(O), W(l), ... ) for any u,, 

in 1 2 • That both Band Fare linear is also easily verified. 

We will show, in a theorem to follow shortly, that the concepts of continuity and 

boundedness are equivalent for linear operators on Hilbert spaces. These terms are defined 

as follows. 

Definition. Let H be a Hilbert space. Let T: H ➔ H be a linear operator. 

(a) T is continuous at a point x in H provided that given E > 0, there exists a 

o >0 such that if y is in H and II x - y II < o , then II Tx - Ty II < E • If T is 

continuous at every pt in H, then we say Tis continuous (on H). 

(b) Tis bounded provided that there exists a constant M such that II Tx II~ M II x II 

for all x in H. Moreover, for a bounded T, the norm ofT,denoted II T II, is defined 

by II T II= sup{ 1i'
1
~x

1

1i': x +{)}, or equivalently II T II= sup{II Tx II: II x II= l}. 

It should be noted that part (b) the definition above implies that if II T II exists, then Tis 

necessarily bounded.(Also, these definitions may be extended to operators taking one 

Hilbert space into another simply by changing the respective norms.) It is easily verified 

that II B II = II F II = 1, where B and F are the backward and forward shift operators 

mentioned above. 

Theorem. 1.1. Let H be a Hilbert space. Let T: H ➔ H be a linear operator. The 

following statements are equivalent: 

(a) Tis continuous; 

(b) T is continuous at zero; 

( c) T is bounded; 
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PROOF. That (a) implies (b) is clear. We show (b) implies (c): Fix £ = 1. Since Tis 

continuous at O and maps O to 0, there exists a 6 > 0 such that if II x II < 6 , then 

II Tx II < 1. Let x be nonzero. Then, by the linearity of T, 

6 X 2 2 
II Tx II = II T ( 2 llxll ) II (B II x II) < B II x 11; 

the last inequality follows since II~ 
11

: 
11

11 = ~ < 6. Hence Tis bounded (this inequality 

clearly holds for x = 0). Showing (c) implies (a) is easy: Let x e H be arbitrary. Given 

£ > 0, choose 6 = 
11 
~ 

11
• Then, if ye Hand II y -x II< 6, we have the following: 

II Ty -Tx II= II T(y - x) II~ II T 1111 y - x II< II T II 6 = £. ■ 

If, in theorem 1.1, H is Rn, an even stronger result is possible. We state it below 

in the form of a theorem. 

Theorem. 1.2. If T:Rn ➔ Rn is linear, then Tis continuous. 

PROOF. Let V = {vi: i = 1, ... ,n} be an orthonormal basis for Rn. Letze Rn such 
n 

that II z II= 1. We know that z = 2, aivi , where ~ e R for all i. Then by definition of 
i=l n 

II II and orthonormality of V, we have ( 2, a/)112 = 1. Now, 
i=l 

n n 

II Tz II= 11L aiTvi II~ LI ai I IITvill. 
i=l i=l 

n 
Thus, IITzll ~ max{IITvill: i = 1, ... , n}( 2, I ai I ). Applying the Cauchy - Schwarz 

i=l 
inequality, we have: 

- n n 

IITzll ~ max{IITvill: i = 1, ... , n}(L a/)1/2(1: 12)1/2= '1n sup{IITvill: i = 1, ... , n}llzll. 
i=l i=l 
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Hence T is bounded and therefore continuous, by Theorem 1.1. ■ 

Since any finite dimensional Hilbert space is isomorphic to Rn for some n ( establish a one

to-one correspondence between orthonormal basis elements and extend linearly), the result 

above may be restated as follows. 

Theorem. 1.3. If H is a finite dimensional Hilbert space and T: H ➔ H is linear, then T is 

continuous. 

PROOF. His isomorphic to R0 for some n. Apply Theorem 1.2. ■ 

We have now completed our preliminary discussion, and move on to our discussion of 

chaos and linearity in the context of Hilbert spaces. 
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Section 2: Chaos and Linearity on Finite Dimensional Spaces 

In this section we shall prove that a linear operator on a finite dimensional Hilbert 

space cannot be chaotic. As mentioned above, any finite dimensional Hilbert space is 

isomorphic to a Euclidean space Rn, for some n. Hence we restrict our attention to Rn, 

and move on to our first result. 

Proposition 2.1. Any subspace of Rn is a (topologically) closed subset of Rn. 

PROOF. Let Y be a subspace of Rn. The Gram-Schmidt Theorem guarantees the existence 

of an orthonormal basis [JJ = {bi: i = 1,2,3, ... ,m} for Y (note m ~ n). Let p be any cluster 

point of Y. There exists a sequence (yi) in Y such that Yi ➔ pas i ➔ 00• It follows that (yi) 

is a Cauchy sequence in Rn . Hence, given any E > 0 there exists an N such that if j ~ N 

and k ~ N, then II Yk - Yj II< E. But (yi) is a sequence in Y, so, for all i, 
m 

Yi= I, a1 i b1, where each a1 i is a real number. Thus 
l=l 

m m m m 

llyk-yjll=III, alkbl - L a1jb1 11=11 I, (alk-a1j)b1 11=[I, (alk-alj)2]112 < E, 
l=l l=l l=l l=l 

where the last equality follows from the characterization of the norm in terms of the inner 

product on Rn. It follows from the inequality above that each (a1 i )i':1 is a Cauchy 

sequence of real numbers (hence convergent). For each/, let a1 be the limit of (a1 i ). We 
m 

claim that (yi) ➔ I, a1b1. To see this, for each / choose n1 such that if j ~ n1 then 
l=l 

I a,r a,1 <..};. Let No= max{nl' n2, n3, ... , nm}. Then if j ~ No, we have 



11 

m m m m 
II Yr L a, b, II = II L a, j b, - L a, b, II = II L ( a, r a, )b, II 

l=l l=l l=l l=l 
m m 

= [ L (a, r a, )2 ] 1/2 < [ L ( -~----)2 ] 1/2 = ( E2 ) 1/2 = E . 

l=l l=l -{iii 

m m 
Thus, ( Yi) ➔ 2, a1b1 and, by the uniqueness of limits, p = 2, a1 b1 e Y. So Y 

l=l l=l 
contains all its cluster points, and hence is closed. ■ 

The main result of this section--linear operators on a finite dimensional Hilbert 

space must fail to be chaotic--is an easy consequence of the following theorem. The 

theorem will show that if a linear operator on a finite dimensional Hilbert space has a dense 

collection of periodic points, then in fact all points in the space will be periodic. Once 

again, we only consider operators on Rn. 

Theorem 2.2. Let T: Rn ➔ Rn be a linear operator. Suppose T has a dense collection of 

periodic points; then there exists a number m such that Tm= I, where I is the identity 

operator on Rn. 

PROOF. Let P = {p e Rn: pis a periodic point under T}. Note that Pis a subspace of 

Rn (the reader can verify that the zero element is in P, and also that Pis closed under 

addition and scalar multiplication). By Proposition 2.1, P is a closed subset of Rn. But 

the closure of a dense subset of a space is the space itself, so P = Rn (P is dense by 

hypothesis). Hence each x e Rn is a periodic point under T. Let fiJ = {bi : i = 

1,2,3, ... ,n} be a basis for Rn. By the above, each bi is a periodic point under T; let each 

bi have period mi. Let m be the least common multiple of {mi: i = 1,2, ... , n}. We show 
n 

Tm= I. Let x e Rn. Then x = 2, aibi, where each aiis a scalar. Note Tmbi = Tminibi = 
i=l 

bi (here ni = m ). Thus, by the linearity of T, 
m. 

' 
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i=l i=l 

As mentioned above, a corollary of this theorem is that a linear operator on a finite 

dimensional Hilbert space ( or Euclidean space) cannot be chaotic. 

Corollary 2.3. A linear operator on Rn cannot be chaotic. 

PROOF. Let T : Rn ➔ Rn be linear. Suppose T has a dense collection of periodic points 

under T. Let x e Rn. By Theorem 2.2 above, xis a periodic point for T, and GT(x) is a 

finite set. Since no finite set may be dense in Rn, x cannot have dense orbit. Since x was 

an arbitrary vector in Rn, T cannot have a universal vector, thus T cannot be chaotic. ■ 

Once again, since any finite dimensional Hilbert space is essentially equivalent to 

the Euclidean space Rn, we have obtained the promised result. It is possible to show 

directly that a linear operator on a finite dimensional Hilbert space may not satisfy condition 

(c) of the definition of chaotic, i.e., such an operator cannot have a vector with dense orbit 

under T. A proof which shows the incompatibility of conditions (b) and (a) of the 

definition, rather than (b) and ( c) as given above, is also possible. We now move on to an 

example of a chaotic linear operator on an infinite dimensional Hilbert space. 
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Section 3: A Chaotic Linear Operator 

In this section we show the operator 2B, twice the backward shift, is chaotic on 

1 2• (For any sequence u,z, in 1 2, (2B)m is the sequence given by [(2B)m ](k) = 

2[UJZ,(k + 1)].) Note that 2B is linear and bounded ( II 2B II = 2); we now proceed to 

show it is chaotic. 

Part 1. Sensitive Dependence on Initial Conditions. 

To be called chaotic, 2B must have sensitive dependence on initial conditions, 

part (a) of the definition of a chaotic operator. However, we shall show that 2B actually 

satisfies a stronger condition. We shall show that given any sequence u,z, in ,e 2 and £ > 0, 

there exists a sequence u,z, * in ,e 2 such that II u,z, - u,z, * II < £ and 

Lim II (2Bt u,z, - (2Btm* II = 00• 

First, consider the sequence 1J. given by 'IJ.(k) = <t f Note that 

so 1J. e 1 2
. Next, observe that [(2B )1J.](k) = 2[1J.(k+ l)] = 2[(f t+1

] =½<ft= ½ [ 1J.(k) ] 

for all k. Hence (2B)1J. = ½1', so 1J. is an eigenvector for 2B, with eigenvalue! . 

Also, by the linearity of (2Bt and the properties of eigenvectors, (2Bt(a1J.) = a [(2Bt1J.] 

= a ~ t 1J. for all positive integers n and scalars a. 

Now, let u,, e 1 2 and£> 0 be arbitrary. Choose k such that ½ 111' II= II ½1' 11 < £. 

Next, define UJ-* = u,, - t 1J. (since ,e 2 is a vector space u,z, * e ,e 2). Note 

1 
II u,z, - m* II = II k 1J. II < £. Moreover, for any n, 
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II (2Btm - (2Btm* II= II (2Bt(m - m*)II = II (2Bt(t-v) II 

= II _! ~ t-v II = I .!_ ~ t I 11-V II k 3 k 3 · 
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Hence, Lim II (2Btm - (2Btm * II = 00• Thus 2B has sensitive dependence on initial 

conditions. 

Part 2. A Dense Collection of Periodic Points. 

Let -v2 be a sequence of period two under 2B. Then (2B)2m-v2= -v2 for all 

positive integers m. Thus terms of even index satisfy the equation -v2 (0) = 22m-vi(2m), 

and terms of odd index satisfy the equation -ti/1) = 22m-vi(2m+ 1). It follows that -v2 

must be of the form 

00 

where v O and v 1 are real numbers. Also, II -v2 112 = [ I v O 12 + I v 1 1
2

] I, 
2
~ . It is natural to 

i=O 
guess that a sequence of period three must be of the form 

Theorem 3.1 below will show that this guess is correct. 

We intrcxiuce some notation to facilitate the statement of Theorem 3.1. Let m and n 

be non-negative integers. Define the quotient of n by m, denoted q[n/m], to be the largest 

integer k such that mk ~ n*. Also define the remainder of n by m, denoted r[n/m], by 

* the function q on R corresponds to the standard greatest integer function, which is often denoted [x] for 

x in R. 
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r[n/m] = n - m(q[n/m]). For example, q[13/5] = 2, and r[13/5] = 3. Note that r[n/m] must 

be an integer between O and m-1 (inclusive); additionally, n = m(q[n/m]) + r[n/m] for any 

positive integer n. The reader may also verify that q[(m + n)/m] = q[n/m] + 1, and that 

r[(m+n)/m] = r[n/m]. We are now ready to present Theorem 3.1. 

Theorem 3.1. Let v = (v0 , vi, ... , vm_ 1) be any m-tuple of real numbers. Let 

V m e 12 be the sequence corresponding to v given by 

(k) - v r[k/m] 
1-'m - 2m(q[k/m]) ' 

fork= 0,1,2,3, .... Then Vm is a periodic point with period m under 2B. Moreover, if 

UJ, is a periodic point of 12 under 2B having period m, then UJ, = V m for some m-tuple v 

of real numbers. 

PROOF. Let n be arbitrary. Observe that 

Hence vm is periodic under 2B, with period m. It's easily to see that vm is in 1 2
• In 

fact, 

m-1 
where M = L (vj )2

• 
j=O 

Now let m be a periodic point of period m under 2B. Note we must have 

(2B)mnUJ, = [2B]mm = m, for all positive integers n. Now, let k be a fixed positive 
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integer. By the above, u,, (r[k/m]) = [(2B)mq[k/m1u,, ](r[k/m]). But, 

[(2B)mq[k/m]u,,](r[k/m]) = 2mq[n/m]u,,(mq[k/m] + r[m/k]) = 2mq[k/mlw(k) . Combining 

these results, we see that for arbitrary n, 

.1nfk) _ W r[k/ml 
T,IV'\ - 2m(q[k/m])' 

where wr[k/m] = u,,(r[k/m]). ■ 

Having characterized the period points for 2B, we now proceed to show that they 

constitute a dense subset of 1 2
• 

Theorem 3.2. Let P be the set of periodic points of 12 under 2B. Pis dense in 1 2
• 

PROOF. Let u,, e ,e 2 and E > 0 be arbitrary. We show that there exists a sequence ~ 

in P such that~ e b(m ,E). First, for all m let -Vm be the sequence given by 

m (r[k/m]) 
-Vm(k) = 

2
m(q[k/m]) · 

By Theorem 3.1, -Vm is periodic of period m for each m. Now, since the first m terms of 

-V m are precisely the first m terms of m, from the proof of Theorem 3.1, we have 

Since -Vm is periodic of period m, 
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Hence, there exists N such that II BN"-°"N II <f; making N larger if necessary, we may also 

00 

assume that II BNu,. II = ( L [W(k)]2 )112 < i . Recall that fork= 0, 1, ... , N, 
k=N 

1' N(k) = W (k). Thus, 

Hence fJN e b(m, E), and Pis dense in 1 2. ■ 

Part 3. A Universal Vector. 

Having shown that 2B has a dense collection of periodic points, as well as sensitive 

dependence on initial conditions, we come to the final requirement necessary to call 2B 

chaotic in Devaney's sense. We shall show that there exists a sequence win 1 2 which is 

universal for 2B. It appears that this result was first proved by Rolewicz [ 5] in 1969. We 

establish the existence of W by applying a more general theorem due to Kitai [4], and, 

independently, Gethner and Shapiro [3, Tum. 2.2]. Their result is the following. 

Theorem 3.3. Suppose T is a continuous linear operator on a separable Hilbert space H. 

Suppose there exists a dense subset D of H and a right inverse S for T (TS = identity for 

H) such that IIT1x II ➔ 0 and 11snx11 ➔ 0 for all x e D. Then H has universal vectors for T. 

REMARK. Theorem 3.3 is a weaker version of Theorem 2.2 in [3]. 

Before presenting a proof of theorem 3.3, we use the theorem to show that there is 

a vectorw e 12 whose orbit under 2B is in fact dense in 1 2. We have noted that 2B is 

bounded and hence continuous, so our first task is to establish that 1 2 is separable. To 

this end, we construct a set D c l 2 which is both dense and countable. For i ~ 1, let 

Vi= {1' e 1 2
: fJ(n) is rational for n < i, and -V(n) = 0 for n ~ i }. Now, let D = Ovi. 

l= 1 
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The countability of D is a result of the countability of the rationals, and the fact that 

countable unions of countable sets are countable. To see that D is dense, let u,, e ,e 2 and 
oo E 

E > 0 be arbitrary. Choose k large enough that 2, [ ID (z) f < 2. Next, for O ~ n < k 
i=k 

choose rational numbers qn such that lto(n) - qnl < <Ik) 112 . Let 1J. e D be given by 

{ 
qn if n < k 

1J. (n) = 0 if n ~ k · 

Then 

oo k-1 oo 

II m-fJ. 112 = L lw-(z)-1J. (012 = L IID(z)-q/ + L lm(i)-Of 

Thus Dis dense in 1 2• 

i=O i=O i=k 
k-1 

< ( L I (_£)112 12) + ~2 = k( 2Ek) + ~2 = E. 
i=O 2k 

Twice the backward shift should have one half the forward shift as its right 

inverse: clearly [(2B)(½ F)]X = X for any x e ,e 2, as desired. Now note that 

11(2B)01J. II ➔ 0 for any 1J. in D since 1J. has only finitely many nonzero terms. Also note 

that II<½ FtfJ. II= <½tllfJ.11 for all fJ. in 12 so clearly II<½ Ft1J. II ➔ 0 for any 1J. in 1 2 

(and hence for all fJ. in D). Thus,accepting the validity of Theorem 3.3, the existence of a 

universal vector for 2B is established. 

Hence Theorem 3.3 guarantees that 2B satisfies the third condition necessary for 

chaos. As the other conditions, i.e. sensitive dependence on initial conditions and the 

existence of a dense collection of periodic points, have already been established, the 

claim that 2B is chaotic hinges on the verification of Theorem 3.3. 
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Shapiro and Gethner's proof of Theorem 3.3--the proof we present--is based on 

Baire's Theorem, a fundamental theorem of analysis.* Because Baire's Theorem is not 

generally included in undergraduate coursework, we include it here with proof. The 

theorem appears in various forms--the form below is that most suited to our purposes. 

Baire's Theorem. Suppose S is a complete metric space. Then the countable 

intersection of dense open sets in S is dense in S. 

00 

PROOF. Let {Di: i = 1,2,3, ... } be a family of dense open sets in S. Let D = 0 D;. 
l= 1 

We show that any ball bin S intersects D. 

Since D1 is dense in S, there is a point p1 in bfl D 1• Now, because finite 

intersections of open sets are open, bflD1 is open. Hence, we can find a positive £1 < 1, 

such that the closure of the ball b1 = b(p1 ,E1) is entirely contained in bfl D1. Similarly, 

we can find a new point p2 and ball b2= b(p2, E2), with £2 < min <½, E1), such that the 

closure of b2 is entirely contained in b1 fl D2. It is clear that we may continue this process 

to obtain a sequence (pn), such that 

1 
where En< n , and 

It follows that (pn) is a Cauchy sequence in S. Since Sis complete, (pn) must converge to 

a point pin S. By (2), p must be contained in bfl D. ■ 

* Kitai's proof is essentially a generalization of the argument employed by Rolewicz, and does not make 

use of Baire's Theorem. 
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We will now take up the proof of theorem 3.3.1, beginning with the following 

Lemma 3.4. Let T be a continuous linear operator T on a separable Hilbert space H. The 

set of all universal vectors for T (in H) is a countable intersection of open sets in H. 

PROOF. Let X = {xi: i = 1,2, ... } be dense in H. Let D = {v e H: GT(v) is dense in 

H}. Let Wi,n = {y e H: II Tky - xi II<~ for some k = 0, 1, 2, ... }. We shall show 

that each W,. n is open in H, and that D = (l Wi n. , i,n , 
1 First, note that W i,n is the union over k of the inverse images of the set b(xi, n ) 

under Tk. These inverse images must be open sets, since each ball b(xi,¾ ) is open and Tk 

is continuous for all k. Hence each Wi,n is a union of open sets, and therefore open. 

Next, let de D be arbitrary. Since GT(d) is dense in H, given any xi in X and 

positive integer n there exists a positive integer k such that II Tkd - xi II < !. Hence 
n 

de Wi,n for all positive integers i and n. It follows that de QWi,n and hence D c 

(') W,. n· Now, let we (lW,. n be arbitrary, and let b be any ball in H. Since Xis 
i,n ' i,n ' 

dense in H, find xj in X such that xj e b. Choose a positive integer N such that b(xj, ~) 

c b. Since w e Q Wi,n , in particular we must have w e Wj,N• Thus there is a 

positive integer k such that II T~ - xj II<~. Hence Tkw e b. Thus GT(w) intersects 

b. It follows that GT(w) is dense in H, and hence (lW,.n c D. Thus D = (l W,. n· ■ 
,,n , i,n , 

With these two results established, we now present the proof of Theorem 3.3. 

Again, we follow Shapiro and Gethner. 
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Theorem 3.3 (restated). Suppose T is a continuous linear operator on a separable 

Hilbert space H. Suppose there exists a dense subset D of H and a right inverse S for T 

(TS = identity for H) such that IITnx II ➔ 0 and IISnxll ➔ 0 for all x e D. Then H has 

universal vectors for T. 

PROOF. We know by Lemma 3.4 above that the collection of vectors with dense orbit is a 

countable intersection of open sets Wi,n in H (see proof of Lemma 3.4 ). Thus if we show 

each set Wi,n is dense, Baire's theorem will guarantee the existence of vectors with dense 

orbit.* 

Fix W = Wi,n• Let E = ~ and x = xi for convenience. Let z e H and o > 0 be 

arbitrary. We must establish the existence of aye W such that ye b(z, o). Since Dis 

dense in H, choose x0 and z0 in D such that II z - z0 II < £ and II x - x0 II < ~ . Since 

11Tnx0 II ➔ 0 and 11Snx011 ➔ 0 for all x0 e D, we may choose an N large enough that 

N E N 6 N IIT Zoll < 2 and II S x0 II < 2 . Let y = S x0 + z0. Then 

soy e b(z, o) as desired. We need only verify that ye W to complete the proof. Since 

TS is the identity on H, TN sN is also the identity on H, so 

II TNy - x II = II TN(SNXo + z0) - x II = II TNSNx0 - x + TNz0 II 

N E E 
s;; II Xo- x II+ II T z0 II< 2 + 2 = £. 

Thus ye W, and Wis dense. Since W was arbitrary, each Wi,n is dense. Baire's 

Theorem yields the result. ■ 

* H is complete by definition, so Baire's Theorem applies. 
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We should remark that the existence of a single universal vector implies the 

existence of a dense collection of universal vectors. Suppose x is a universal vector for an 

operator T so that GT(x) is dense. It follows easily from the definition of GT(x) that for all 

n, TI½c is also universal. Thus C,T(x) is actually a dense collection of universal vectors. As 

a final result, we make use of this fact, noting that the existence of a universal vector 

establishes sensitive dependence initial conditions. 

Theorem 3.5. Let H be a Hilbert space, and let T: H ➔ H be linear. If T has a universal 

vector d, then T has sensitive dependence on initial conditions. 

PROOF. Let d e H have dense orbit. Fix 6 > 0. Let x e Hand E > 0 be arbitrary. 

By the density of GT(d), there is an N such that TNd e b(O,E). Note that y = x + TNd is 

in b(x,E). By the remark above GT(TNd) is dense, hence unbounded. Choose n such that 

IIT0 TNdll > 6. Then, 

Hence the condition of sensitive dependence for 2B follows immediately from the 

results of this subsection. We included the argument for sensitive dependence found in 

Part 2 above because it does not rely on the Baire's Theorem and the other results of Part 3, 

and as such may be more accessible to a reader having less mathematical experience. Both 

proofs of sensitive dependence are due to Joel Shapiro. 
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