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INTRODUCTION 

I 

Only ignorance of history can allow one to see mathematicians as those who lead 

boring, uneventful lives, and a brief look at the career of the French mathematician Evariste 

Galois (1811 - 1832) will put any skeptic to shame. Galois' life was - even without the 

mythological romanticization which usually surr~unds it - unquestionably one of great 

passion and intrigue. He was haughty, brilliant, a rebel with a cause, and he died gallantly 

at a young age in a duel over the honor of a certain young woman. Or so the story goes. 

Actually, it is not entirely clear what happened to Galois or what the circumstances 

surrounding the duel were. The highly romanticized version offered by E.T. Bell [2] in 

which Galois frantically wrote down most of his discoveries the night before the duel is 

verifiably untrue; yet, Tony Rothman's efforts to render the circumstances of his death 

commonplace and to underrate tremendously the importance of the letter to Galois' friend 

August Chevalier written the night before the duel also provide a flawed perspective [7]. 

At this point I shall try to give what is to my knowledge the most accurate account of the 

events surrounding his life and death, based largely on remarks by Ian Stewart [8]. 

Galois was born near Paris at Bourg-la-Reine on October 25, 1811. His father was 

active in local politics and later became mayor of the town. His mother had a strong 

classical education and a degree of skepticism regarding established religion. The parents' 

liberal political sentiments undoubtedly had an influence on Galois' later participation in 

rebel causes. Galois was educated first by his mother, then at the lycee Louis-le-Grand. 

He showed himself to be a very good student, but at some point he became bored with his 

classical studies and obsessed with advanced mathematics, beginning with the original 

writings of Legendre and Abel. His mathematical genius was evident to him and he wished 

to pursue a career as a mathematician; consequently, he tried to enter the Ecole 

Polytechnique. Lacking some basic mathematics, he failed the entrance exam and was 

forced to attend the Ecole N ormale. 

By the time he entered this school in 1828, he had already completed some 

significant mathematical work and tried to have it recognized. In this same year he did 

publish a minor paper on continued fractions, but he was also upset by the fate of a memoir 

he had sent to Cauchy. There are various speculative accounts of what happened to the 
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work, but what is certain is that it was never seen again. In 1829 his father committed 

suicide after a series of village disputes allegedly involving the parish priest. This loss 

served to augment his already passionate hatred of the royalist government. 

In the following year he submitted his researches again, this time as a candidate for 

the highly coveted Grand Prize in Mathematics from the Academy of Sciences. Galois 

modestly observed: "I have carried out researches which will halt many savants in theirs" 

[2, p.371]. The Academy's secretary, Fourier, took them home and died. Galois' papers 

were not found. By now Galois was convinced there was more than chance involved in 

the neglect of genius: "Genius is condemned by a malicious social organization to an eternal 

denial of justice in favor of fawning mediocrity" [Ibid]. In a stroke of incredible illogic he 

seems to have concluded that the Bourbon regime was somehow at fault. 

Bearing witness to the maxim "Hope springs eternal," Galois submitted yet another 

memoir to the Academy in January of 1831. After hearing nothing, he wrote to the 

President, but there was still no reply. He then joined the artillery of the National Guard, a 

republican force, but it was disbanded soon thereafter by royal order. Apparently, 

however, Galois did not relinquish his uniform, for he was later arrested for wearing it in a 

Bastille Day demonstration and imprisoned for six months. His participation in this illegal 

march followed by 10 days the verdict of the Academy concerning his paper: it was too 

messy to be intelligible and therefore could not properly be considered. News like this 

must have convinced him that his career lay in furthering the anti-establishment cause. 

Here public recognition came with greater ease: the official newspapers announced that the 

government had captured "the dangerous republican, Evariste Galois." 

Galois was transferred to a hospital during a cholera epidemic. He was soon 

paroled, and he then began his one and only love-affair with a woman whose name had 

remained a mystery until recently. She was Stephanie du Motel, the daughter of a perfectly 

respectable physician. It seems that she had been trying to break off the affair, and one 

cannot help but wonder if Galois was not trying to get himself killed. Indeed, while Galois 

was in prison he predicted - in a drunken stupor forced on him by his less abstemious peers 

- that he would die in a duel over a woman of little worth. Although the woman was not, 

as far as any historical evidence indicates, of little worth, Galois did fight a duel ostensibly 

over the honor of this woman. However, some of his own remarks indicate he was not 

very happy about it. 
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We must pause here to consider the two accounts for the circumstances of the duel. 

It is thought by some that this duel was really a political one and the romantic element was a 

front, but there is more evidence to support the idea that it was exactly as it appeared: a 

young man dying for the honor of the woman he is supposed to have loved. His own 

remarks seem to bear this claim out, and sound scholarship indicates that his opponent was 

also a republican. 

Bell does indeed tum every facet of this tale into full-blown melodrama [2], but it 

is important to note that Galois did write important discoveries to August Chevalier the 

night before the duel. These discoveries were in large part already in Galois' intellectual 

arsenal, but they had not been properly recognized. It is in this document where many of 

his memorable and pathetic remarks originate, such as "I have no time" and "I die the 

victim of an infamous coquette." As Galois recorded these researches of his he must have 

been terribly distraught: it was, after all, only hours before he was to walk 25 paces with a 

pistol in hand, only to tum and fall to the ground with a bullet in his abdomen. Indeed, it 

has been observed by some cynical students that Galois might have fared better in his fatal 

duel had he not spent so much time on abstract mathematics the night before . 

II 

Now let us consider the mathematical content of his work, the subject of the letter 

which he did indeed compose the night before his fateful encounter with a fellow rebel. 

The matter which drives most of his important work considered here surrounds the 

question of the solubility of the quintic. For a great number of years mathematicians 

suspected that there was a formula for solving the fifth-degree equation over the rationals, 

since such formulas had been found for second, third and even fourth-degree equations. 

However, Lagrange's work with resolvents gave some hint that perhaps there was no 

general formula, or perhaps there existed some equations which did not admit solutions 

even with the use of ordinary radicals. 

Abel put this question to rest in 1824 (although Ruffini had more or less done so at 

an earlier date without proper acknowledgment from the mathematical world), but Galois' 

work is more significant for two reasons: (1) in it lies an enormous body of seminal 
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research in two major branches of modem abstract algebra, and (2) it is the chief subject of 

this paper. 

Also, Galois was primarily concerned with finding the precise conditions under 

which a given polynomial could be solved by radicals. His approach involved the 

consideration of the permutation groups of the zeros of polynomials and the idea of a 

general polynomial, a concept which will be discussed later on. The approach of this 

paper, however, is a much more modern one, taking into account the work that Galois did 

and using the theory in its entirety to answer the above question, as well as others, and 

examine the consequences of his discoveries. This manner of dealing with great theories of 

the past is not uncommon; indeed, although the name stays with a theorem, the method of 

proof and the preparation which precedes typically differ from the author's original work. 

It is now appropriate to begin a technical discussion of some of the ideas necessary 

to understand the Galois theory as presented in this thesis. This presentation assumes a 

knowledge of the basic concepts of abstract algebra, the theory of groups, rings and fields. 

What follows is a brief review of some of the fundamentals of the theory of field 

extensions which shall serve as a point of departure for the material in this paper. 

Recall that any field E such that F ~Eis called an extension of F. An extension 

E:F can be formed by "attaching" elements not in F to F. For instance, for some a e F 

F(a):F is an extension of F, where the field F(a) is comprised of all rational expressions 

involving powers of a. F(a):F is said to be a simple extension because only it is generated 

by attaching only one element. If a is a zero of a polynomial over F, these expressions are 

restricted by the degree of the said polynomial, as we note below. In this case a is said to 

be algebraic over F; in general, an algebraic extension of F is one in which every element 

is algebraic over F. If a is not algebraic, it is transcendental over F; similarly, an extension 

of F which is not algebraic is called transcendental. Of course, one may attach an element 

J3 to F(a) to obtain a simple extension F(a,P):F(a) or a double extension F(a,P):F, and so 

forth. 

An extension E of a field F can be viewed as a vector space over F; the degree 

[E:F] of E over Fis the dimension of this vector space. In the case of a simple algebriac 

extension F(a):F, every element of F(a) is uniquely expressible in the form ak-1 ak-l + · · · 

+ ao where ai e F and k is the degree of the unique (monic) irreducible polynomial over F 

for which a is a solution (called the minimum polynomial for a). It should be clear that 
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[F(a):F] is the degree of the minimum polynomial for a over F. A transcendental 

extension always has infinite degree over F, and an algebraic extension can have infinite 

degree as well. 

In this paper all fields are, unless otherwise indicated, of characteristic zero, and the 

field over which a given polynomial is written shall be obvious from the context. 

Since we are primarily concerned with fields constructed from the zeros of 

polynomials, we are obviously interested in the splitting field of a given polynomial over F: 

the smallest extension of F containing all the zeros of the polynomial. (Splitting fields are 

unique up to isomorphism.) Let us familiarize ourselves with these concepts by way of 

example. 

Consider the polynomial x2 - 2 over Q. Its splitting field is quite obviously Q(-{2). 

Clearly, [Q(-{2):Q] = 2. Similarly, we may derive the splitting field Q(i) for x2 + 1 over 

Q, where the degree of the extension is also two. It is natural to look at the extension 

Q((-v2)(i)) = Q(-{2,i) and recall that the degree of this extension is 4 by the "Tower Rule," 

that is [Q(-{2, i):Q] = [Q(-{2, i)): Q(-{2,)][Q(-{2):Q]. It is interesting to note that Q(-{2, i) 

can be represented as a simple algebraic extension, Q(-{2 ; ✓2.i). Actually, any finite 

algebraic extension can be reduced to a simple one. In our example this is accomplished by 

1 · -{2 + ✓2.i d b · 1d· fr h th 4 1 . h . . ettmg x = 2 an m mg up om t ere: we see at x + 1s t e mimmum 

polynomial, determining the irreducibility by considering (x + 1)4 + 1 and using 

Eisenstein's criterion with p = 2. This result shows that [Q(-{2 ; ✓li):Q] = 4, which 

makes the above equivalence believable. If we wish to make it more than believable, we 

notice that Q(-{2 ; ✓2.i) ~ Q(-{2, i). Since each of these fields has the same (finite) 

degree over Q, they are identical. 

This technical review should have sufficiently whetted the reader's appetite, and we 

shall now begin the formal exploration of the fascinating subject of the theory of field 

extensions, beginning with the presentation of the Fundamental Theorem. 
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I. THE FUNDAMENTAL THEOREM 

For the moment, let us lay aside the question of the solubility of the quintic and 

consider wherein lies the real value of the theory behind the work. The idea is to set up a 

correspondence between the intermediate fields of certain field extensions and the groups of 

automorphisms which fix these fields: finite groups, especially those of small order, are far 

more tractable than intermediate fields, as we shall soon see. A few definitions are 

evidently in order. Recall that an isomorphism is a bijective mapping from one field (or 

ring) to another which preserves both operations. 

Definition An isomorphism from a field K onto itself is called an automorphism. 

Given an extension L of K we define a K-automorphism of L to be 

an automorphism <P of L which fixes K; that is, <P : L~L with q>(k) = k 

\;/ k EK. 

It should be clear that such automorphisms form a group under function 

composition and inversion. We call this group for a given field extension the Galois group 

for the extension and usually denote it by the letter G. It will be clear from the context 

which field extension the Galois group corresponds to; if need be we write G = r(F:K) 

where Fis an extension of K. For a subgroup Hof G we may associate a given 

intermediate field of our extension which H fixes, and that field is called the fzxed field of 

H, denoted here by Ht. Not surprisingly, for each intermediate field there is a 

corresponding subgroup of automorphisms which fix that field: just consider the extension 

to be over the intermediate field and apply the above principle. We shall denote such a 

group corresponding to the intermediate field I by I*. Note that these operations are 

inclusion-reversing; that is, I ~ K implies K* ~ I* and similarly for t. Moreover, I*t ~ I 

and Ht* ~ H. But the real point of interest is to determine under which conditions these 

relations are inverses of one another. 

Before we begin to explore these conditions, it is important to introduce a powerful 

theorem. 
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Theorem For a finite field extension K(a):K, where mis the minimum polynomial 

for a and pis any other zero of m, there is a unique isomorphism from 

K( a) to K(P) leaving K fixed and mapping a to p. Moreover, if a is 

in some extension of E of Kand a is a zero of some polynomial over 

K, then any K-automorphism ofE maps a to a zero of that polynomial. 

The proof of this theorem follows immediately from the form of the elements in the 

extension fields: one merely replaces one zero by another to obtain the 'new' isomorphic 

field, while fixing the coefficients in K, of course. To verify that this mapping is indeed an 

isomorphism is tedious and unenlightening, albeit routine. For the second part let f be a 

polynomial over K with f(a) = 0, then f(<j>(a)) = cp(f(a)) = 0, where <I> is any K

automorphism. 

As an example, consider the extension Q(a):Q where a=½. Now the Galois 

group for this extension is evidently { e}, because we must map zeros of the minimum 

polynomial to other zeros. In this case mis x5 - 2 and, since Q(a) ~ R, G contains only 

the identity element, because for any <I> e G, <j>(a)5 = <j>(a5) = 2, and there is only one real 

fifth root of 2. Thus Q* = G = {e} but Gt= Q*t = Q(a). 

Our goal is to avoid such results and achieve a one-to-one correspondence between 

the intermediate fields and the subgroups of the Galois group. Our intuition should tell us 

that in order to achieve such a result, we need to have all the roots of the minimum 

polynomial appear in the extension field under consideration. This guess is indeed correct, 

and it leads us to define a new term, one which introduces a key concept in the hypotheses 

of the Fundamental Theorem. 

Definition An extension F:K is said to be normal if whenever any irreducible 

polynomial over K has a zero in F then it splits in F. 

This definition provides us with the last needed ingredient for the Fundamental 

Theorem. The reader should suspect that splitting fields for a given polynomial over Kare 

normal extensions of K; indeed, it is true that an extension of K is normal and finite if and 
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only if it is a splitting field for some polynomial over K. 1 We are now ready to present the 

following theorem. 

Theorem The Fundamental Theorem of Galois Theory 

Given a field K of characteristic 0, a normal extension F of K, with Galois 

group G, and the relations *, t as defined above 

1. lr(F:K)I = [F:K] ; 

2. There is a one-to-one, inclusion reversing correspondence - given by* and 

t - between the intermediate fields of F:K and the subgroups of the Galois 

group; 

3. If Mis an intermediate field then IM*I = [F:M]; 

4. His a normal subgroup of G if and only if Ht is a normal extension 

ofK; 

5. If an intermediate extension M of K is normal then r(M:K) is 

isomorphic to the factor group G/M*. 

The Fundamental Theorem is largely a tool and thus its real beauty lies not so much 

in its statement as in its application; as one might suspect, the proof, though making use of 

many techniques in basic abstract algebra, is not intrinsically beautiful. In my judgment 

Part 1 is the most interesting, and for this reason we shall look at the development of its 

proof. From this discussion Part 3 will be an apparent consequence of Part 1. Part 2 has 

already been made credible in a highly informal way, but we shall soon be in a position to 

prove it rigorously. The proof of Part 5 is given because of its simplicity and its use of 

basic concepts from elementary group theory. 

We begin by stating a theorem whose proof - which we shall omit for reasons of 

space - relies on some basic group theory and the theorem by Dedekind which shows 

distinct monomorphisms to be linearly independent over the base field. 

Theorem Given a subgroup Hof the group of automorphisms on a field K, 

[K:Ht] = IHI. 

1 It should also be noted that 'separability' - the condition that there be no multiple roots- is a needed 
hypothesis in the Fundamental Theorem, but since all irreducible polynomials are separable over fields of 
characteristic O and we are dealing largely with such fields, a discussion of this hypothesis is formally 
omitted from this paper. 

8 



q 
q 

We will also need the following technical result. 

Lemma 

Proof 

If L:K is a finite, normal extension, then every K-monomorphism 't of Lis 

also a K-automorphism of L. 

't is a linear map from the vector space L over K into itself and is 

injective. Since Lis a finite-dimensional vector space over Kand we have 

an injection from it into itself, we know that it is also a surjection. Hence 't 

is a K-automorphism of L. 

We are now in a position to prove the theorem which is the key to parts 1 and 2 of 

our Theorem above. 

Theorem 

Proof 

If L:K is a finite, normal extension of degree n, then there are 

precisely n K-monomorphisms of L. 

The proof is by induction on n. The case [L:K] = 1 is obvious. Now 

choose u E L\K where mis the minimum polynomial for u over K. 

There are, by induction, precisely r K(u)-monomorphisms Pj of 
n 

L where r = [L:K(u)] =--- by the Tower Law. From the first 
fK(u):K] 

theorem in this section, there are [K(u):K] = s K-monomorphisms 'ti 

of L. Combining the two, we have n = rs distinct K- monomorphisms of 

the form 'tiPj- To see that these monomorphisms exhaust the possibilities, 

we shall take an arbitrary K-monomorphism q>: L ➔ Land show that it is of 

the above form. Note that O = q>(m(u)) = m(q>(u)). So q>(u) = Uk, where 

Uk is some zero of m. Then 1Jq> (where 'tk maps u to Uk) sends u to u 

and is therefore, by induction, some Pj· Then we have Pj = 'tJq> or 

q> = 'tkPj• 

Now it is clear that Part 1 of the Fundamental Theorem is proved, because each of 

the above monomorphisms is also an automorphism by the lemma. For similar reasons, 

Part 2 of the Theorem is now more than just credible, but we shall forego the proof because 

the technicalities are more cumbersome than interesting. As promised, the proof of Part 5 

appears below. First we mention a relevant fact without proof: for a normal extension L:K 
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and an intermediate field Many K-monomorphism from Minto L can be extended to a K

automorphism of L. 

Proof of part 5 

Let G' be the Galois group of an intermediate field M which is a normal 

extension of K. Define a mapping <I> from G to G' such that <j>('t) = -clM 

V 't e G. Now -clM is a K-automorphism of M by the lemma above, so 

q> is a group homomorphism. It is surjective by the fact above. It should 

be clear that ker <I> = M*, so by standard group theory we have 

G' = image of <I> ~ G/ker <I> = G/M*. 

The best way to understand the Theorem and see its real beauty is to look at a 

specific example. The example which follows is a standard one according to Stewart's 

book on the Galois theory. 

Consider the polynomial t4 - 2 over Q. It is easy enough to see that the roots of the 

polynomial are ± ½ and ± i ½. With the notation a = ½, it should be clear that the 

splitting field for this polynomial is K = Q(a,i). Now we explore the Galois 

correspondence. The degree of Kover Q is, by the Tower Rule, equal to 

[Q(a,i):Q(a)][Q(a):Q]. Now [Q(a):Q] is obviously 4, since t4 - 2 is the minimum 

polynomial for a over Q, and t2 + 1 is still irreducible over Q(a) and hence is the 

minimum polynomial for i over Q(a). So the degree of the splitting field over Q is 2 • 4 = 

8. By the Theorem, we should hope to find that there are precisely eight Q-automorphisms 

of K. These Q-automorphisms can be found by considering two obvious 'root' 

automorphisms, namely p which sends i to -i and leaves a fixed, and 't which sends a to 

ia and leaves i fixed. We then build up the others by taking suitable combinations, and, as 

is indicated in the table below, there are exactly 8 of them. 

Automorphism Effect on a Effect on i 

a i 

ia 

-a 

-ia i 

p a -1 
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'tp ia -1 

't2p -a -i 

't3p -ia -1 

Other products do not give new automorphims since 't4 = p2 = e and 't3p = p't. In 

fact, these relations serve as a complete description of the abstract structure of the Galois 

group. They tell us how to multiply two elements in the group by showing how to move 

't's 'to the left' and p's 'to the right.' From this generator-relation description we deduce 

that the Galois group is the dihedral group D4 of permutations on a square. It should seem 

reasonable that the Galois group be some kind of permutation group; after all, the idea is to 

find automorphisms which permute the zeros of given polynomials irreducible over the 

base field. Were it a simple case like the five fifth-roots of unity, one would expect it to be 

an abelian group, the rotations of a regular pentagon, for instance. This is exactly the case. 

In our current example, we have two zeros with different minimum polynomials; hence we 

expect complications. These complications arise in the structure of the group by adding in 

the 'flips' with the rotations to take into account the interplay between the zeros. 

Now we shall find the subgroups of the Galois group. They are 

Order 8: 

Order 4: 

Order 2: 

Order 1: 

G=D4 

S = {e, 't, 't2, 't3} = Z4 

T = { e, 't2, p, 't2p} = Z2 x Z2 

U = { e, 't2, 'tp, 't3p} = Z2 x Z2 

A = { e, 't2} = Z2 

B = {e, p} = Z2 

C = { e, 'tp} = Z2 
D = { e, 't2p} = Z2 
E = { e, 't3p} = Z2 
{e} 

We make a few observations before we juxtapose two lattice diagrams which 

graphically exhibit the connection between the intermediate fields and the subgroups of the 

Galois group. First, we note that the index of the subgroup in the Galois group is identical 

to the degree of the corresponding extension. This fact follows directly from Part 3 of the 

Fundamental Theorem. Second, notice that one diagram will appear to be 'same' as the 

other one yet inverted. This connection is obvious but no less important to note because of 
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that. Third, notice that at this point we do not yet know what the intermediate fields are, 

but we know they must exist by the Theorem. It is very difficult in general to find 

intermediate fields, hence the usefulness of the Theorem. 

Despite the neat categorization of fields the graphic representation above appears to 

provide, we must look at how to find these intermediate fields in order to illustrate the value 

of the theorem. Note that corresponding to the three subgroups of order four there are 

three fairly obvious subfields of K with degree two over Q, namely Q(~), Q(i), and 

Q(i~). These subfields correspond to the fixed fields ut, st, and Tt, and it is clear 

enough that this is true. Consider St , for instance. The elements of S are all powers of 't 

which all leave i fixed but change a, so st is evidently Q(i). There are similarly 

transparent explanations for the other fields of degree 2. 

The case of the remaining intermediate fields is another matter. We shall find one 

of them, namely ct, in order to suggest an approach for finding them in general. Note that 

any element x in K can be expressed in the form 

where ai E Q. 

Then 'tp(x) = 'tp(ao + a1a + a2a2 + a3a3 + <14i + a5ia + at>ia2 + a7ia3) 

= ao + a5a - a2a2 - a7a3 - <14i + a1ia + at>ia2 - a3ia3 

And so x is fixed by -rp (and hence by C) if and only if the following relations hold. 
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ao = ao, a1 = a5, a2 = -a2, a3 = -a7, c14 = -<14, as = a1, a6 = a6, and a7 = -a3 

So ao and~ are arbitrary, while c14 = a2 = 0 and a3 = -a7, whence it follows that 

x = ao + a1a + a3a3 + a1ia + ~ia2 - a3ia3 

= ao + a1(a + ia2)+ a3(a3 - ia3)+ ~ia2 

=ao+a1(l +i)a+ ¥((1 +i)a)2-y((l +i)a)3 

Thus ct= Q((l + i)a). 

Now it is also easy enough to use this example to illustrate the last two parts of the 

Fundamental Theorem, but the primary focus of this paper is on the first three parts and 

shall remain so. In any event, the above should make the importance of the theorem as a 

tool quite clear. 
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II. THE INSOLUBILITY OF THE QUINTIC 

Recall that the motivation for the invention of the Galois theory was to answer the 

question of the solubility of a polynomial of fifth degree. Although Abel (and Ruffini) had 

proved before Galois that there was no general formula for the zeros of a quintic, it was 

Galois' work which determined the precise conditions under which the zeros of a 

polynomial could be expressed by radicals. The purpose of this section is to discuss what 

those conditions are and prove the quintic to be insoluble. 

Before embarking on this journey we must consider exactly what we mean by 

saying the quintic is 'insoluble.' There are really two approaches, one involving the so

called 'general polynomial,' a term whose highly specialized significance renders it a 

misnomer, and another which displays a particular polynomial over Q whose zeros cannot 

be expressed as radicals. The first result is in some sense stronger because it will show 

that there is no general formula for all polynomials of any degree greater than 4; however, it 

is weaker in that it does not show that the zeros of some given polynomial are not 

expressible by radicals. 

In order to consider both of these approaches it is necessary to make all these 

notions rigorous. The strategy will be to look at how to define 'expressible by radicals' 

and then move on to the question of using such definitions and some facts about soluble 

groups to determine, with the help of the Fundamental Theorem, which polynomials are 

soluble. 

Definition A radical extension of a field K is one of the form K(a1, a2, ... , ak) 

where a 0fi) E K(a1, a2, ... , ai-1), for some positive integer n(i). 

A zero of a polynomial is therefore expressible by radicals if it is in some radical 

extension of the base field. It should be clear that this definition is the equivalent of the 

ordinary sense of the phrase "expressible by radicals." Consider an example of a zero 

expressible by radicals over a field K. Such a zero would be a combination of elements of 

K under the operations of addition, subtraction, multiplication, division and the extraction 

of roots. For instance, ~ 1 - ~ 2+ -.f7 is expressible by radicals over Q, and the 

following series of extensions ends in the necessary radical extension of Q. 
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It is also important to note that if an irreducible polynomial has one root expressible 

by radicals then the other roots are also. To see this we need the following. 

Lemma 

Proof 

If K(u1, u2, ... , Ur) is a radical extension of the field K, then any normal 

closure of this extension (i.e., the smallest normal extension of K) is also 

radical. 

Let L = K(u1, u2, ... , Ur) be a radical extension with 

un~i) E K(u1, ... , Ui-1). Let/i be the minimum polynomial for Ui, Clearly 

the normal closure N of L:K is the splitting field of Ili! 1/i. So N = K( u 1, 

P11, P12, ... , Ptm(l), ... , Ur, Prl, ... , Prm(r)) where Pik are the other 

zeros of fi. Now by an earlier theorem Pikn(i) = <j>(Ui)n(i) = <j>(uin(i)) E 

K(u1, ... , Ui-1) for some K(u1, .. . , Ui-1)- automorphism <j>. Hence N is a 

radical extension of K. 

Now consider an irreducible polynomial/with a zero 0 expressible by radicals over 

K. Then 0 is in some radical extension of K, and, since the normal closure of such an 

extension is radical (by the above lemma), all other zeros are expressible by radicals. 

It should be clear how the next definition represents the appropriate condition under which 

the zeros of a polynomial can said to be expressible by radicals. 

Definition A polynomial over a field K is said to be soluble by radicals if its zeros lie in 

a radical extension of K. 

Thus a polynomial is soluble by radicals if its zeros are merely combinations of 

roots of any degree using the normal algebraic operations of a field. 

We now turn to look at soluble groups before we draw the connection between 

them and radical extensions. 

Definition A group G is said to be soluble if there exists a series of subgroups 
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{ e} = N 1 ~ N2 ~ ... ~ Nk = G, each normal in the one following it, such 

that each factor group Ni/Ni-I is abelian. 

Clearly every abelian group is soluble. Also, subgroups of soluble groups are 

soluble. (That claim does not follow directly from the definitions, but its proof is too far 

afield to discuss in this paper.) It can be shown that S3 and S4 are both soluble, but it is an 

extremely important fact that Sn is not soluble for n ~ 5; indeed, it is the key to answering 

the question central to the origin of the Galois theory. We shall show this to be true before 

developing a relationship between the solubility of Galois groups and the solubility of 

polynomials by radicals. In order to do this a more manageable criterion is needed for the 

solubility of a group. 

Definition Let a, b be elements in a group G. The commutator of two elements a and b 

of G is the element a-1b-1ab. We may take all elements of this form and 

generate a subgroup of G which we call the commutator subgroup G' of 

G. 

We note that G' is a normal subgroup of G, the factor group GIG' is abelian, and 

that any normal subgroup M of G such that G/M is abelian is a supergroup of G'. Also, 

G(k), the commutator subgroup of G(k-1), is normal in Gas well. (The zealous reader can 

verify these facts quite easily from the definitions.) It turns out these ideas provide us with 

a simple criterion for the solubility of a group. 

Theorem 

Proof 

G is soluble if and only if G(k) = { e} for some k. 

If G(k) = { e} for some k then we may let the chain of commutator 

subgroups serve as the series of normal subgroups. It follows directly from 

the above that such a series produces factor groups which are abelian. Now 

suppose G is soluble. Then there is a series of normal subgroups { e} = 

No~ N 1 ~ .. . ~ Nk = G such that Ni/Ni-I is abelian. Thus Ni' ~ Ni-I, 

and we may write G' = Nk' ~ Nk-1 , ... , G(i) = N'k-i+l ~ Nk-i, .. , G(k) = 

N 1' ~ No= { e}, and the claim follows. 

Corollary The homomorphic image of a soluble group is soluble. 

Now we use these facts to show the following. 
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Lemma 

Proof 

Theorem 

Proof 

If H is a subgroup of Sn (n ~ 5) containing every 3-cycle, N is a normal 

subgroup of H and HIN is abelian, then N contains every 3-cycle. 

Let f be the natural homomorphism from H to H/N. Now let x = (r,s,t) and 

y = (t,u,v) be elements of H. Then f(x-ly-lxy) = (x')-l(y')-1x'y' = 1 so 

x-ly-lxy e N. But x-ly-lxy = (t,s,r)(v,u,t)(r,s,t)(t,u,v) = (t,u,r), and this 

is the case for any t, u, and r, so N contains every 3-cycle. 

Sn is not soluble for n ~ 5. 

If Sn were soluble there would be a series of normal subgroups producing 

abelian factor groups, but these subgroups would always contain 3-cycles 

by the above lemma and could never be the trivial subgroup. 

The connection between radical extensions and soluble Galois groups is the next 

step in our journey towards proving the quintic insoluble. First we need to prove a 

technical lemma. 

Lemma 

Proof 

The Galois group G of the polynomial2 p(x) = xn - a over K, a e K, is 

abelian. 

It is clear that the splitting field for p over K is K(~, ro) where ro is the 

primitive n-th root of unity. Any element cf> of G maps one root to another, 
1:1c 1:1c · 1:1c so we may classify all elements of Gas <Pi(" aro) = "aro1 . Then <Pi<Pj(-v aro) 

= (~roi)i = (~roi+i) = (~roi~ = <Pj<l>i(~ro). Hence G is abelian. 

Now we are ready for the main theorem linking solubility of polynomials with the 

solubility of their corresponding Galois groups. Although the theorem states that these are 

equivalent conditions, we shall prove only that the group must be soluble if the polynomial 

is, since that is all that is necessary for the given task (and because it is a great deal less 

complicated). There is one assumption which is necessary to make the proof cleaner, 

namely that the base field K has all the "necessary" roots of unity. Once the proof is 

2The Galois group G of a polynomial p over K has the obvious meaning; that is, G is the group of K
automorphisms of the splitting field of p over K. 
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finished the reader should note that such an assumption is harmless since the method could 

be extended to account for these roots of unity were they not already in the base field. 

Theorem 

Proof 

A polynomial p over a field K is soluble by radicals if and only if its Galois 

group is soluble. 

(Necessity only.) Let F be the splitting field for the polynomial p over K. 

Now Fis a radical extension of K, thus there is a chain of 

fields K = Fo ~ Fo(a1) = F1 ~ F1(a2) = F2 ~ ... ~ Fk(Uk+I) = F such 

that anfi) e Fi-I for some n(i) e N. Note that each intermediate extension 

is normal since it is a splitting field over Kand therefore, by the 

Fundamental Theorem, each of the corresponding subgroups of the Galois 

group is normal in G and normal in the one preceding it. Also by the 

Fundamental Theorem we have r(F:Fi)/r(F:Fi+ 1) :::::: r(Fi+ 1 :Fi), where 

r(Fi+ 1 :Fi) is abelian by the technical lemma above. Thus we have 

produced a chain of normal subgroups yielding abelian factor groups, so the 

group G is soluble. 

Finally we are in a position to tackle the main question which motivated the theory 

and thereby to crown years of mathematical achievement. As mentioned before, first we 

shall look at the so-called general polynomial of degree n. 

Suppose we have a (monic) polynomial p over K. If we write this polynomial as a 

product of linear factors, we have 

where the tk are the zeros. Since this represents all possible polynomials of degree n over 

K, we view the tk as "indeterminates." We note that p(x) in unfactored form is 

where Si is the i-th symmetric polynomial in then indeterminates; that is, the sum of all 

possible products of n indeterminates chosen i at a time. A brief look at a polynomial of 

degree 3 will lend credibility to this. Consider f(x) = (x - t1)(x - t2)(x - t3) = x3 - (t1 + t2 + 
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t3)x2 + (t1t2 + t2t3 + t1t3)x - t1t2t3 These non-leading coefficients are clearly s1, s2, and s3, 

respectively, for three indetenninates t1, t2, and t3. 

The polynomial p above is called the general polynomial over K(s1, s2, ... , Sn) , 

Notice that this polynomial is not over K, even though a specific polynomial which this 

'general' form represents would be over K. It is important to realize at this point that pis a 

polynomial with purely symbolic zeros, so K(s1, s2, ... , Sn) is a transcendental extension 

of K. But the splitting field for p over K(s1, s2, ... , Sn) is evidently K(t1, t2, ... , t0 ), and 

we are interested in the Galois group of this field over K(s1, s2, ... , s0 ). If we discover 

that this Galois group is insoluble, then we have shown that the general polynomial is not 

soluble by radicals 'over K.' The alert reader may have noticed that we are home free, 

because S0 is obviously a subgroup of the said Galois group - it certainly fixes the 

symmetric polynomials - and a subgroup of a soluble group is soluble. If the Galois group 

were soluble, then Sn would be soluble, a contradiction for n ~ 5. 

This result tells us that there does not exist a general 'radical' formula for all n-th 

degree polynomials, n ~ 5. However, it does not tell us that any specific polynomial is not 

soluble by radicals. One must think of it in this way: if there were a general formula, it 

would solve the general polynomial. But the general polynomial is not soluble by radicals, 

so there is no general formula. However, the general polynomial is actually a highly 

specialized kind of polynomial: it is one with symbols as its zeros and thus does not truly 

represent any given polynomial with actual zeros. So in order to show that it is impossible 

to solve the quintic by radicals even with ad hoc methods, we must find a given polynomial 

which has an insoluble Galois group over Q. This result is in an important sense stronger 

than the other: it settles all the questions at once. That is, if a given polynomial of degree 5 

is not soluble by radicals then there is no general formula. Also, the polynomials of higher 

degree (over Q) are also shown to be not all soluble by radicals, for if they were, one could 

solve the fifth degree polynomial as well. We now tum our attention to finding a specific 

polynomial of degree 5 over Q which is not soluble by radicals. 

First we need a technical fact about the Galois group of certain polynomials of 

prime degree. Before presenting this lemma, we must recognize that all Galois groups are 

subgroups of the group of permutations. Permutating the roots are the only possibilities 

for the automorphisms, so this relation should be evident. 
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Lemma 

Proof 

If an irreducible polynomial f over Q has prime degree p and precisely two 

non-real zeros, then the Galois group G off is Sp. 

If the splitting field off is L ~ C, and if a is a zero off then Q(a) ~ L. 

Thus p = [Q(a):Q] sop I [L:Q] = IGI. So there is an element of order pin 

G ~ Sp. Complex conjugation is a Q-automorphism of L which leaves the 

real roots fixed, so there is a 2-cycle in G. But it is a well-known fact in 

group theory that a 2-cycle and a p-cycle generate all of Sp. 

Now we are ready to answer the main question of the text . 

Theorem 

Proof 

f(t) = t5 - 6t + 3 over Q is not soluble by radicals. 

f is irreducible by Eisenstein. Now we need to show that f has exactly 3 

real zeros. Note that f(-2) = -17; f(-1) = 8; f(O) = 3; f(l) = -2; and f(2) = 

23. By Rolle's Theorem the zeros are separated by zeros of the derivative 

off, and Df = 5t4 - 6 which has t = ± ~ as its real roots. So there are 

precisely 3 real roots, leaving 2 non-real roots. 5 is prime, so the Galois 

group of the polynomial is S5, which is insoluble. 
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III. APPLICATIONS 

In his Apology G.H. Hardy made the following remark concerning the mark of truly 

worthy mathematics3: 

A significant mathematical idea, a serious mathematical 
theorem, should be 'general' in some such sense as this. 
The idea should be one which is a constituent in many 
mathematical constructs, which is used in the proof of theorems 
of many different kinds. The theorem should be one which, 
even if stated originally (like Pythagoras's theorem) in a 
quite special form, is capable of considerable extension and 
is typical of a whole class of theorems of its kind. The 
relations revealed by the proof should be such as connect 
many different mathematical ideas. 

These observations are particularly germane to the theory of field extensions 

developed by Galois. In this section I shall make an attempt to demonstrate the 

appropriateness of Hardy's criterion to determine the greatness of the theory by means of 

example. Unfortunately, the applications offered in this text reveal the limitations of my 

mathematical expertise, but they should give the reader some idea of the wide applicability 

of Galois' theory of field extensions. 

The first example is a relatively simple result given by D.G. Mead in a recent article 

in the American Mathema.tical Monthly [6]. It involves the idea that there is no parallel for 

field extensions of Cauchy's theorem for groups. That is, unlike groups where if a prime p 

divides the order of the group then there is a subgroup of order p, not every extension 

contains subfields with prime extension degree where the prime divides the degree of the 

original extension. The best way to see this is to look directly at the result. 

Theorem 

Proof 

For any positive integer n, there is an extension K of Q of degree n such 

that there is no intermediate extension. 

Let f be a polynomial over Q whose Galois group is Sn. (It is known that 

such a construction is possible.) Let L be the splitting field for f over Q. 

If K is the fixed field of Sn-1, then [K:Q] = [L:Q]/[L:K] = ISnl / ISn-11 = n 

by the Fundamental Theorem. Also by the Fundamental Theorem, if there 

were an extension of Q between K and Q then its corresponding group of 

3Hardy, G.H. A Mathematician's Apology. Cambridge University Press, New York: 1967. p. 104 
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automorphisms would be a group properly between Sn and Sn-1, and basic 

group theory shows this to be a contradiction . 

Actually, the above theorem is not surprising at all. If it were not true, the 

Fundamental Theorem would be rather uninteresting in that the correspondence between 

subfields and subgroups would be automatic without the extra hypotheses of normality and 

separability. However, what is interesting in the above result is the way in which the 

Fundamental Theorem asserts itself as important. That is to say, one uses the theorem to 

demonstrate its own necessity. 

The next application is an alternate proof of the so-called Fundamental Theorem of 

Algebra. Of course, Gauss proved this before the birth of the Galois theory and in a 

manner wholly different from the present one. But the point here is not to offer a superior 

proof; rather, it is to show how the Galois theory can verify this familiar result in a new 

fashion.4 First we need an important tool. 

Lemma 

Proof 

Theorem 

Proof 

If for a field K of characteristic O every finite extension has degree divisible 

by a prime p, then every finite extension of K has degree a power of p. 

Let M be a finite extension of K. By passing to a normal closure we may 

assume that M:K is normal. Now take the Sylow p-subgroup of r(M:K) 

and call it P. By the Fundamental Theorem [Pt:K] is equal to the index of 

Pin r(M:K) which is prime top. Then p does not divide (Pt:K] which 

implies pt = K so P = r(M:K). 

The Fundamental Theorem of Alegbra 

Every polynomial over Q splits in C. 

Our strategy is to show that the splitting field of any polynomial over R is 

contained inR(i) = C. Let K be an arbitrary finite extension of degree > 1. 

Then [K:R] cannot be odd, for if it were we would have a E K\R with 

minimum polynomial over R of odd degree. But we know from analysis 

that a polynomial of odd degree has at least one zero in R, whence comes a 

4It is really not all that new, since it was first done this way by Legendre; however, his proof had gaps 
which are here filled by the Galois theory. 
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contradiction. So 2 divides every finite extension and, by the lemma above, 

every finite extension is a power of 2. Now consider a splitting field L for 

a polynomial irreducible over R. Assume L 1 c.· r(L:R) is a 2-group as 

we have shown above. By the Galois correspondence there exists an 

extension M of R(i) = C, with M ~ L, such that [M:C] = 2. So there is an 

element P e M\C with minimum polynomial n of degree 2. Since C(P) ~ 

Mand [C(P):C] = 2 we know that M = C(P). Since [C(P):C] = 2, we 

have p2 + ep+ f = 0, fore and fin C. By the quadratic formula, p e C(y) 

where y = ✓ e2 - 4f . But y2 e C and so M = C(P) = C(y). Also, since 

y2 e C, we have y2 = a + bi, where a,b e R 

d ✓ b' ✓ a + ✓ a2 + b2 . ✓-a + ✓ a2 + b2 b an y = a + 1 = 2 + 1 2 , Y 

Demoivre's Theorem. Sop is in C and M = C, a contradiction. 

Thus L ~ C. 

The remaining portion of this chapter will be the preparation for and demonstration 

of Gauss' famous theorem concerning the possibility constructibility of regular polygons of 

an arbitrary number of sides. In order to begin we need to introduce a useful though non

standard definition found in Stewart. 

Definition A number n is said to be constructive if the n-gon can be constructed. 

Note that whether the n-gon is constructible really reduces to whether one can construct the 

angle 2rc/n or, equivalently, whether the number cos(2rc/n) or sin(2rc/n) is constructible in 

the conventional sense of that word. From these observations a few results follow rather 

easily. 

Lemma If mis constructive and dim, then dis constructive. If n is constructive 

and m and n are relatively prime, then mn is constructive. 2r is constructive 

for any positive integer r. 

Corollary n = 2rp~1p'¥ ... pik (where the Pi are distinct primes) is constructive if 

and only if each p~i is constructive. 
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At this point recall that constructible numbers must lie in an extension of degree a 

power of 2 over Q. This fact is important for our next result. 

Theorem 

Proof 

If p" is constructive then the p"-th root of unity has splitting field degree 

a power of 2 over Q . 

Let a= cos(2n/p") and P = sin(2n/p"). These numbers are constructible by 

hypothesis so [Q(a, P):Q] = 2r, for some r. For co the primitive p"-th root 

of unity, Q(co) ~ Q(a,P,i) and [Q(a,P,i):Q] = 2r+l so Q(co) has degree a 

power of 2 over Q. 

We also need two technical lemmas whose proof amounts to showing that the given 

polynomials are irreducible over Q . 

Lemma 

Lemma 

For a prime p, the minimum polynomial of the p-th root of unity is 

f(t)= 1 +t+ ... +tP-1. 

For a prime p, the minimum polynomial for the p2-th root of unity is 

f(t) = 1 + tP + ... + tP(p-1). 

One last definition is pertinent. 

Definition A Fermat prime is one of the form 22r + 1 for a positive integer r. 

It is a well-known fact that any prime of the form 2s + 1 is a Fermat prime . 

We are now ready for Gauss' theorem on the constructibility of the n-gon. Gauss 

proved the more difficult part - sufficiency, but he said he could also prove necessity. The 

proof which follows has many details relying on the lemmas directly preceding it, so 

careful attention is required. 

Theorem 

Proof 

A number n is constructive if and only if n has the form 2rp1p2 .. ·Pk where 

the Pi's are distinct Fermat primes. 

Suppose n = 2rp~1p~2 ... p<fck is constructive. Assume some ai ~ 2. Then 

Pi2 is also constructive. Hence [Q(co):Q] = 2r for co the primitive pi2-th root 

of unity. But [Q(co):Q] = Pi(Pi - 1) by our lemma above, and this cannot 
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be the case since Pi > 2. Therefore each Ui = 1. Now each Pi is 

constructive, and by our lemma Pi - 1 = 2r so Pi is a Fermat prime. 

For sufficiency we need only show that the Fermat primes are constructive. 

Let p = 22r + 1. Then p - 1 = 28• Now consider the p-th root of unity, ro. 

It is clear that [Q(ro):Q] = 28 (from the above lemma) and that G = 

r(Q(ro):Q) is not only a 2-group but an abelian one as well. We want to 

look at K = Q(ro) 11 R. Now K is obviously a field and cos(21t/p) = 
( ro + ro- 1 )/2 e K. From the Galois correspondence we have that 

lr(Q(ro):K)I = [Q(ro):K] = 2, and f'(Q(ro):K) is a normal subgroup of G 

since G is abelian. Then K:Q is a normal extension of degree a power of 2 

and has a series of intermediate fields of degree 2 over the previous one by 

the Galois correspondence (because a p-group has a series of subgroups of 

every power of p and G is abelian). Therefore cos(21t/p) is constructible, so 

pis constructive. 
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