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ABSTRACT 

Billions of messages are transmitted across the Internet each day and most of these use the 
Internet Protocol (IP) to route packets to specific destinations based upon an IP address. 
While these packets contain both source and destination addresses, the protocol provides 
no means to verify the authenticity of the source. Therefore, packets can be sent with 
intentionally altered source addresses, known as spoofing, which in most cases is done 
for malicious purposes. IP spoofing is an integral part of various distributed denial-of­
service attacks. Today, a number of methods of detecting spoofed IP packets have been 
studied in order to limit possible damage. These detection methods are classified as router­
based and host-based, depending upon the site of implementation. Host-based detection 
methods are of particular interest because they can be implemented locally irregardless 
of the Internet service providers. The current research on host-based methods provides a 
number of possible solutions. However, there is insufficient data related to their efficacy. We 
evaluate the performance of the well known host-based spoofing detection methods under 
various circumstances and explore the ability of these methods to complement one another 
in order to improve their efficiency. 
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Chapter 1 

Introduction 

Billions of messages are transmitted across the Internet every day. While most of them are 

legitimate, some are transmitted with bad intentions. The most common mechanism for 

transmitting data over the Internet is with the use of the Internet Protocol (IP). 

A valid IP message requires the correct address of both the originating and destination 

hosts. There is no mechanism for verifying these addresses. If a message contains an invalid 

destination address , it is simply not delivered. An invalid or fake source address, however, 

allows for the transmission of fake and possible destructive messages. 

IP spoofing is the name given to the transmission of data over the Internet with fake 

source addresses. This technique is used in a number of elaborate network attacks. IP 

spoofing is used either to hide the real identity of the attacker and the source of the attack, 

or to cause an Internet host to act as a reflector - replying with multiple messages to 

pre-selected victims. 

The countermeasures proposed by research to defend from spoofing attacks are detection 

and backtracking. Detecting spoofed packets can help blocking attacks before they reach 
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CHAPTER 1. INTRODUCTION 3 

the victim host. Backtracking the detected spoofed packets will allow discovering the real 

source of the attack. Spoofed IP packet detection methods can be implemented either on 

the routers between the attacker and the victim (router-based) or on the local network of 

the victim host (host-based). Host-based methods have the advantage of being immediately 

deployable in the case of an attack. Even though such methods have been proposed and 

studied by previous research, little data is available about their performance. 

For this research, we implemented and evaluated the performance of three host-based 

spoofed IP detection methods using a virtual network simulation package. Combining 

multiple detection methods, our goal was to minimize the number of false positives and 

false negatives returned by the detection process. The results suggest that we need to 

implement more methods in order to build a dependable and robust detection system. 



Chapter 2 

Background 

2.1 Network Basics 

A computer network is a system for communications among two or more computers [23]. 

Today, computer networks are built from general-purpose programmable hardware devices 

and can be used to transmit various types of data [17]. A network generally consists of 

various hardware components. 

A computer involved in communications with one or more other computers on the 

network is called a host. The intermediate nodes, which assist in communications are called 

network devices (i.e. network switches and routers). 

The communication between computers on a network is performed with the transmission 

of messages between those computers. In order to transmit messages, the two computers 

must agree on a specific data format and rules of communication. This data format and 

rule specification is known as a protocol. Protocols are usually implemented inside protocol 

stacks, which have a layered structure. The protocols in each layer are specialized in han-

4 



CHAPTER2. BACKGROUND 5 

dling a specific portion of the data transfer process between two hosts. A protocol usually 

provides services only inside a single layer, thus allowing protocols to specialize, as well as 

helping make clearer distinctions between the scopes of functionality to be provided by the 

different protocols. 

A protocol at one layer typically uses a protocol in the layer below to transmit messages. 

On the receipt of a message, a protocol hands the message or a subset of it off to a protocol 

from the layer above. Each protocol specifies two different interfaces. It provides a service 

interface to the protocols and applications services from the layers above. Also, it specifies a 

peer interface, which is used by the identical protocol on the other side of the communication 

link to send or receive data to its peer [17). Using interfaces achieves both encapsulation 

and specialization of services. Each protocol encapsulates its specific internal functionality 

hidden from the outside layer, as long as it provides the required service and peer interfaces. 

2.2 The TCP /IP Protocol Stack 

The set of protocols that has been accepted as the de facto standard for communication 

over the Internet is the TCP /IP protocol stack, named after its two most important mem­

bers. The protocol stack consists of multiple protocols, each of them providing a specific 

service, which include routing and packet fragmentation, reliable connections and message 

acknowledgment, remote file transfer, e-mail messaging and transfer of hypertext used in 

websites. 

The TCP /IP protocol stack consists of five layers, each of which contains multiple 

protocols or specifications [23). Messages are transmitted down the protocol stack from 
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the application of the source host to the transport layer and then down to the physical 

connection, as illustrated by Figure 2.1. Messages are received by the destination host at 

the physical connection. The messages then travel up the protocol stack to the application 

layer. 

SENDING HOST RECEIVING HOST 

Application Application 

Transport 

I I 
Transport 

Network Network 

Data Link Data Link 

Physical Physical 

I I 
NETWORK MEDIUM 

Figure 2.1: The movement of a message on the TCP /IP protocol stack. 

The physical layer handles the physical transmission of data. This layer is responsible 

for the specifications of different transfer media ( coaxial, twisted-pair and fiber optic cables; 

radio and infrared waves), types of connectors (RJ-45 connectors used in Ethernet cables) , 

signal strength and modulation. 

The data link layer deals with the transmission of data in a local area network confined to 

a limited area, such as a college campus. It specifies how data is formatted when transferred 

over the physical media. This layer contains multiple protocols which specify the frame 

format (a single unit of data transferred over the physical media) , as well as the mechanism 

used by multiple devices to access shared transfer media. Examples of such protocols are 

Ethernet, SLIP (used by modems for dial-up Internet connections), the IBM Token Ring 

and ATM (Asynchronous Transfer Mechanism). Ethernet is one of the most popular data 

link layer protocols used today. 
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The third layer is the network layer, which handles routing of packets, the single units of 

data at this layer, in a wide area network. This protocol layer supports packet fragmentation 

(IP) when required by the underlying physical network, as well as intra- and inter-domain 

routing (BGP, OSPF, RIP). 

Next comes the transport layer, in which the transmission control protocol (TCP), a 

connection-oriented protocol, ensures the reliable transmission and receipt of messages, 

called segments. This layer also includes the user datagram protocol (UDP), which is 

a connectionless protocol providing no guarantee for reliability and used in cases where 

reliability is not critical. 

At the top of the protocol stack is the application layer, which provides support for 

network applications. This layer contains protocols, used by applications to provide services 

such as e-mail messaging (SMTP, POP, IMAP), remote file transfer (FTP) and hypertext 

transfer (HTTP). 

When transferring a message, a host needs to be able to uniquely identify the source and 

the destination of the transfer. Because such identification is required at multiple stages 

during the process of sending or receiving a message, each of the Data Link, Network and 

Transport layers of the TCP /IP protocol stack applies a certain addressing scheme. 

2.2.1 Internet Protocol 

The Internet Protocol (IP) is defined at the network layer of the Internet protocol stack. 

It handles IP addressing 'and routing, as well as packet fragmentation where needed. As 

Figure 2.2 shows, the packet consists of a 20-byte header and packet data. The header 

contains two 32-bit IP addresses, which uniquely identify the target and the destination of 
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the packet [20]. 

0 41 81 121 16 201 241 281 32 

version I length I type of service total length 

identification (Id) flags I fragment offset 

time to live (TTL) I protocol checksum 

source address 

destination address 

options I padding 

PACKET DATA 

Figure 2.2: The structure of an IP packet. 

IP addresses are identified using four 8-bit integers, ranging from O to 255 (28 - 1). 

Every IP address is divided into two parts - network and host. The network portion of the 

IP address identifies the local IP subnet and is shared by all hosts on that subnet. The 

host portion identifies a host on that IP subnet and must be unique for all hosts. The 

exact number of bytes allocated for the network and host portions depend on the size of 

the networks and the number of hosts in it. For example, an IP address with an 8-bit 

network portion and a 24-bit host portion provides 255 (28 - 1) possible network identifiers 

and 16777215 (224 - 1) possible host identifiers in each network. On the contrary, an IP 

address with a 24-bit network and 8-bit host portions allows for 16777215 distinct network 

identifiers and only 255 possible host identifiers within a network. 

Each network adapter must have a unique IP address no matter where it is located 

in the world. The uniquE;ness of IP addresses is guaranteed by organizations, such as the 

Internet Assigned Numbers Authority (IANA) , which assign ranges of IP addresses to any 

institution that requests them. Once an institution has been assigned an IP range, it can 
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assign portions of that range to other companies and institutions. The final consumer of an 

IP address range must ensure that every computer on their local network receives a unique 

IP address. 

2.2.2 Transmission Control Protocol 

The Transmission Control Protocol (TCP) guarantees the reliable transmission and receipt 

of segments of data . A TCP segment contains a 20-byte header and a segment body. 

The size of the body is limited in most cases to the maximum frame size of the underlying 

network. 

The TCP header, as shown in Figure 2.3, contains two 16-bit port numbers, which 

identify the source and destination of the TCP segment. These port numbers, together with 

the source and destination IP addresses, can uniquely identify a TCP connection between 

two hosts on the network. Port numbers are numeric labels for the operating system ports 

- abstract points of entry for remote network services into the system. 

0 41 81 121 161 201 241 281 32 

source port destination port 

sequenc,e number 

acknowledgement number 

offset I reserved I flags window advertisement 

checksum urgent pointer 

options and padding 

SEGMENT DATA 

Figure 2.3: The structure of a TCP segment. 

The 32-bit sequence and acknowledgment numbers are a part of the protocol automatic 

acknowledgment mechanism. Every segment sent along a TCP connection from host A to 
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host B has a unique for that connection at that time sequence number, which identifies 

the segment among the others transferred along the same connection. After B receives 

a segment from A, it sends a reply with its acknowledgment number set to the sequence 

number of the original segment. In this way, host A can confirm that every segment it sends 

to host B has been received. 

The TCP header also has 6 flags , which are used to exchange control information during 

communication. The four most important ones are Synchronize (SYN - used to establish 

and synchronize a connection), Finalize (FIN - when terminating a connection), Acknowl­

edge (ACK - any time when the segment is acknowledging the receipt of another segment) 

and Reset (RST - when one side wishes to abort the connection). 

The first step in any TCP connection is the initial three-way handshake. It serves to 

confirm the real identity of both hosts and to establish the initial sequence numbers that 

they are going to use during communication. As shown in Figure 2.4, Host A first sends a 

segment to host B with a sequence number and the SYN flag turned on. With this, host A 

indicates that it wants to establish a connection and specifies the initial sequence number 

it will use. Then, Host B replies to host A with both SYN and ACK flags set , as well as 

both a sequence and an acknowledgment number. By setting the SYN flag , host B confirms 

the establishment of the connection. It also provides its own initial sequence number. Also, 

by setting the ACK flag and providing an acknowledgment number, host B acknowledges 

host A's initial sequence number. Finally, Host A completes the three-way handshake with 

a segment, which has its ACK flag turned on, as well as an acknowledgment number, with 

which it acknowledges host B 's initial sequence number [17]. 

If the handshake is successful, the connection is established and the two hosts can 
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Iii 
host A host B 

Figure 2.4: The three-way initial TCP handshake. 

start exchanging data. If at any point an unexpected event occurs, a host will abort the 

connection by replying with a segment that has its RST flag set. This can occur if the 

host receives data over TCP from a host with which it has not established connection, or 

it receives an acknowledgment for a sequence number it has not sent. 

2.2.3 Internet Control Message Protocol 

The Internet Control Message Protocol (ICMP) is a part of the Internet protocol suite, 

which operates on the Network level and is mainly used by the IP protocol when an IP 

packet requires a response to the sender. When such a case occurs, an ICMP message is 

generated and placed inside an IP packet, which is then passed down to the data link layer. 

Thus, ICMP operates as if it was a higher-level protocol, but in fact it is an integral part 

of the IP protocol. 

Every ICMP control message has a type, which specifies the reason, for which it was 

generated. Among the more important control message types are Echo Request, Echo Reply, 

Destination Unreachable and Time Exceeded. 
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Echo Request and Echo Reply are the most common ones because they are used by the 

ping utility built into most operating systems. Time Exceeded messages are used to notify 

a sender that an IP packet has reached the maximum number of router hops before it is 

dropped. Destination Unreachable messages are generated when the destination host of an 

IP packet can be reached. This can occur for multiple reasons, some of which are that 

there is no physical connection to the host , the destination port is not accessible, or that a 

packet, which the sender has forbidden to be fragmented , exceeds the maximum size limit 

for a single message of a physical network link along the route [18). 

2.3 Internet Address Spoofing 

Messages transmitted across the Internet contain source and destination IP addresses used 

in routing the messages between the interconnected network components. When a packet 

leaves the source host , the current IP protocol has no built-in mechanism for verifying the 

source IP address as the packet travels from one router to another. Most operating systems 

restrict user access only to protocols at the Application layer. However, some systems, such 

as UNIX, provide the ability to bypass levels of the protocol stack and directly access the 

Data Link layer [12). This allows malicious users to send custom-built IP packets with 

altered, or spoofed, source IP addresses to any host on the Internet without being detected. 

IP spoofing is used primarily for malicious purposes and is an integral part of most 

significant network attacks. The two main purposes of spoofing addresses by malicious 

users is to hide their identity and to make an attack appear to come from a large number of 

random hosts. This makes it harder for the firewall or intrusion detection system to filter 
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out these packets. 

IP spoofing can also be used to mislead remote hosts into acting as reflectors and 

forwarding large amounts of traffic to the victim host. Some servers are potential reflectors 

because they will automatically reply to certain types of TCP segments, such as HTTP 

requests and DNS queries. Other messages invoking automatic replies are ICMP Time 

Exceeded and Host Unreachable messages [21]. If the attacker sends such messages to a 

sufficiently large number of reflectors with the source IP address spoofed to the address of 

the victim, they will then flood the victim with automated replies. This can result in a 

denial of service attack. 

2.4 Network Attacks Involving IP Spoofing 

Spoofed IP traffic is used in many types of attacks over the Internet today, both in order 

to hide the attacker's real identity and to mislead remote hosts into acting as reflectors. 

2.4.1 SYN-Flooding 

Synchronize (SYN) flooding exploits the three-way handshake feature of the TCP protocol 

[21]. If an attacker sends an initial SYN segment requesting a connection, the victim host 

will return a SYN/ ACK segment with an acknowledgment and its own sequence number. 

The victim host will reserve buffer space in its memory for the system function waiting for 

the final acknowledgment. If the final acknowledgment is not received in a specified amount 

of time, the connection will time out and the buffer space will be freed. 

This handshaking sequence can be exploited as illustrated in Figure 2.5. The attacker 

can generate a sufficiently large number of connection requests to deplete the victim's buffer 
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space for new connections, thus forcing it to deny connection requests from legitimate 

sources. 

Figure 2.5: A SYN-flooding attack. 

In this attack, the host, on which the malicious user is working, does not require the 

acknowledgment returned from the attacked host. This allows the source addresses of the IP 

packets to be safely spoofed inside the outgoing segments without detection. The spoofed 

address, however, must not belong to a valid host. Otherwise, the victim will send back the 

acknowledgment to the valid address, receive a segment with the RST instead of the ACK 

flag set and will release the reserved buffer space, which will prevent a buffer overflow. 

2.4.2 Smurf Attacks 

An attacker can use reflector hosts in a smurf attack, in which the victim sends a large 

number of ICMP Echo requests to reflector hosts with the source address spoofed to that of 

the victim. This results in the reflectors flooding the victim's network with a large number 

of Echo replies. This malicious traffic consumes both the bandwidth of the victim's local 

network, as well as some of its CPU time because it needs to process each incoming Echo 

reply. 

The use of reflectors makes the attack more powerful. Firewalls are more likely to filter 
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Figure 2.6: A reflector-based smurf attack. 

Echo requests than Echo replies [21]. Reflectors can often act as packet amplifiers, sending 

larger-sized replies than the requests they receive from the attacker, which increases the 

load on the victim's network bandwidth. Reflectors also make filtering and traceback of 

the attack harder. It takes considerably more time for a host on the victim's network to 

monitor traffic coming from a large number of reflectors. While the victim could possibly 

trace the attack back to the reflectors, all packets sent from the attacker to the reflectors 

were spoofed, so tracing the attack back to the attacker would be very difficult. 

2.4.3 TCP Connection Hijacking 

When a remote client host successfully establishes a TCP connection with a server host, it 

is considered a trusted host for that server. If an attacker can hijack that TCP connection 

and disguise himself as the trusted host in front of that server, then it would receive the 

same access privileges as the trusted host itself. 

TCP connection hijacking involves the coordination of multiple attacking techniques. 

The attacker sends IP pac,kets to the victim with source addresses spoofed to the address of 

the trusted host. Also, the attacker performs a denial-of-service attack to the trusted host, 

so it cannot respond to any packets coming from the victim server. The steps of the attack 
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can be observed in Figure 2. 7. 

trusted host server hos1 

~ established TCP connection Ll1J -~..,x-r-------------ti51 

a 
attacker 

Figure 2. 7: The steps of a TCP connection hijacking attack. 

In the beginning, the remote host has established a TCP connection with the server, 

thus becoming a trusted host of that server. The attacker carries out a denial of service 

attack on the trusted host, preventing it from replying to any packets coming from the 

server. The attacker initiates communication with the server host, spoofing its outgoing IP 

packets to the IP address of the trusted host. For a certain period of time, the server does 

not realize that it is communicating with a different entity on the network, so the attacker 

gains trusted host access privileges to that server. 

In order for the hijacking to remain unnoticed by the server host, the attacker needs 

to guess the next sequence number expected by the server host. Otherwise, the server will 

reset the TCP connection and the attack will fail. RFC 1948 provides recommendations 

on how to make TCP sequence numbers difficult to guess, but in practice they are still 

guessable [3]. 



CHAPTER2. BACKGROUND 17 

2.4.4 Bounce Port Scanning 

IP packet spoofing can also be used to perform bounce port scans, where the malicious user 

observes only indirectly the replies of the target host. The attacker sends port scanning 

packets to the target, spoofing the source addresses to different remote hosts, which the 

attacker can later communicate with in order to observe indirectly the target's replies. 

In order to determine if the target host is replying to the port scanning messages, it 

sends IP packets to the spoofed remote hosts and observes their IP identification field. If 

the targeted port is open, it will reply to the spoofed host, thus causing it to increment its 

IP Id field. If the port is closed, the victim will send back to the spoofed host a segment 

with the RST flag set, which performs no action upon its receipt [21]. Thus, the malicious 

user can send an IP packet to the soon-to-be spoofed host beforehand. It then performs 

the scanning and finally sends another IP packet to the spoofed host and observes if its IP 

Id value has been incremented beforehand. In order for this scenario to work, the spoofed 

hosts must have no other outgoing IP traffic. Otherwise, any outgoing IP packets would 

cause the the IP Id value of the spoofed hosts to increment without receiving a reply from 

the victim host. Therefore, the port scanning technique will report some closed ports as 

open. 

2.4.5 Zombie Control 

In distributed denial-of-service attacks, the malicious user often makes use of zombie hosts, 

which perform the real attack on its command [21]. Using zombies increases the intensity 

of the Distributed Denial Of Service attack because the flooding traffic is generated from 

a greater number of sources. Virtually any host on the network which the attacker can 
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compromise, can serve as a zombie. An agent on a zombie host opens a listening socket and 

waits for commands from the attacker. Generally, the attacker does not require any replies 

from the zombie, so it can safely spoof the source IP addresses of the attacking commands, 

thus hiding the real source of the attack. 

2.5 Defense from IP Spoofing Attacks 

Counteracting IP spoofing would be an integral step towards defending from the attacks 

described in the previous sections. Existing research on IP spoofing is concentrated on 

detection and backtracking as methods of counteraction. Spoofed IP traffic detection tech­

niques are divided into host-based and router-based. The former operates at the site of the 

host under a spoofing attack, while the latter attempts to detect spoofed packets on their 

way to the victim. Being able to detect spoofed packets would make spoofing attacks much 

harder to execute. 

There have been attempts to develop mechanisms for backtracking spoofed IP packets, 

which involves tracing the route of the spoofed packets back to the their real source. This 

is an important step for identifying attacking hosts, which use spoofed traffic to hide their 

real identity. 

Dunigan [8] has proposed multiple automated ways to backtrack spoofed IP traffic from 

the destination back to its real source host. As he notes, the manual logging into each 

upstream router and checking the interface, on which a packet was received, is a very slow 

process. Also, this is sometimes even impossible because it would require physical access to 

the router. Therefore, he has proposed a number of tools to automate this process. 
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For example, DosTracker [8), which is a Perl-based script written for Cisco routers, 

can log into each upstream router one after another, tracing the path back to the real 

source host. Another example are tracer daemons [8], which require a tracking agent to be 

configured on every subnet along the path of the backtracked packet. The target host of 

its intrusion detection system initiates a backtracking process, which logs into the tracking 

agent on every subnet moving towards the source of the suspicious packet and checks what 

subnet the packet came from. A third example is the DECIDUOUS technology [8), which 

uses the IP Security (IPSec) protocol set's security associations and authenticated header 

protection. It is based on the assumption that an IP packet must have gone through every 

router, which has authenticated that packet. By building security associations further and 

further away from itself, the victim host can trace the spoofed packet to the router closest 

to its real source host. 

The disadvantages of these techniques are that they are difficult to deploy universally. 

For example, while DosTracker is based on a single router device technology, tracer daemons 

require the configuration of specialized host on every IP subnet. 

2.6 Router-based detection methods 

Router-based spoofed packet detection methods are implemented on the routers, through 

which spoofed packets are expected to pass. The main advantage of such detection methods 

is that if they are implemented on a sufficiently large portion of the Internet routers, they will 

help stop spoofing attacks even before they reach the victim host. The main disadvantage is 

that widespread implementation depends on the policies of multiple router manufacturing 
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companies and Internet service providers. Driven by commercial goals, these companies 

often lack incentives to implement spoofed packet detection methods, which would provide 

no direct returns. 

2.6.1 Ingress Filtering 

RFC 2827 [10] specifies ingress filtering , which is a mechanism for filtering spoofed IP 

packets at the source's local network point-to-connection with the Internet. Each local 

network usually coincides with a single IP range assigned to the hosts of that network. If 

the router at the local network's Internet connection detects a source IP address of a packet 

outside the expected range, it should drop it. If applied, ingress filtering can prevent most 

IP spoofing or restrict spoofing to IP addresses within the local IP subnet, which would 

make discovering the real identity of the attacking host easier. However, application of 

network ingress filtering has been sporadic again because vendors and ISP 's do not have 

sufficient incentives to adopt the mechanism as a standard. 

2.6.2 Pushback 

The mechanism of push back, proposed by Mahajan et al. [14, 11] , treats distributed denial­

of-service attacks as a congestion control problem. Aggregate-based congestion control 

(ACC) groups incoming traffic in aggregates according to a common characteristic: protocol 

type, source IP subnet, etc. According to the ACC pushback mechanism, routers on the 

way to the victim can request upstream routers to limit the bandwidth allowed for packets 

from a given aggregate. If a router can identify the signature (the identifying common 

characteristics) of the traffic flooding the victim, it can pass messages to the upstream 
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routers to limit the bandwidth of that traffic. However, the attacker can use multiple 

protocols and random IP addresses in order to make the discovery of a clear attack signature 

almost impossible. 

2.6.3 Traceback 

Savage et al. [19) proposes a mechanism for IP traceback where every packet carries partial 

information for the path it has traversed. If a flooded victim receives a sufficient quantity of 

spoofed packets, it should be able to discover the true source based on the path information 

in these packets. The IP traceback mechanism has been further developed by Song and 

Perrig in order to deal with multiple attackers [16). 

Bellovin et al. [4) have proposed the ICMP traceback technique. Here, routers on the 

path traveled by a packet can probabilistically send ICMP messages to the destination host. 

The destination host logs these ICMP messages and if it receives enough spoofed traffic, it 

should be able to identify the real source of the spoofed packets. 

2.6.4 Overlay Networks 

Overlay proxy networks [22, 13, 1) have also been proposed as a way to protect a server 

from distributed denial of service attacks by hiding the exact location of the server inside a 

network. Most servers on the Internet are vulnerable to distributed denial of service attacks 

because they are publicly available. However, if an application is hidden inside a proxy 

network, with which clients have to communicate without knowing the real destination IP 

address, this would provide sufficient time to reconfigure the application and move it to 

another location, thus avoiding the attack. 
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2. 7 Host-Based Detection Methods 

Numerous host-based detection techniques have been proposed, which utilize various id­

iosyncrasies of the TCP /IP protocol stack. Host-based detection methods are divided into 

passive and active methods according to the amount of resources required to scan an in­

coming packet. 

Passive detection methods simply observe incoming packets and make decisions solely 

based on information from these packets. Due to low time and memory resource usage 

required to scan a single packet, passive detection methods can scan all or a large portion of 

all incoming packets. However, they are not as accurate. Active detection methods require 

the detection system to send an active probe to a remote host and wait for a reply, thus 

dedicating more resources in terms of waiting time and a memory buffer for the waiting 

process. In return, because they perform a more active role in marking a packet as spoofed 

or legitimate, they are more accurate. 

The accuracy of both passive and active methods is measured in terms of the number 

of false positives (legitimate packets marked as spoofed) or false negatives (spoofed pack­

ets marked as legitimate) generated during the detection process. A large number of false 

positives implies that the detection system is blocking legitimate packets and, thus, deny­

ing service to legitimate clients. False negatives indicate that the detection system is not 

filtering out all spoofed incoming packets. An effective detection system would be able to 

minimize both variables. 
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2.7.1 Passive Detection Methods 

Hop-count filtering [5] is a passive detection method, which uses the Time-To-Live (TTL) 

value of the IP header to mark possibly spoofed detect packets. The detection system 

stores actual hop counts to remote IP subnets and then compares them to the hop counts 

of incoming packets. If the two values are different, the packet is marked as possibly spoofed 

as indicated in Figure 2.8. Hop-count filtering requires the ability to securely update the 

IP /hop count table when a change in routing paths is detected. 
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Figure 2.8: Step-by-step execution of the passive hop-count filtering algorithm. 

This filtering technique is made possible by different observations about TCP /IP stack 

implementations and Internet routing paths. The hop count of a packet is measured as 

the difference between the final and the inferred initial TTL values of the IP header. This 

measurement is expected to be accurate due to the relatively few, located far apart from 

each other, initial TTL values used by various TCP /IP implementations [9]. This and the 

observation that most ho~ts on the Internet are less than 30 router hops apart from each 

other [6, 7] make it possible to predict initial TTL values. For example, it can be assumed 

that the initial TTL values used by most modern operating systems are 30, 32, 60, 64, 128 
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and 255. If the system receives a packet with a TTL value of 115, then it can safely infer 

an initial TTL value of 128 and a hop count of 128 - 115 = 13. 

2.7.2 Active Detection Methods 

Direct TTL probes are packets sent from the detection system to the remote host, which 

require a reply [21]. Such packets can be TCP SYN segments (the first packet sent during 

the initial three-way handshake) or ICMP echo requests, for example. The probe replies 

received by the detection system can be used to infer the number of router hops it takes to 

reach a remote host. This value can then be checked against the hop count value inferred 

by the passive hop-counting filtering algorithm, as well as against the value stored from an 

earlier probe or incoming packet. 

Direct TTL probes use the same reasoning as the passive hop-count filtering detection 

method, so they are expected to fail with the same fallacies as their passive counterpart. 

Nevertheless, direct TTL probes provide a more current hop count value, which can be 

stored for future references. The goal is to check if and when direct TTL probes can 

provide better detection accuracy compared to the passive hop-count filtering algorithm. 

If the direct probe and the original packet are of the same protocol, then we do not need 

to infer the hop count. Instead, we can just compare the final TTL values because packets 

of the same protocol usually have the same initial TTL value. 

Another way to check packets, marked as spoofed or legitimate by the passive detection 

algorithms, is to use the IP header identification field, originally used to identify fragments 

of the same IP packet [20]. When used in combination with the source and destination IP 

addresses and a given protocol, it uniquely identifies a packet (or any fragment of it) on the 
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Internet at a single point of time. 

The importance of the IP Id value requires the operating system to have an algorithm for 

managing the pool of 216 possible Id values, so no two packets on the Internet with the same 

source and protocol can have the same Id value. Most systems accomplish this by using 

fixed incremental values for each outgoing packet. While older Microsoft-based systems 

(Windows 9x and NT 4.0) use an incremental value of more than 256, recent versions of 

Windows (ME and later), as well as most other operating systems, increment the Id field 

by 1 [2]. 

With this observation, it can be assumed that two packets leaving the same host in 

close time proximity have similar identification values. If the detection system sends an IP 

Id probe immediately after the original packet has been received, the IP Id value of the 

probe reply should be larger, but close to the Id value of the packet being checked. On the 

contrary, if the probe Id value is smaller or significantly larger than the one being checked, 

this could indicate a spoofed packet. 

This method, however, would fail for packets coming from systems using a high incre­

mental value, as well as systems applying alternative ways for handling Id value assignment, 

such as the use of pseudo-random number generators. In this case, each successive Id value 

depends only on the seed of the random-number generator, so the previous assumptions 

related to packet Id values in close proximity would not be valid. 

Other host-based detection methods proposed by researchers include the use of OS 

fingerprinting, which involves deducing the operating system running on a remote host 

by the peculiarity of its protocol stack implementation, the TCP protocol, the traceroute 

program and various OS idiosyncrasies. OS fingerprinting can be used together with direct 
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TTL probes to identify the operating system used on a remote host. The TCP protocol 

flow control and packet retransmission algorithms can be used to ensure that certain traffic 

is indeed coming from the supposed source IP address. Traceroute can provide the actual 

number of router hops for paths, along which ICMP Echo requests and replies are not 

blocked by firewalls [21]. 



Chapter 3 

Experiments 

Even though multiple detection methods have been proposed in the literature, little data is 

available related to their performance under different circumstances. Jin et al. [5] evaluates 

the performance of hop-count filtering, concluding that it can be used to detect 90% of the 

spoofed traffic from a source. Templeton and Levitt [21] confirm the high-predictability of 

TTL initial values for ICMP, IGMP, TCP and UDP messages, thus making possible the 

inference of hop counts needed to reach a remote host, an important part of the successful 

hop-count filtering process. No research data, however, is available on the individual perfor­

mance of the other proposed detection methods. Since these methods use different inherent 

reasoning to make decisions about the validity of packets, we expect them to complement 

each other's strengths and have better combined detection accuracy in a greater variety of 

situations. However, no data is available on the combined performance of host-based detec­

tion methods, either. The goal of this research is to examine the strengths and weaknesses 

of three detection methods - passive hop-count filtering, active TTL and IP Id probes. 

The performance of the three spoofed IP packet detection algorithms was evaluated by 

27 
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implementing the algorithms in a detection system using the NetSim virtual simulation 

package [15]. We designed appropriate virtual network topologies and tested the ability of 

the detection methods to minimize false positives and false negatives. The NetSim virtual 

network simulation package is described in detail in the Appendix. 

3.1 The Detection System 

The main detection algorithm in the system is the passive hop-count filtering [5], which 

filters all incoming packets at the IP protocol level of the NetSim host module. The algo­

rithm infers the number of hops taken, based on the TTL value of the incoming packet , 

and compares that value to the hop count stored for the same remote IP subnet from a 

previous point of time. If the two hop counts match, the packet is marked as legitimate; if 

they differ, it is marked as spoofed. 

In order to remember hop count values for legitimate packets, the hop-count filtering 

algorithm uses an IP-to-hopcount table, which stores observed hop counts for remote IP 

subnets. For example, if the detection system receives a legitimate packet from a given 

subnet, it will record the network portion of the IP address of that subnet , the hop count 

observed and the time when the table entry is created. 

Passive hop-count filtering has been expanded further by Jin et al. [5] who propose 

IP address aggregation to solve the problem of co-located IP subnets. Co-location occurs 

when the addresses from a single block of the IP address range are assigned to hosts from 

different physical networks, which possibly lie at different hop counts from the detection 

system. Even though the hop-count algorithm is a good first line of defense for the detection 
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system, we found that in certain conditions it underperforms in terms of both false negative 

and false positive results. 

3.2 False Negative Experiments 

False negatives are a result of the detection system using the final TTL value in order to 

infer the initial TTL. The algorithm assumes that the most common initial TTL values are 

30, 32, 60, 64 and 128. Using the final TTL field, the algorithm infers the real initial TTL 

value to be the next largest common initial TTL value above the final value. For example, 

if the detection system observes a final TTL value of 110, it infers the real initial TTL to 

have been 128 - the next largest common one above 110. This reasoning is made plausible 

by the observation that most hosts on the Internet are 30 or less hops away. Thus, a packet 

with a final TTL value of 110 would not have an initial TTL of 255, which would imply 

a hop count of 145. As long as the observed final TTL value is located between common 

initial TTL values, which are far apart from each other, the detection system will in most 

cases infer the initial TTL field correctly. 

This inference, however, will not work when the final TTL value is located just below 

two tightly-packed common initial values - 30 and 32, or 60 and 64. Let's suppose that 

the detection system receives an incoming packet with TTL field of 20. Both 30 and 32 

would be possible initial TTL values. In such a case with more than one possible initial 

TTL value, the detection system considers both values. 
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3.2.1 Passive Hop-Count Filtering and False Negatives 

Figure 3.1 illustrates a network topology with a chain of 10 routers. On one end of that 

chain is subnet 1 where the detection system host is located. Subnets 2 and 3, at the other 

end of the chain, are respectively 6 and 10 hops away from subnet 1. Subnet 3 contains 

multiple hosts using 64 as the initial TTL value. This is always possible because 64 is a 

common initial TTL value and we can pick subnet 3 to be any subnet 10 hops away from 

the detection system. 

01;·rucnON SYSTEM 

Figure 3.1: A sample network topology. 

During normal IP traffic, packets sent from subnet 2 and subnet 3 with initial values of 

64 will arrive at subnet 1 with final TTL values of 58 and 54, respectively. In both cases, 

the possible inferred initial TTL values would be 60 and 64, resulting in possible hop counts 

of 2 (60- 58) and 6 (64 - 58) for the packet from subnet 2, and 6 (60- 54) and 10 (64- 54) 

for the packet from subnet 3. Hence, the detection system will store in its IP-to-hopcount 

table hop count values of (2, 6) for subnet 2 and (6, 10) for subnet 3. 

Based on this topology, an attacker can design the following situation. Multiple hosts 

can be compromised on subnet 2 with attacking agents being used that attempt to flood the 
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detection system host with spoofed packets of initial TTL value of 64 and spoofed source 

IP addresses from subnet 3. All packets have an initial TTL value of 64, decremented down 

to 58 at the point of the detection host. Even though the attacker physically is on subnet 

2, the detection system would think that the packets came from subnet 3. The physical 

number of hops required to go from subnet 2 to subnet 1 is 6, the same as one of the hop 

count values the system has stored for subnet 3 in its IP-to-hopcount table. Thus, the 

spoofed packet would be marked as legitimate, resulting in a false negative. 

In our first experiment, when only the passive hop-count filtering was used, the detection 

system scanned a total of 518 packets, as shown in Table 3.1 , from which 131 were spoofed. 

Out of those, 21 or 16% were false negatives because the detection system observed hop 

count values it expected, so it considered the packets legitimate. 

I Scanned I Spoofed I False Pos. I Legitimate I False Neg. I 
Passive only 518 131 0 387 21 
with IP Id 540 127 0 413 0 
with direct TTL 508 126 0 382 20 

Table 3.1: Minimizing the amount of false negatives. 

3.2.2 Using Active Probes to Detect False Negatives 

During the next experiment, we used the TTL and IP Id active probes to minimize the 

number of false negatives. These tests returned variable results. The IP Id probes performed 

superbly in this testing environment. Out of 540 total packets scanned, it detected all 127 
' . 

spoofed packets as spoofed and all 413 legitimate packets as legitimate, resulting in values 

of zero for both the false positives and the false negatives. 

l 
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Using direct TTL probes, on the contrary, the number of false negatives resulting from 

the detection process was almost unchanged, as illustrated in the first two rows of Table 

3.1. From 508 scanned packets (126 of them spoofed), the algorithm resulted in 20 false 

negatives. These results are almost identical to the ones from the test where passive hop­

count filtering is used alone. 

3.2.3 False Negatives with Multiple Attackers 

While the experiments represented situations, in which there is a single attacking host, real-

world spoofed IP traffic attacks often involve multiple attackers. In order to investigate the 

effect of the number of attackers on the effectiveness of the detection system, we performed 

another set of experiments on the network topology illustrated previously in Figure 3.1. 

The results from the use of a single attacking host during the spoofed attack are il­

lustrated in Table 3.2. Out of 120 actual spoofed packets, we observed 51 or 42% false 

negatives. Using active Id probes in combination with the passive hop-count filtering algo-

rithm, the system was able to detect all false negatives. 

Scanned I Spoofed I Marked Spoofed I Marked Legit. I False Neg. I 
Passive only 520 120 69 451 51 
with IP Id 516 131 131 385 0 

Table 3.2: A single attacking host. 

During the second experiment we modified the network topology from Figure 3.1 by 

adding another attacking host to subnet 2 as illustrated in Figure 3.2. The differences in 

the results are negligible. As Table 3.3 shows, 183 spoofed packets resulted in 79 false 

negatives (or 43%), which was decreased again to 0% after the introduction of active IP Id 
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probes. 
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Figure 3.2: Modified network topology with two attacking hosts on the same subnet. 

I Scanned I Spoofed I Marked Spoofed I Marked Legit. I False Neg. I 
I Passive only I 510 I 183 I 104 I 406 79 
I with IP Id I 517 I 201 I 201 J 316 0 

Table 3.3: Multiple attacking hosts on the same subnet. 

During our last false negative experiment, we located the attackers on different subnets. 

For this purpose, we extended the network topology as shown in Figure 3.3 to include subnet 

4, located at 4 additional hops beyond subnet 3 from the detection system. The attackers 

are now located on subnet 2 and subnet 3. 

The results from these experiments are shown in Table 3.4. When using the passive 

hop-count filtering algorithm alone, 167 spoofed packets result in 73 false negatives for a 

false negative rate of 44%. When combining this with active IP probes, all false negatives 

were detected successfully. 
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Figure 3.3: Extended network topology with two attackers on the different subnets. 

Scanned Spoofed Marked Spoofed Marked Legit. I False Neg. I 
Passive only 511 167 94 417 73 
with IP ID 544 190 190 354 0 

Table 3.4: Multiple attacking hosts on different subnets. 

3.3 False Positive Experiments 

The passive hop-count filtering detection algorithm is susceptible to failure due to temporary 

route changes or Internet router failures because it records an inferred hop count at a single 

point of time and later uses the same value as the basis for comparison. When a route 

change occurs, any packets traveling along that route will result in false positives until the 

corresponding hop count value in the table is updated. If the duration of a route change 

lasts for a long period of time before the system converges to a state of stability, a large 

number of false positives will be flagged by the detection system. 

I 
I 
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3.3.1 Hop-Count Filtering and False Positives 

Figure 3.4 shows a modified version of the network topology from Figure 3.1. First, the 

attacker was removed, so all packets received by the detection system are legitimate. To 

simulate a temporary route change, two alternative routes, each of them increasing the 

routing path length by one hop, were added in the sections between subnet 1 and subnet 2, 

as well as between subnet 2 and subnet 3. When packets enter a route section, which has 

an alternative route, they get forwarded along the main route 80% percent of the time and 

along the alternative route the remaining 20% of the time. 

DNJ"eCTION SYSTfM 

Figure 3.4: Modified network topology. 

The results from these tests are summarized in Table 3.5. When using the passive hop­

count filtering test only, 108 out of 529 packets scanned were considered spoofed because a 

change of hop counts was detected along the route. Note that the passive algorithms cannot 

be used to update hop count values stored by the detection system because it has no way 

to verify whether a hop count value is different due to a route change or due to the packet 

being spoofed. 
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I Scanned I Spoofed I False Pos. I Legit. I False Neg. I 
Passive only 529 108 108 421 0 
with IP Id 511 0 0 511 0 
with direct TTL 505 76 76 429 0 
TTL ( all packets) 515 147 147 368 0 

Table 3.5: Minimizing the amount of false positives. 

3.3.2 Using Active Probes to Detect False Positives 

Both active detection methods were used to attempt to minimize the number of false posi-

tives. Active IP Id probes performed superbly detecting all route changes and reducing the 

number of false positives to zero. 

Using direct TTL probes also partially decreased the number of false negatives, decreas-

ing it from 108 for 529 packets total scanned to 76 for 505 total packets. These results 

appear to be due to the fact that direct TTL probes rely on counting the hops taken by the 

probes, but probe replies can take alternative routes with the same probability as normal 

packets. We performed an additional test with direct TTL probes, running them not only 

when a packet has been marked as spoofed by the passive algorithm, but also when it has 

been marked as legitimate. In this case, we found the number of false positives to actually 

increase - up to 147 out of 515 packets scanned total, as shown in the fourth row of Table 

3.5. TTI: probes have an advantage, however, that they can be used to update hop count 

values in the IP-to-hopcount table in the detection system. 
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Canel us ions 

Based on our experimental results, we consider the passive hop-count filtering detection algo­

rithm to be insufficient when used alone to provide the performance required by performance­

sensitive systems in certain situations. The simulations used in the experiments represent 

common and real-world examples. If an attacker knows the configuration of the detection 

system, he can design a scenario where the weaknesses of hop-count filtering can be ex­

ploited and thus the detection system will be forced into poor performance. In addition, 

even though researchers have shown that routing path lengths stay relatively stable (5), 

changes in route lengths decrease the effectiveness of the detection system, causing it to 

block legitimate traffic. 

IP Id probes performed quite well in both tests, but in our simulation it is assumed that 

routers work efficiently and provide no or little delay to packets passing through them. In 

real circumstances, however, real router delays along the path of a probe request can cause 

the probed IP identification value to be obsolete, especially for hosts with higher outgoing 

activity, where the identification field would be incremented by the operating system very 

37 
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quickly. Therefore, IP Id probes would not be as dependable, in this simulation, when 

applied on the real Internet. 

Direct TTL probes share to a large extent the same weaknesses as the passive hop-count 

filtering algorithm because they base their decisions on the same hop-counting criteria. How­

ever, such probes have a small advantage over passive hop-count filtering because the value 

they provide is current. Therefore, if we use a topology with less frequent route changes, 

we expect direct TTL probes to perform better in terms of number of false positives .. 

Increasing the number of attackers did not have any apparent effect on the effectiveness 

of the detection algorithms. Thus, we can assume that these algorithms can also be used 

in cases when more than one attacking host is present on the network. 

Our current and future work involves implementing the TCP and the ICMP protocols 

into the NetSim package. This will provide the detection system with more detection 

methods, upon which to make decisions - the three-way TCP handshake, the TCP sliding 

window and packet retransmission mechanisms, as well as ICMP Time Exceeded messages. 

All of these features have been proposed by Templeton and Levitt (21] to be used as detection 

methods, but there is no research available about their implementation and performance as 

such. The methods using features of the TCP protocol might prove to be very accurate in 

a variety of circumstances, but also more expensive in terms of the resources to establish 

a TCP connection to probe a remote host. ICMP Time Exceeded messages also have the 

potential for high effectiveness, but this potential might be diminished by the similar high 

cost in terms of resources, as well as by the fact that ICMP messages are blocked by some 

firewalls on the Internet. 



Appendix A 

The NetSim Virtual Network 

Simulation Package 

All detection methods evaluated were implemented inside a modified version of the NetSim 

virtual network simulation package [15]. The package implements a number of virtual 

network devices - host , switch and relay - and allows them to communicate over a virtual 

local area network through the IP, ARP and Ethernet protocols. The spoofed IP packet 

detection system was implemented as an extension of the virtual host module. 

A.1 Overview of NetSim 

The Network Simulation API (NetSim) is a software package, which provides an object­

oriented virtual simulation of a simple local area network (LAN). It provides the means 

to create and interconnect simple virtual host computers and network switches. It also 

allows for the implementation of the various Internet Protocols such as Ethernet, ARP 
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and IP. All components of the package are represented as C++ classes, as illustrated below, 

which allows for easily adding new protocols and virtual hardware or modifying the existing 

components. 

Figure A. l shows the structure of the virtual simulation package. All components and 

protocols are divided according to the TCP /IP stack layer they belong to - data link, net-

work, transport, etc. The physical layer, which provides communication between protocol 

stacks, is implemented through socket connections between the real hosts, on which the 

simulation is used. Thus, virtual Data Link layer Ethernet adaptors communicate through 

the socket interface of the real network hosts. The advantage of this simulation method is 

that it allows us to start multiple virtual network components on the same real network 

host, as long as each virtual component uses a different real port number. Thus, the size of 

the virtual network topology is not restricted by the size of the real local network used to 

run simulations on. 
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Figure A.1: Virtual simulation package on top of the real network hosts 
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A.2 NetSim Implementation Details 

A.2.1 Module Implementation Overview 

The host module implements a virtual host including the protocol stack. Currently, 

the implementation includes the Data Link, Network and Transport levels of the Internet 

Protocol suite. The handling of each incoming and outgoing message is handled by spawning 

off a child process from the main host application. The child process passes the message to 

the first protocol stack layer. 

At the Data Link layer, the host uses virtual Ethernet adaptors implementing the Eth­

ernet frame format and a subset of the protocol communication mechanism. The virtual 

Ethernet adaptors establish client connections through the socket interfaces of the real hosts 

used to run the simulation on. 

The switch module waits for incoming connections from virtual hosts on a specified 

listening port. The module operates on the Data Link layer; it forwards incoming Ethernet 

frames based on their destination MAC addresses and its own frame forwarding table. 

A.2.2 Protocol Implementation Overview 

The lowest-level protocol implemented in NetSim is Ethernet. The Ethernet module in­

cludes the Ethernet frame format, as well as mechanisms for sending and receiving frames. 

The latter two are implemented through virtual Ethernet adaptors. Each virtual adaptor 

data structure contains a physical socket connection, through which the adaptor sends and 

receives messages. 

The ARP protocol acts on the Network level and serves to convert IP addresses used 
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by the high-layer protocols to MAC addresses used by adaptors at the Data Link layer. 

Each device's ARP service maintains a table, where it stores IP-MAC address associations. 

Routers are configured to drop ARP packets. If a host is unable to discover on the local 

network the MAC address for a destination host, it sends the message to the default gateway 

- the default router, which handles traffic leaving the local network. 

The second protocol implemented on the Network layer is the IP protocol. Inside the 

host module, the IP protocol possibly fragments outgoing data, invokes ARP to discover 

the MAC address of the destination host and sends the resulting IP packet(s) down the 

protocol stack. For incoming data, IP assembles back all fragments and passes the message 

up the protocol stack. 

All protocols add their own header to each outgoing message and strip that header 

off each incoming message before passing them up or down the protocol stack. Also, all 

protocols perform checksum computation and verification wherever a checksum is included 

in the protocol specification. 

A.2.3 Modification to NetSim 

The original version of the NetSim package was designed as a virtual simulation for local 

area networks. However, since all attacks involving IP spoofing go beyond the borders of 

a LAN into the global Internet, NetSim had to be extended to support global network 

communications. For this purpose, we implemented a router module and modified the 

existing host module in order to support different IP address classes and unique addressing 

throughout the whole simulation environment. 

The router module behaves as a client, with one virtual Ethernet adaptor for each 
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of its interfaces. The virtual router operates on the data link and network layers, making 

router decisions and forwarding IP packets through its interfaces. Each incoming packet is 

handled by a separate process forked from the main router application. 

A.2.4 Advantages of NetSim 

As mentioned above, one of the advantages of using this virtual network simulation package 

is the ability to run a greater number of network hosts and devices than the number of real 

computers used to run the simulation on. Another advantage is the modularity achieved 

by applying the principles of object-oriented programming and encapsulation. 

On one hand, every virtual network device is implemented in its own object-oriented 

module, which can be compiled and run by itself. This allows for the quick reassembling 

of virtual device modules when an experiment requires a different network topology to be 

used. The object-oriented nature of the simulation also makes the interaction between each 

device module very clear and understandable. 

Moreover, encapsulation allows for the easy reworking of each individual module without 

affecting its interaction with the other modules, as long as it continues providing the same 

interface to them. Encapsulation also makes the simulation more realistic because real­

world network devices can use any implementation technique and this would not change 

their interaction with other devices, as long the requirements for protocol interfaces are 

satisfied. 
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