
HYPERDIMENSIONAL COMPUTING FOR GESTURE

RECOGNITION USING A DYNAMIC VISION SENSOR

by

Abdelrahman Aboeitta

2023

© 2023 Abdelrahman Aboeitta
All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v
ABSTRACT . vi

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Dynamic Vision Sensors . 3
2.2 Hyperdimensional Computing . 5

2.2.1 Overview . 5
2.2.2 Operations . 6
2.2.3 HDC vs. Gradient Descent . 7

3 APPROACH . 9

3.1 Data Acquisition . 11

3.1.1 Overview . 11
3.1.2 Capturing Raw Events using DVS 12
3.1.3 Frame Division into Tiles for Enhanced Data Extraction . . . 13

3.2 Data Preprocessing . 15

3.2.1 Encoding Raw Events using “motion” algorithm 15
3.2.2 Extracting Input Features using “motion” 16
3.2.3 Computing “Motion Direction” for Arrow Visualization 18
3.2.4 Extracting Output Labels using “Motion Direction” 20

3.3 AI Model . 21

iii

4 EXPERIMENT AND RESULTS . 22

4.1 Experimental Setup . 22

4.1.1 Data Acquisition . 22
4.1.2 Data Preprocessing and AI Model 24

4.2 Results . 24

5 CONCLUSIONS AND FUTURE WORK 25

BIBLIOGRAPHY . 26

iv

LIST OF FIGURES

2.1 Output of a conventional camera vs event-based camera [11] 3

2.2 traditional camera frame vs. events on the top of a frame 4

2.3 Accuracy calculated by training the hybrid model on ISOLET dataset
[1]. The α parameter sets the fraction of gradient descent, where
α = 1.0 is equal to traditional gradient descent [6]. 8

3.1 Overview of the steps to building the AI model 10

3.2 Hotdog/No Hotdog example to explain the difference between input
features and output labels. 12

3.3 An example to show a comparison between different configurations of
tiles as I move my hand from top right to bottom left. 14

3.4 Raw Events: Three data streams before preprocessing. Each stream
is an array of arrays.

17

3.5 The Input Features: two streams (also called channels) of
preprocessed data. Each channel is an array of values. 18

3.6 Moving my hand from left to right. The right side of my hand blocks
light, causing the sensor to detect less light (red). The left side of my
hand moves away, causing more light to fall on the DVS (green).

19

4.1 Data Acquisition Setup. 23

4.2 Sample output of the previously described system. 23

4.3 Result from training and testing the model a single time. 24

v

ABSTRACT

Artificial Intelligence (AI) has experienced rapid growth in recent years and is

receiving unprecedented attention due to the impressive results achieved in various

domains, notably computer vision and natural language processing. Two of the key

technologies that enabled these groundbreaking results were (1) Convolutional Neural

Networks (CNNs), designed for image and video processing, and (2) Backpropagation,

an algorithm for training AI models. However, despite their remarkable capabilities,

these technologies face criticism for several reasons. First, CNNs are limited in their

applicability to numerous real-world problems, primarily due to their high computa-

tional and memory requirements. Furthermore, backpropagation is criticized for being

biologically implausible, as it fails to represent how the human brain works.

To address the limitations mentioned above, this thesis introduces a novel neu-

romorphic approach that exploits two biologically-inspired technologies: (1) Dynamic

Vision Sensor (DVS), an event-based camera that consumes only 0.1% of the power

required by traditional cameras while generating thousands of frames, and (2) Hyper-

dimensional Computing (HDC), a learning algorithm that avoids backpropagation by

imitating the brain. By integrating technologies inspired by the human brain, the pri-

mary goal of this research is to develop more efficient and adaptable AI systems that

can handle various real-world problems, overcoming the constraints faced by CNNs

and backpropagation. To demonstrate the effectiveness of this approach, I propose an

AI classifier for recognizing two simple hand gestures built using HDC technology and

trained using data captured by a DVS. The model managed to achieve a high accu-

racy rate of 99%. Despite its simplicity, my approach serves as a compelling proof-of-

concept, showcasing the potential of combining biologically-inspired technologies (DVS

and HDC) to achieve substantial gains in efficiency and performance.

vi

Chapter 1

INTRODUCTION

Recently, AI has made significant leaps in various domains, particularly in devel-

oping classifiers for multiple tasks. In addition, the introduction of event-based sensors,

such as the Dynamic Vision Sensor (DVS), has given rise to new opportunities for AI

to process and interpret data more efficiently and accurately [13]. This honors thesis

focuses on developing an AI classifier model built using TorchHD, a high-dimensional

computing library that extends PyTorch and is trained using events from a DVS. This

model’s primary objective is to accurately classify two distinct hand gestures in real-

time.

Event-based cameras are biologically inspired neuromorphic systems that gen-

erate asynchronous events upon detecting changes in the intensity of the visual input

[13]. These sensors offer several advantages, such as reduced redundancy, low latency,

and high temporal resolution, making them ideal for real-time applications [12].

Hyperdimensional computing (HDC) is a computing framework that uses high-

dimensional vectors, typically 10000 dimensions, to perform various tasks, such as

classification, association, and recognition [10]. HDC has demonstrated promising re-

sults in multiple domains, including natural language processing, cognitive computing,

and robotics [12] [10]. Combining the advantages of event-based sensing and HDC can

potentially lead to a more efficient and robust AI classifier model.

This thesis presents a novel AI classifier model that exploits the TorchHD library

and the advantages of event-based data from a DVS. The primary objective is to

accurately classify two distinct hand gestures in real-time, demonstrating the efficiency

and potential of this combination. By incorporating the findings from previous research

1

on event-based cameras [5] [13] and HDC [6] [10], this thesis aims to contribute to the

ongoing efforts in the development of AI classifiers for a variety of tasks, particularly

those that demand low latency and high temporal resolution.

2

Chapter 2

BACKGROUND

2.1 Dynamic Vision Sensors

Neuromorphic Dynamic Vision Sensors, also called event-based cameras, are

asynchronous image sensors that offer several advantages over traditional frame-based

cameras. DVSs are inspired by the human eye: instead of capturing entire frames at

a fixed rate, they asynchronously measure per-pixel changes in brightness, and each

individual pixels independently produce an output only if there is a local change in

measured brightness [5]. Hence, the output of a DVS is not a sequence of images

but a continuous stream of asynchronous events, which allows DVS to capture motion

better than a classical camera [8]. Figure 2.1 shows a comparison of the output of a

conventional camera and an event-based camera.

Figure 2.1: Output of a conventional camera vs event-based camera [11]

3

Figure 2.2 provides a better understanding of the differences between frames and

events. On the left, a grayscale output frame from a conventional camera is shown.

The output events generated by a DVS imposed on a frame are displayed on the right.

The comparison demonstrates that DVS technology can detect and capture changes in

brightness at the level of individual pixels. The red indicates off events, and the green

indicates on events.

Figure 2.2: traditional camera frame vs. events on the top of a frame

These events provide a more efficient way to represent visual information and

are highly suited for applications that require fast and accurate visual processing.

Compared to a traditional camera running at about 30-60 fps, a DVS offers more

attractive properties, which are listed below:

• High dynamic range (140dB vs. 60dB): DVSs can capture scenes with high

contrast ratios, allowing them to operate effectively in diverse lighting conditions

[5].

• Low power consumption: They only output data whenever there is a change

in the pixel brightness, allowing them to achieve ultra-low power consumption

(1mW vs. 1W) [5].

4

• Low latency: They capture events with latency as low as 1 microsecond, re-

sulting in reduced motion blur [5].

• High temporal sampling: Also in the order of microseconds.

Accordingly, these properties allow the DVS to generate visual data equivalent to

thousands of frames per second (fps) while consuming only 0.1% of the power required

by traditional digital cameras [5]. This makes a DVS ideal for challenging robotics

and wearable applications that require high-speed processing and high dynamic range,

such as tracking, navigation, and collision avoidance in autonomous vehicles [5].

2.2 Hyperdimensional Computing

2.2.1 Overview

Hyperdimensional Computing (HDC) [10] is a computing framework that has

gained significant interest in recent years due to its potential to outperform conventional

computing approaches in terms of robustness and energy efficiency [14]. Inspired by the

brain’s massive circuit of neurons and synapses, HDC exploits very high-dimensional

vectors, called hypervectors, attempting to mimic the brain’s ability to store and re-

trieve information [10]. Mathematically speaking, the main idea behind hypervectors

is to represent information x ∈ X onto a hyperspace H with d dimensions, typically the

hyperspace is binary H = {0, 1}d or bipolar H = {−1, 1}d with d ≈ 10, 000 dimensions.

[10] [6]. This high-dimensionality characteristic of hypervectors enables combining mul-

tiple hypervectors into a single one through vector space operations (discussed in 2.2.2)

while retaining the information content from both [14].

In cognitive tasks, the encoding function maps similar objects from input space

X to similar hypervectors in H. Hypervector similarity is measured using cosine simi-

larity, denoted by δ : H×H → {σ ∈ R | − 1 ≤ σ ≤ 1} [10] [6]. The majority of HDC

applications depend on this similarity.

5

2.2.2 Operations

Unlike conventional neural representations, hypervectors are compositional, al-

lowing calculations in superposition [10]. Furthermore, these composite representations

can be combined using HDC operations, yielding hypervectors in the same space, which

enables recursive compositions [14] [6]. Arithmetic in HDC is based on three opera-

tions:

• Binding: The binding function is denoted as ⊗ : H ×H → H. This operation

is commonly used for associating two hypervectors, and it’s done by performing

element-wise multiplication on two input hypervectors to produce a third vector

dissimilar to both operands. [6][14]

• Bundling: This operation is denoted as⊕ : H×H → H. The bundling operation

is a memorization function that performs element-wise addition on its inputs to

produce a vector that is maximally similar to the operands. [6][14]

• Permutation It’s denoted as Π : H → H. The permutation function is used

to rearrange the elements of a hypervector, producing an output hypervector

that is dissimilar from its input. Consider a hypervector A, for which we aim

to perform a cyclic shift of its elements by i positions. This operation can be

denoted as Πi(A). Furthermore, the permutation function generates a reversible

hypervector. This means that applying the inverse permutation to the permuted

hypervector Πi(A) will return the original hypervector: Π−i(Πi(A)) = A. Con-

sequently, this property allows us to effectively represent sequences and their

ordering. [6][14]

The operations mentioned above are simple and require only trivial element-

wise arithmetic. On the other hand, if we were to accomplish the same result using a

conventional neural network, we would need to assign new labels to images representing

composite classes and train an entirely separate model for making predictions [14].

6

2.2.3 HDC vs. Gradient Descent

In this section, I present a comparison between HDC and gradient descent, the

standard algorithm for training neural networks, focusing on efficiency, computation,

and accuracy. Heddes et al. conducted an experiment to compare HDC and gradient

descent by developing a hybrid HDC architecture that incorporates both techniques,

where the α parameter sets the fraction of gradient descent [6]. In the context of

efficiency, HD computing offers several benefits, such as:

• Reduced training time: As shown in Figure 2.3, HDC can have much faster

training times compared to traditional neural networks employing gradient de-

scent. Figure 2.3 shows that HDC had the highest accuracy in the first epoch

among all models. This is mainly because HDC is based on trivial vector oper-

ations that can be performed in parallel. In contrast, gradient descent involves

iterative weight updates, which can be computationally expensive [6].

• Energy efficiency: HDC systems are known to be more energy-efficient than

gradient descent-based neural networks. This is because HDC requires much

fewer epochs to train than gradient descent by a factor of 10x [6]. The energy

consumption associated with training dominates the overall energy consumption

in most machine learning systems.

• Biological plausibility: Since the invention of modern neural nets in the late

1980s, neuroscientists have criticized the backpropagation algorithm as biologi-

cally implausible [2]. Hence, a learning algorithm that avoids backpropagation

(and gradient descent in general) has a better chance of shedding light on the

way that actual brains perform these tasks.

7

Figure 2.3: Accuracy calculated by training the hybrid model on ISOLET dataset
[1]. The α parameter sets the fraction of gradient descent, where α = 1.0
is equal to traditional gradient descent [6].

HDC also has its limitations. As we can see in Figure 2.3, the accuracy of the

HDC model didn’t improve with more epochs [6]. While gradient descent outperformed

HDC’s performance, this came at the cost of more training time by a factor of 10x.

Gradient descent also comes with its own set of challenges in terms of efficiency and

performance:

• Convergence Speed: Gradient descent may take significant time to converge

to an optimal solution, as shown in Figure 2.3.

• Local Minima: Gradient descent is vulnerable to getting trapped in local min-

ima, which can lead to suboptimal solutions.

In conclusion, HDC and gradient descent each possess unique strengths and

weaknesses. Although HDC is not intended to replace traditional neural networks for

all classification tasks entirely, it demonstrates remarkable performance in lightweight

tasks and is well-suited for highly resource-constrained devices [4]. This compatibility

aligns perfectly with the proposed AI model for hand gesture recognition.

8

Chapter 3

APPROACH

In this chapter of the thesis, I explain the methods used to create the hand

gesture recognition AI model. The primary goal is to showcase the strength and ef-

ficiency of the proposed brain-inspired approach over traditional neural networks. To

accomplish this, I will explain the specific techniques and procedures implemented

while developing the model. I will also discuss the datasets used for training and vali-

dation, the algorithms integrated into the model, and the software and hardware tools

employed.

Figure 3.1 demonstrates an overview of all the steps taken to build this model.

First, the approach begins with data acquisition by employing a DVS to capture raw

event data related to hand gestures. The DVS generates a continuous stream of event

data corresponding to the captured motions. The next step is data preprocessing. The

raw data is transformed into 2 types of data necessary for AI model training: input

features and output labels. Next, the transformed data is fed into an AI model built

using the TorchHD framework, facilitating gesture recognition and analysis. Finally,

the model learns to map the events data captured by the DVS to the appropriate

hand gesture classifications, effectively recognizing the different gestures. Notably, this

learning is done by a novel, single-pass algorithm [7] that avoids the aforementioned

issues associated with back-propagation.

9

Figure 3.1: Overview of the steps to building the AI model

10

3.1 Data Acquisition

3.1.1 Overview

This AI model is trained using labeled data, which consists of both input features

(discussed in Section 3.2.2) and the corresponding correct output labels (elaborated in

Section 3.2.4). Figure 3.2 demonstrates the difference between input features and

output labels using the famous hotdog/no hotdog example. In this example, the food

image serves as the input feature, while the hotdog or no hotdog designation represents

the output label. These input-output pairs are essential for training an AI model. They

enable the model to learn the underlying patterns and relationships that allow it to

accurately map inputs to their corresponding outputs.

For our hand recognition model, the process begins with capturing raw events

data using a Dynamic Vision Sensor, followed by extracting the input features and

output labels through preprocessing methods, which is discussed in Section 3.2. Finally,

the model learns to make predictions by identifying patterns in the training data and

generalizes these patterns to make accurate predictions on unseen data.

11

Figure 3.2: Hotdog/No Hotdog example to explain the difference between input fea-
tures and output labels.

3.1.2 Capturing Raw Events using DVS

In this subsection, I will outline the process of capturing motion data using

the DAVIS346 sensor. I coded two Python programs to allow for two data-capturing

methods: realtime playback.py, which captures data in real-time, and file playback.py,

which retrieves data from a previously recorded file. Although the real-time playback

12

method operates similarly, this section primarily focuses on file playback.

First, I record a file using the DV software provided by the DAVIS346 creators,

saving it in aedat4 format. Then, I use a Python module called dv processing, also

supplied by the DAVIS346 creators, to access the recording and extract raw events.

The raw events consist of 4 data types, but we are only interested in three specific

types:

• X: an array of arrays, with each array containing the x-axis coordinates of all

pixels showing a brightness change at a particular frame or timestamp.

• Y: an array of arrays, with each array containing the y-axis coordinates of all

pixels showing a brightness change at a particular frame or timestamp.

• Polarity: an array of arrays, with each array containing the polarities (on or

off) of all pixels showing a brightness change at a particular frame or timestamp.

For example, as shown in Figure 3.3, the illuminated pixels (either red or green)

at a specific frame or timestamp indicate where the DVS detected changes in bright-

ness. Therefore, we extract three NumPy arrays from this frame, containing the x-axis

position, y-axis position, and polarity (red for off, green for on) of the illuminated

pixels. This extraction process is repeated for each frame in the aedat4 recording,

enabling us to extract the raw data: X, Y, and Polarity, as described above.

3.1.3 Frame Division into Tiles for Enhanced Data Extraction

In this section, I discuss an approach for enhancing data extraction by dividing

the frame into smaller tiles, allowing for more detailed information to be gathered from

each frame, ultimately benefiting the AI model’s performance.

AI models often require substantial data to achieve optimal performance. There-

fore, I developed a Python module that divides a given frame into N x N tiles. This

division results in each tile functioning as an individual frame, from which we can

extract the three types of raw data mentioned earlier: X, Y, and Polarity. Figure 3.3

13

Figure 3.3: An example to show a comparison between different configurations of
tiles as I move my hand from top right to bottom left.

offers a visualization of four different tile configurations: N = 1, 2, 4, 8 as I move my

hand from the top right corner to the bottom left corner. The 1 x 1 configuration

outputs three streams of raw data, while the 2 x 2 configuration yields 12 streams of

raw data. The 4 x 4 configuration generates 48 streams of raw data, and so on. By

capturing this hand movement and increasing the number of raw data streams, the AI

model gains access to a more comprehensive dataset, potentially improving its overall

performance.

Furthermore, utilizing tiles offers a significant advantage by enabling the simul-

taneous detection and classification of multiple hand gestures within a single frame.

For instance, in a 1 x 1 configuration, the raw event data from two hands within the

14

same frame may overlap, resulting in incorrect data. However, in an 8 x 8 config-

uration, the presence of two hands in the frame does not cause interference because

each tile functions as an independent frame. In conclusion, increasing the number of

tiles leads to more accurate and reliable data at the cost of higher computational and

memory demands. The complexity of this approach scales at a rate of O(N2).

In addition to the tile-based data extraction method, I have implemented an

arrow that tracks the hand movement direction within the frame, as shown in Figure

3.3. The arrows follow my hand, pointing towards the bottom left corner as I move

my hand in that direction. The arrows implementation is discussed in detail in section

3.2.3.

3.2 Data Preprocessing

In the previous section, I discussed the extraction of raw event data, returningX,

Y, and Polarity NumPy arrays. In this section, I will elaborate on the preprocessing

techniques applied to this data, which are essential in preparing it for the subsequent

training phase.

3.2.1 Encoding Raw Events using “motion” algorithm

The raw events data obtained is structured as an array of arrays, which we can’t

use to train our model. Our goal is to convert this data into an array of values. To

achieve this, I developed an encoding function called “motion” that accepts raw data

(in the form of an array of values) as input and encodes it into a single value, which is

then returned as the output.

The Python code is as follows:

1 def motion(self , axis , pp):

2 green_position = axis[pp == 1]

3 red_position = axis[pp == 0]

4 if len(green_position) < Tiles.THRESHOLD or len(

red_position) < Tiles.THRESHOLD:

15

5 return 0

6 green_position_mean = axis[pp == 1]. mean()

7 red_position_mean = axis[pp == 0]. mean()

8 return red_position_mean - green_position_mean

The function requires two parameters:

• axis: either the X-axis or Y-axis array.

• pp: the polarity array, where 0 denotes off pixels (red) and 1 denotes on pixels

(green).

The algorithm operates as follows. First, it calculates the mean position of all

on and off pixels, resulting in green position mean and red position mean, respectively,

as shown in the Python code. Next, the function returns the difference between these

two mean values. Finally, by employing the “motion” function, we can effectively

preprocess the raw data into a more manageable format, enabling further analysis and

model training.

3.2.2 Extracting Input Features using “motion”

In the previous subsection, I provided an overview of the “motion” function and

its implementation. In this subsection, I will explain how to extract input features

using the “motion” function to prepare the data for model training.

The extraction of input features involves applying the “motion” function to

every array in the X dataset and its corresponding array in the Polarity dataset, re-

sulting in a new dataset called X motion. Similarly, we perform this process for every

array in the Y dataset and its corresponding array in the polarity dataset, yielding

another new dataset called Y motion.

Figure 3.4 and Figure 3.5 illustrate the entire process. Figure 3.4 depicts the

raw events data before the application of the “motion” function. In this figure, there

are three streams of data, with each stream represented as an array of arrays. After

16

applying the “motion” function, the transformed output is shown in Figure 3.5. In

this figure, there are two streams of data, also referred to as channels. Each channel

consists of an array of values.

By using the “motion” function to extract input features, we can effectively

prepare the data for training the AI model, enhancing its performance and accuracy

in hand gesture recognition tasks.

Figure 3.4: Raw Events: Three data streams before preprocessing. Each stream is
an array of arrays.

17

Figure 3.5: The Input Features: two streams (also called channels) of preprocessed
data. Each channel is an array of values.

3.2.3 Computing “Motion Direction” for Arrow Visualization

In this subsection, I explain how I implemented the arrow, shown in previous

figures, that visualizes the direction of motion of an object. As mentioned in section

2.1, a DVS sensor detects changes in brightness, which can be either positive (on) or

negative (off). If the amount of light falling on a specific pixel decrease, the DVS marks

the polarity of that pixel as off, indicating a negative change. However, if the amount

of light increases, the polarity is marked as on, representing a positive change. On

pixels are marked as green, while off pixels are marked as red.

18

Figure 3.6: Moving my hand from left to right. The right side of my hand blocks
light, causing the sensor to detect less light (red). The left side of my
hand moves away, causing more light to fall on the DVS (green).

For example, as shown in Figure 3.6, I move my hand from left to right. The

right side of my hand blocks light from reaching the DVS, causing the sensor to detect

less light and mark these pixels as off (red). As the left side of my hand, which was

previously blocking light, moves away, more light falls on the DVS, and the pixels are

marked as on (green).

From this observation, we can deduce that if the red (off) pixels are ahead of

the green (on) pixels, it means the object is moving in the same direction as the red

pixels. In other words, if the returned X motion value is positive, the hand is moving

to the right, while a negative value indicates movement to the left. Similarly, if the

Y motion value is positive, the object is moving down, and if it is negative, the object

is moving up.

By combining the directional changes using X motion and Y motion, I com-

puted the “Motion Direction”, represented as a tuple containing two values: ∆x and

19

∆y. These two values signify the extent of change in direction along the x-axis and y-

axis, respectively. Using “Motion Direction”, I created an arrow that accurately tracks

the motion direction of the detected object. This visualization aids in understanding

and interpreting the movement of objects detected by the DVS sensor.

3.2.4 Extracting Output Labels using “Motion Direction”

The final stage in the data preprocessing phase is computing and extracting

output labels, represented as numerical values, to simplify the categorical data rep-

resentation within the model. Each class (or category) is assigned a number, with

0 consistently denoting the hand rest position. For instance, if we are developing a

model to classify two hand gestures, such as waving and pinching, there would be

three numerical classes representing these gestures: 0 for the hand rest position, 1 for

waving, and 2 for pinching. After the model is trained, the numerical labels can be

easily mapped back to their original categorical labels, enabling the final output to be

presented as hand gestures.

There are two approaches to extracting output labels, depending on the com-

plexity of the hand gestures involved. For simple and easy hand gestures, such as

moving a hand in one direction, output labels can be automatically computed using

the “Motion Direction” method, as previously discussed in section 3.2.3. However,

when dealing with more complex hand gestures, such as those used in sign language,

manual labeling becomes necessary. In this case, an individual would have to manually

label tens of thousands of input features, which is an intensive and time-consuming

process.

20

3.3 AI Model

For the AI model, it is important to note that I did not develop my own AI

model. Instead, I utilized a pre-existing model designed and developed by Rahimi et al.

Their model exploits HDC and it is specifically designed for hand gesture recognition

from a stream of Electromyography (EMG) signals [6] [12]. Moreover, their model

achieves an impressive classification accuracy of 97.8% while requiring only a third

of the training data needed by the state-of-the-art Support Vector Machine (SVM)

for the same task. Therefore, I used their model as a foundation for my project and

adapted the dataset and preprocessing steps methods to ensure that the data format

is consistent with their model. By utilizing the HDC model from Rahimi et al., I could

concentrate more on the previous steps while benefiting from the robust and efficient

processing capabilities that HDC offers.

21

Chapter 4

EXPERIMENT AND RESULTS

4.1 Experimental Setup

In this section, I describe the experiment conducted to evaluate the performance

of my biologically-inspired approach. The primary goal of this experiment is to develop

an AI model capable of accurately classifying two basic hand gestures: moving the hand

to the right or left direction. I chose to focus on this relatively simple model for two

primary reasons: (1) Given that the brain-inspired approach is still relatively new, it

is essential to start with a simple application of the approach and gradually progress

to more complex models; and (2) It’s tough and time-consuming to label the data

of complex hand gestures (as discussed in section 3.2.4). Therefore, in the following

section, I will outline the steps undertaken to develop this particular model, detailing

the 3 phases discussed in the Approach section: Data Acquisition, Data Preprocessing,

and Developing the AI Model.

4.1.1 Data Acquisition

To develop this model, a substantial amount of data is required. Collecting

this data through manual hand movements would be very time-consuming for any

individual. Therefore, to facilitate data acquisition, an Arduino and a servo motor

were used to oscillate continuously between right and left hand gestures. Figure 4.1

illustrates the setup for capturing raw data. A straw was attached to the servo motor

and pointed towards the Dynamic Vision Sensor (DVS). Then, the servo motor moved

at a rate of one second per direction, enabling the DVS to capture one second of each

hand gesture before alternating to the other.

22

Figure 4.1: Data Acquisition Setup.

Furthermore, I improved the data extraction process by employing the tiles

method, described in Section 3.1.3. As shown in Figure 1, I set the parameter N

equal to 2, resulting in an output image featuring a 2 x 2 grid, which helps with data

representation and analysis.

Figure 4.2: Sample output of the previously described system.

23

4.1.2 Data Preprocessing and AI Model

Both the second and third phases of the experiment follow the approaches pre-

viously described in Sections 3.2 and 3.3, respectively.

4.2 Results

The model was executed multiple times, consistently yielding astonishing re-

sults, with a success rate ranging from 95% to 100%. After running the model ten

times, the average accuracy rate achieved was 99%. It was observed that the model

frequently reached 100% accuracy, which can be attributed to the following 2 reasons:

(1) the task is very simple and (2) the brain-inspired approach is very effective. Fig-

ure 4.3 depicts the output obtained from training and testing the model on the data.

Moreover, the model required only a brief training period. As demonstrated in Figure

4.3, the training process was completed within a very small fraction of a second, further

highlighting the efficiency of the novel approach.

Figure 4.3: Result from training and testing the model a single time.

24

Chapter 5

CONCLUSIONS AND FUTURE WORK

Despite the unusual approach taken in this work (using a non-traditional sensor

with a novel learning algorithm), our results turned out to be quite promising: as

with the EMG data used in [12], we obtained a testing success rate between 90 and

100%. Based on this success, it would make sense to continue this work. Specifically, I

think it could be a promising approach to automatic visual gesture recognition, where

the current state-of-the-art focuses on the recognition of static gestures rather than

dynamic motions [3].

The main drawback of my approach is that I am not fully exploiting the ad-

vantages of the DVS. Specifically, by grouping the events into static image frames and

applying the motion function to those frames, I am discarding much of the dynamic

information available (timestamps) in the raw event data. This approach allowed me

to reduce the enormous bandwidth of the sensor (which can reach 1.2 x 107 events

per second [9]), but it obscures what part of my results are due to the sensor itself.

For example, it is possible that I could have obtained the same results with an ordi-

nary web camera combined with an image-processing library like OpenCV. In order

to exploit the power of the DVS to the fullest extent, I would need an approach that

incorporated event-time information into the input to the learning algorithm. Before

undertaking that work, I would first want to compare my current approach to (1) the

web-cam / OpenCV approach; and (2) the use of a convolutional neural network with

backpropagation to get a better sense of how much my results differ from those more

traditional methods.

25

BIBLIOGRAPHY

[1] Ron Cole, Yeshwant Muthusamy, and Mark Fanty. The isolet spoken letter
database, 1990.

[2] Francis Crick. The recent excitement about neural networks. Nature, 337:129–132,
1989.

[3] Prangon Das, Tanvir Ahmed, and Md. Firoj Ali. Static hand gesture recognition
for american sign language using deep convolutional neural network. In 2020 IEEE
Region 10 Symposium (TENSYMP), pages 1762–1765, 2020.

[4] Shijin Duan, Yejia Liu, Shaolei Ren, and Xiaolin Xu. Lehdc: Learning-based
hyperdimensional computing classifier. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, pages 1111–1116, 2022.

[5] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas
Daniilidis, et al. Event-based vision: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(1):154–180, 2020.

[6] Mike Heddes, Igor Nunes, Pere Vergés, Dheyay Desai, Tony Givargis, and Alexan-
dru Nicolau. Torchhd: An open-source python library to support hyperdimen-
sional computing research. arXiv preprint arXiv:2205.09208, 2022.

[7] Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, and Mohsen Imani.
Onlinehd: Robust, efficient, and single-pass online learning using hyperdimen-
sional system. In 2021 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 56–61, 2021.

[8] Michael Hersche, Edoardo Mello Rella, Alfio Di Mauro, Luca Benini, and Rahimi
Abbas. Integrating event-based dynamic vision sensors with sparse hyperdimen-
sional computing: A low-power accelerator with online learning capability. In Pro-
ceedings of the International Symposium on Low Power Electronics and Design,
ISLPED ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[9] Kathy Hylton, Parker Mitchell, Blake Van Hoy, and Thomas Karnowski. Exper-
iments and analysis for measuring mechanical motion with event cameras. Tech-
nical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States),
2021.

26

[10] Pentti Kanerva. Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
computation, 1:139–159, 2009.

[11] Elias Mueggler, Basil Huber, and Davide Scaramuzza. Event-based, 6-dof pose
tracking for high-speed maneuvers. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2761–2768. IEEE, 2014. Event camera
animation: https://youtu.be/LauQ6LWTkxM?t=25.

[12] Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M Rabaey.
Hyperdimensional biosignal processing: A case study for emg-based hand gesture
recognition. In 2016 IEEE International Conference on Rebooting Computing
(ICRC), pages 1–8. IEEE, 2016.

[13] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. A 128 times 128 1.5%
contrast sensitivity 0.9% fpn 3 µs latency 4 mw asynchronous frame-free dynamic
vision sensor using transimpedance preamplifiers. IEEE Journal of Solid-State
Circuits, 48(3):827–838, 2013.

[14] Zhuowen Zou, Haleh Alimohamadi, Yeseong Kim, M. Hassan Najafi, Narayan
Srinivasa, and Mohsen Imani. Eventhd: Robust and efficient hyperdimensional
learning with neuromorphic sensor. Frontiers in Neuroscience, 16, 2022.

27

https://youtu.be/LauQ6LWTkxM?t=25

	Table of Contents
	List of Figures
	abstract
	1 Introduction
	2 background
	2.1 Dynamic Vision Sensors
	2.2 Hyperdimensional Computing
	2.2.1 Overview
	2.2.2 Operations
	2.2.3 HDC vs. Gradient Descent

	3 approach
	3.1 Data Acquisition
	3.1.1 Overview
	3.1.2 Capturing Raw Events using DVS
	3.1.3 Frame Division into Tiles for Enhanced Data Extraction

	3.2 Data Preprocessing
	3.2.1 Encoding Raw Events using ``motion" algorithm
	3.2.2 Extracting Input Features using ``motion"
	3.2.3 Computing ``Motion Direction" for Arrow Visualization
	3.2.4 Extracting Output Labels using ``Motion Direction"

	3.3 AI Model

	4 experiment and results
	4.1 Experimental Setup
	4.1.1 Data Acquisition
	4.1.2 Data Preprocessing and AI Model

	4.2 Results

	5 conclusions and future work
	Bibliography

