
Evaluating Host-based Methods for Detecting Spoofed IP Packets

An Honors Thesis

Presented to

The Faculty of the Department of Computer Science

Washington and Lee University

In Partial Fulfillment Of the Requirements for

Honors in Computer Science

by

Peter Liudmilov Djalaliev

2005

To my mother Donka, brother Milin and sister Gaby

Contents

1 Introduction

2 Background

2.1 Network Basics

2.2 The TCP /IP Protocol Stack.

2.2.1

2.2.2

2.2.3

Internet Protocol . . .

Transmission Control Protocol

Internet Control Message Protocol

2.3 Internet Address Spoofing

2.4 Network Attacks Involving IP Spoofing .

2.4.1

2.4.2

2.4.3

2.4.4

SYN-Flooding

Smurf Attacks

TCP Connection Hijacking

Bounce Port Scanning

2.4.5 Zombie Control

2.5 Defense from IP Spoofing Attacks

2

4

4

5

7

9

11

12

13

13

14

15

17

17

18

2.6 Router-based detection methods

2.6.1

2.6.2

2.6.3

Ingress Filtering

Pushback

Traceback

2.6.4 Overlay Networks

2. 7 Host-Based Detection Methods

2.7.1

2.7.2

Passive Detection Methods

Active Detection Methods .

3 Experiments

3.1 The Detection System

3.2

3.3

False Negative Experiments

3.2.1

3.2.2

3.2.3

Passive Hop-Count Filtering and False Negatives

Using Active Probes to Detect False Negatives

False Negatives with Multiple Attackers

False Positive Experiments

3.3.1

3.3.2

Hop-Count Filtering and False Positives

Using Active Probes to Detect False Positives

4 Conclusions

A The NetSim Virtual Network Simulation Package

A.l Overview of NetSim

A.2 NetSim Implementation Details

ii

19

20

20

21

21

22

23

24

27

28

29

30

31

32

34

35

36

37

39

39

41

A.2.1 Module Implementation Overview

A.2.2 Protocol Implementation Overview

...................

...................

A.2.3 Modification to NetSim

A.2.4 Advantages of NetSim .

........

.........................

Bibliography

iii

41

41

42

43

44

ACKNOWLEDGMENTS

First, I would like to thank Professor Rance Necaise for all his guidance and advice through­
out this project. I would also like to thank Proferssor Whaley, Professor Levy and Professor
Lambert from the Computer Science department for all their help during my four years at
Washington and Lee. Last but not least, I owe my deepest gratitude to my family and
friends for their constant support wherever my endeavors decide to take me.

iv

ABSTRACT

Billions of messages are transmitted across the Internet each day and most of these use the
Internet Protocol (IP) to route packets to specific destinations based upon an IP address.
While these packets contain both source and destination addresses, the protocol provides
no means to verify the authenticity of the source. Therefore, packets can be sent with
intentionally altered source addresses, known as spoofing, which in most cases is done
for malicious purposes. IP spoofing is an integral part of various distributed denial-of­
service attacks. Today, a number of methods of detecting spoofed IP packets have been
studied in order to limit possible damage. These detection methods are classified as router­
based and host-based, depending upon the site of implementation. Host-based detection
methods are of particular interest because they can be implemented locally irregardless
of the Internet service providers. The current research on host-based methods provides a
number of possible solutions. However, there is insufficient data related to their efficacy. We
evaluate the performance of the well known host-based spoofing detection methods under
various circumstances and explore the ability of these methods to complement one another
in order to improve their efficiency.

V

Evaluating Host-based Methods for Detecting Spoofed IP Packets

Chapter 1

Introduction

Billions of messages are transmitted across the Internet every day. While most of them are

legitimate, some are transmitted with bad intentions. The most common mechanism for

transmitting data over the Internet is with the use of the Internet Protocol (IP).

A valid IP message requires the correct address of both the originating and destination

hosts. There is no mechanism for verifying these addresses. If a message contains an invalid

destination address , it is simply not delivered. An invalid or fake source address, however,

allows for the transmission of fake and possible destructive messages.

IP spoofing is the name given to the transmission of data over the Internet with fake

source addresses. This technique is used in a number of elaborate network attacks. IP

spoofing is used either to hide the real identity of the attacker and the source of the attack,

or to cause an Internet host to act as a reflector - replying with multiple messages to

pre-selected victims.

The countermeasures proposed by research to defend from spoofing attacks are detection

and backtracking. Detecting spoofed packets can help blocking attacks before they reach

2

CHAPTER 1. INTRODUCTION 3

the victim host. Backtracking the detected spoofed packets will allow discovering the real

source of the attack. Spoofed IP packet detection methods can be implemented either on

the routers between the attacker and the victim (router-based) or on the local network of

the victim host (host-based). Host-based methods have the advantage of being immediately

deployable in the case of an attack. Even though such methods have been proposed and

studied by previous research, little data is available about their performance.

For this research, we implemented and evaluated the performance of three host-based

spoofed IP detection methods using a virtual network simulation package. Combining

multiple detection methods, our goal was to minimize the number of false positives and

false negatives returned by the detection process. The results suggest that we need to

implement more methods in order to build a dependable and robust detection system.

Chapter 2

Background

2.1 Network Basics

A computer network is a system for communications among two or more computers [23].

Today, computer networks are built from general-purpose programmable hardware devices

and can be used to transmit various types of data [17]. A network generally consists of

various hardware components.

A computer involved in communications with one or more other computers on the

network is called a host. The intermediate nodes, which assist in communications are called

network devices (i.e. network switches and routers).

The communication between computers on a network is performed with the transmission

of messages between those computers. In order to transmit messages, the two computers

must agree on a specific data format and rules of communication. This data format and

rule specification is known as a protocol. Protocols are usually implemented inside protocol

stacks, which have a layered structure. The protocols in each layer are specialized in han-

4

CHAPTER2. BACKGROUND 5

dling a specific portion of the data transfer process between two hosts. A protocol usually

provides services only inside a single layer, thus allowing protocols to specialize, as well as

helping make clearer distinctions between the scopes of functionality to be provided by the

different protocols.

A protocol at one layer typically uses a protocol in the layer below to transmit messages.

On the receipt of a message, a protocol hands the message or a subset of it off to a protocol

from the layer above. Each protocol specifies two different interfaces. It provides a service

interface to the protocols and applications services from the layers above. Also, it specifies a

peer interface, which is used by the identical protocol on the other side of the communication

link to send or receive data to its peer [17). Using interfaces achieves both encapsulation

and specialization of services. Each protocol encapsulates its specific internal functionality

hidden from the outside layer, as long as it provides the required service and peer interfaces.

2.2 The TCP /IP Protocol Stack

The set of protocols that has been accepted as the de facto standard for communication

over the Internet is the TCP /IP protocol stack, named after its two most important mem­

bers. The protocol stack consists of multiple protocols, each of them providing a specific

service, which include routing and packet fragmentation, reliable connections and message

acknowledgment, remote file transfer, e-mail messaging and transfer of hypertext used in

websites.

The TCP /IP protocol stack consists of five layers, each of which contains multiple

protocols or specifications [23). Messages are transmitted down the protocol stack from

CHAPTER 2. BACKGROUND 6

the application of the source host to the transport layer and then down to the physical

connection, as illustrated by Figure 2.1. Messages are received by the destination host at

the physical connection. The messages then travel up the protocol stack to the application

layer.

SENDING HOST RECEIVING HOST

Application Application

Transport

I I
Transport

Network Network

Data Link Data Link

Physical Physical

I I
NETWORK MEDIUM

Figure 2.1: The movement of a message on the TCP /IP protocol stack.

The physical layer handles the physical transmission of data. This layer is responsible

for the specifications of different transfer media (coaxial, twisted-pair and fiber optic cables;

radio and infrared waves), types of connectors (RJ-45 connectors used in Ethernet cables) ,

signal strength and modulation.

The data link layer deals with the transmission of data in a local area network confined to

a limited area, such as a college campus. It specifies how data is formatted when transferred

over the physical media. This layer contains multiple protocols which specify the frame

format (a single unit of data transferred over the physical media) , as well as the mechanism

used by multiple devices to access shared transfer media. Examples of such protocols are

Ethernet, SLIP (used by modems for dial-up Internet connections), the IBM Token Ring

and ATM (Asynchronous Transfer Mechanism). Ethernet is one of the most popular data

link layer protocols used today.

CHAPTER 2. BACKGROUND 7

The third layer is the network layer, which handles routing of packets, the single units of

data at this layer, in a wide area network. This protocol layer supports packet fragmentation

(IP) when required by the underlying physical network, as well as intra- and inter-domain

routing (BGP, OSPF, RIP).

Next comes the transport layer, in which the transmission control protocol (TCP), a

connection-oriented protocol, ensures the reliable transmission and receipt of messages,

called segments. This layer also includes the user datagram protocol (UDP), which is

a connectionless protocol providing no guarantee for reliability and used in cases where

reliability is not critical.

At the top of the protocol stack is the application layer, which provides support for

network applications. This layer contains protocols, used by applications to provide services

such as e-mail messaging (SMTP, POP, IMAP), remote file transfer (FTP) and hypertext

transfer (HTTP).

When transferring a message, a host needs to be able to uniquely identify the source and

the destination of the transfer. Because such identification is required at multiple stages

during the process of sending or receiving a message, each of the Data Link, Network and

Transport layers of the TCP /IP protocol stack applies a certain addressing scheme.

2.2.1 Internet Protocol

The Internet Protocol (IP) is defined at the network layer of the Internet protocol stack.

It handles IP addressing 'and routing, as well as packet fragmentation where needed. As

Figure 2.2 shows, the packet consists of a 20-byte header and packet data. The header

contains two 32-bit IP addresses, which uniquely identify the target and the destination of

CHAPTER2. BACKGROUND 8

the packet [20].

0 41 81 121 16 201 241 281 32

version I length I type of service total length

identification (Id) flags I fragment offset

time to live (TTL) I protocol checksum

source address

destination address

options I padding

PACKET DATA

Figure 2.2: The structure of an IP packet.

IP addresses are identified using four 8-bit integers, ranging from O to 255 (28 - 1).

Every IP address is divided into two parts - network and host. The network portion of the

IP address identifies the local IP subnet and is shared by all hosts on that subnet. The

host portion identifies a host on that IP subnet and must be unique for all hosts. The

exact number of bytes allocated for the network and host portions depend on the size of

the networks and the number of hosts in it. For example, an IP address with an 8-bit

network portion and a 24-bit host portion provides 255 (28 - 1) possible network identifiers

and 16777215 (224 - 1) possible host identifiers in each network. On the contrary, an IP

address with a 24-bit network and 8-bit host portions allows for 16777215 distinct network

identifiers and only 255 possible host identifiers within a network.

Each network adapter must have a unique IP address no matter where it is located

in the world. The uniquE;ness of IP addresses is guaranteed by organizations, such as the

Internet Assigned Numbers Authority (IANA) , which assign ranges of IP addresses to any

institution that requests them. Once an institution has been assigned an IP range, it can

CHAPTER 2. BACKGROUND 9

assign portions of that range to other companies and institutions. The final consumer of an

IP address range must ensure that every computer on their local network receives a unique

IP address.

2.2.2 Transmission Control Protocol

The Transmission Control Protocol (TCP) guarantees the reliable transmission and receipt

of segments of data . A TCP segment contains a 20-byte header and a segment body.

The size of the body is limited in most cases to the maximum frame size of the underlying

network.

The TCP header, as shown in Figure 2.3, contains two 16-bit port numbers, which

identify the source and destination of the TCP segment. These port numbers, together with

the source and destination IP addresses, can uniquely identify a TCP connection between

two hosts on the network. Port numbers are numeric labels for the operating system ports

- abstract points of entry for remote network services into the system.

0 41 81 121 161 201 241 281 32

source port destination port

sequenc,e number

acknowledgement number

offset I reserved I flags window advertisement

checksum urgent pointer

options and padding

SEGMENT DATA

Figure 2.3: The structure of a TCP segment.

The 32-bit sequence and acknowledgment numbers are a part of the protocol automatic

acknowledgment mechanism. Every segment sent along a TCP connection from host A to

CHAPTER2. BACKGROUND 10

host B has a unique for that connection at that time sequence number, which identifies

the segment among the others transferred along the same connection. After B receives

a segment from A, it sends a reply with its acknowledgment number set to the sequence

number of the original segment. In this way, host A can confirm that every segment it sends

to host B has been received.

The TCP header also has 6 flags , which are used to exchange control information during

communication. The four most important ones are Synchronize (SYN - used to establish

and synchronize a connection), Finalize (FIN - when terminating a connection), Acknowl­

edge (ACK - any time when the segment is acknowledging the receipt of another segment)

and Reset (RST - when one side wishes to abort the connection).

The first step in any TCP connection is the initial three-way handshake. It serves to

confirm the real identity of both hosts and to establish the initial sequence numbers that

they are going to use during communication. As shown in Figure 2.4, Host A first sends a

segment to host B with a sequence number and the SYN flag turned on. With this, host A

indicates that it wants to establish a connection and specifies the initial sequence number

it will use. Then, Host B replies to host A with both SYN and ACK flags set , as well as

both a sequence and an acknowledgment number. By setting the SYN flag , host B confirms

the establishment of the connection. It also provides its own initial sequence number. Also,

by setting the ACK flag and providing an acknowledgment number, host B acknowledges

host A's initial sequence number. Finally, Host A completes the three-way handshake with

a segment, which has its ACK flag turned on, as well as an acknowledgment number, with

which it acknowledges host B 's initial sequence number [17].

If the handshake is successful, the connection is established and the two hosts can

CHAPTER2. BACKGROUND 11

Iii
host A host B

Figure 2.4: The three-way initial TCP handshake.

start exchanging data. If at any point an unexpected event occurs, a host will abort the

connection by replying with a segment that has its RST flag set. This can occur if the

host receives data over TCP from a host with which it has not established connection, or

it receives an acknowledgment for a sequence number it has not sent.

2.2.3 Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is a part of the Internet protocol suite,

which operates on the Network level and is mainly used by the IP protocol when an IP

packet requires a response to the sender. When such a case occurs, an ICMP message is

generated and placed inside an IP packet, which is then passed down to the data link layer.

Thus, ICMP operates as if it was a higher-level protocol, but in fact it is an integral part

of the IP protocol.

Every ICMP control message has a type, which specifies the reason, for which it was

generated. Among the more important control message types are Echo Request, Echo Reply,

Destination Unreachable and Time Exceeded.

CHAPTER2. BACKGROUND 12

Echo Request and Echo Reply are the most common ones because they are used by the

ping utility built into most operating systems. Time Exceeded messages are used to notify

a sender that an IP packet has reached the maximum number of router hops before it is

dropped. Destination Unreachable messages are generated when the destination host of an

IP packet can be reached. This can occur for multiple reasons, some of which are that

there is no physical connection to the host , the destination port is not accessible, or that a

packet, which the sender has forbidden to be fragmented , exceeds the maximum size limit

for a single message of a physical network link along the route [18).

2.3 Internet Address Spoofing

Messages transmitted across the Internet contain source and destination IP addresses used

in routing the messages between the interconnected network components. When a packet

leaves the source host , the current IP protocol has no built-in mechanism for verifying the

source IP address as the packet travels from one router to another. Most operating systems

restrict user access only to protocols at the Application layer. However, some systems, such

as UNIX, provide the ability to bypass levels of the protocol stack and directly access the

Data Link layer [12). This allows malicious users to send custom-built IP packets with

altered, or spoofed, source IP addresses to any host on the Internet without being detected.

IP spoofing is used primarily for malicious purposes and is an integral part of most

significant network attacks. The two main purposes of spoofing addresses by malicious

users is to hide their identity and to make an attack appear to come from a large number of

random hosts. This makes it harder for the firewall or intrusion detection system to filter

CHAPTER2. BACKGROUND 13

out these packets.

IP spoofing can also be used to mislead remote hosts into acting as reflectors and

forwarding large amounts of traffic to the victim host. Some servers are potential reflectors

because they will automatically reply to certain types of TCP segments, such as HTTP

requests and DNS queries. Other messages invoking automatic replies are ICMP Time

Exceeded and Host Unreachable messages [21]. If the attacker sends such messages to a

sufficiently large number of reflectors with the source IP address spoofed to the address of

the victim, they will then flood the victim with automated replies. This can result in a

denial of service attack.

2.4 Network Attacks Involving IP Spoofing

Spoofed IP traffic is used in many types of attacks over the Internet today, both in order

to hide the attacker's real identity and to mislead remote hosts into acting as reflectors.

2.4.1 SYN-Flooding

Synchronize (SYN) flooding exploits the three-way handshake feature of the TCP protocol

[21]. If an attacker sends an initial SYN segment requesting a connection, the victim host

will return a SYN/ ACK segment with an acknowledgment and its own sequence number.

The victim host will reserve buffer space in its memory for the system function waiting for

the final acknowledgment. If the final acknowledgment is not received in a specified amount

of time, the connection will time out and the buffer space will be freed.

This handshaking sequence can be exploited as illustrated in Figure 2.5. The attacker

can generate a sufficiently large number of connection requests to deplete the victim's buffer

CHAPTER2. BACKGROUND 14

space for new connections, thus forcing it to deny connection requests from legitimate

sources.

Figure 2.5: A SYN-flooding attack.

In this attack, the host, on which the malicious user is working, does not require the

acknowledgment returned from the attacked host. This allows the source addresses of the IP

packets to be safely spoofed inside the outgoing segments without detection. The spoofed

address, however, must not belong to a valid host. Otherwise, the victim will send back the

acknowledgment to the valid address, receive a segment with the RST instead of the ACK

flag set and will release the reserved buffer space, which will prevent a buffer overflow.

2.4.2 Smurf Attacks

An attacker can use reflector hosts in a smurf attack, in which the victim sends a large

number of ICMP Echo requests to reflector hosts with the source address spoofed to that of

the victim. This results in the reflectors flooding the victim's network with a large number

of Echo replies. This malicious traffic consumes both the bandwidth of the victim's local

network, as well as some of its CPU time because it needs to process each incoming Echo

reply.

The use of reflectors makes the attack more powerful. Firewalls are more likely to filter

CHAPTER2. BACKGROUND 15

Figure 2.6: A reflector-based smurf attack.

Echo requests than Echo replies [21]. Reflectors can often act as packet amplifiers, sending

larger-sized replies than the requests they receive from the attacker, which increases the

load on the victim's network bandwidth. Reflectors also make filtering and traceback of

the attack harder. It takes considerably more time for a host on the victim's network to

monitor traffic coming from a large number of reflectors. While the victim could possibly

trace the attack back to the reflectors, all packets sent from the attacker to the reflectors

were spoofed, so tracing the attack back to the attacker would be very difficult.

2.4.3 TCP Connection Hijacking

When a remote client host successfully establishes a TCP connection with a server host, it

is considered a trusted host for that server. If an attacker can hijack that TCP connection

and disguise himself as the trusted host in front of that server, then it would receive the

same access privileges as the trusted host itself.

TCP connection hijacking involves the coordination of multiple attacking techniques.

The attacker sends IP pac,kets to the victim with source addresses spoofed to the address of

the trusted host. Also, the attacker performs a denial-of-service attack to the trusted host,

so it cannot respond to any packets coming from the victim server. The steps of the attack

CHAPTER 2. BACKGROUND 16

can be observed in Figure 2. 7.

trusted host server hos1

~ established TCP connection Ll1J -~..,x-r-------------ti51

a
attacker

Figure 2. 7: The steps of a TCP connection hijacking attack.

In the beginning, the remote host has established a TCP connection with the server,

thus becoming a trusted host of that server. The attacker carries out a denial of service

attack on the trusted host, preventing it from replying to any packets coming from the

server. The attacker initiates communication with the server host, spoofing its outgoing IP

packets to the IP address of the trusted host. For a certain period of time, the server does

not realize that it is communicating with a different entity on the network, so the attacker

gains trusted host access privileges to that server.

In order for the hijacking to remain unnoticed by the server host, the attacker needs

to guess the next sequence number expected by the server host. Otherwise, the server will

reset the TCP connection and the attack will fail. RFC 1948 provides recommendations

on how to make TCP sequence numbers difficult to guess, but in practice they are still

guessable [3].

CHAPTER2. BACKGROUND 17

2.4.4 Bounce Port Scanning

IP packet spoofing can also be used to perform bounce port scans, where the malicious user

observes only indirectly the replies of the target host. The attacker sends port scanning

packets to the target, spoofing the source addresses to different remote hosts, which the

attacker can later communicate with in order to observe indirectly the target's replies.

In order to determine if the target host is replying to the port scanning messages, it

sends IP packets to the spoofed remote hosts and observes their IP identification field. If

the targeted port is open, it will reply to the spoofed host, thus causing it to increment its

IP Id field. If the port is closed, the victim will send back to the spoofed host a segment

with the RST flag set, which performs no action upon its receipt [21]. Thus, the malicious

user can send an IP packet to the soon-to-be spoofed host beforehand. It then performs

the scanning and finally sends another IP packet to the spoofed host and observes if its IP

Id value has been incremented beforehand. In order for this scenario to work, the spoofed

hosts must have no other outgoing IP traffic. Otherwise, any outgoing IP packets would

cause the the IP Id value of the spoofed hosts to increment without receiving a reply from

the victim host. Therefore, the port scanning technique will report some closed ports as

open.

2.4.5 Zombie Control

In distributed denial-of-service attacks, the malicious user often makes use of zombie hosts,

which perform the real attack on its command [21]. Using zombies increases the intensity

of the Distributed Denial Of Service attack because the flooding traffic is generated from

a greater number of sources. Virtually any host on the network which the attacker can

CHAPTER2. BACKGROUND 18

compromise, can serve as a zombie. An agent on a zombie host opens a listening socket and

waits for commands from the attacker. Generally, the attacker does not require any replies

from the zombie, so it can safely spoof the source IP addresses of the attacking commands,

thus hiding the real source of the attack.

2.5 Defense from IP Spoofing Attacks

Counteracting IP spoofing would be an integral step towards defending from the attacks

described in the previous sections. Existing research on IP spoofing is concentrated on

detection and backtracking as methods of counteraction. Spoofed IP traffic detection tech­

niques are divided into host-based and router-based. The former operates at the site of the

host under a spoofing attack, while the latter attempts to detect spoofed packets on their

way to the victim. Being able to detect spoofed packets would make spoofing attacks much

harder to execute.

There have been attempts to develop mechanisms for backtracking spoofed IP packets,

which involves tracing the route of the spoofed packets back to the their real source. This

is an important step for identifying attacking hosts, which use spoofed traffic to hide their

real identity.

Dunigan [8] has proposed multiple automated ways to backtrack spoofed IP traffic from

the destination back to its real source host. As he notes, the manual logging into each

upstream router and checking the interface, on which a packet was received, is a very slow

process. Also, this is sometimes even impossible because it would require physical access to

the router. Therefore, he has proposed a number of tools to automate this process.

CHAPTER2. BACKGROUND 19

For example, DosTracker [8), which is a Perl-based script written for Cisco routers,

can log into each upstream router one after another, tracing the path back to the real

source host. Another example are tracer daemons [8], which require a tracking agent to be

configured on every subnet along the path of the backtracked packet. The target host of

its intrusion detection system initiates a backtracking process, which logs into the tracking

agent on every subnet moving towards the source of the suspicious packet and checks what

subnet the packet came from. A third example is the DECIDUOUS technology [8), which

uses the IP Security (IPSec) protocol set's security associations and authenticated header

protection. It is based on the assumption that an IP packet must have gone through every

router, which has authenticated that packet. By building security associations further and

further away from itself, the victim host can trace the spoofed packet to the router closest

to its real source host.

The disadvantages of these techniques are that they are difficult to deploy universally.

For example, while DosTracker is based on a single router device technology, tracer daemons

require the configuration of specialized host on every IP subnet.

2.6 Router-based detection methods

Router-based spoofed packet detection methods are implemented on the routers, through

which spoofed packets are expected to pass. The main advantage of such detection methods

is that if they are implemented on a sufficiently large portion of the Internet routers, they will

help stop spoofing attacks even before they reach the victim host. The main disadvantage is

that widespread implementation depends on the policies of multiple router manufacturing

CHAPTER2. BACKGROUND 20

companies and Internet service providers. Driven by commercial goals, these companies

often lack incentives to implement spoofed packet detection methods, which would provide

no direct returns.

2.6.1 Ingress Filtering

RFC 2827 [10] specifies ingress filtering , which is a mechanism for filtering spoofed IP

packets at the source's local network point-to-connection with the Internet. Each local

network usually coincides with a single IP range assigned to the hosts of that network. If

the router at the local network's Internet connection detects a source IP address of a packet

outside the expected range, it should drop it. If applied, ingress filtering can prevent most

IP spoofing or restrict spoofing to IP addresses within the local IP subnet, which would

make discovering the real identity of the attacking host easier. However, application of

network ingress filtering has been sporadic again because vendors and ISP 's do not have

sufficient incentives to adopt the mechanism as a standard.

2.6.2 Pushback

The mechanism of push back, proposed by Mahajan et al. [14, 11] , treats distributed denial­

of-service attacks as a congestion control problem. Aggregate-based congestion control

(ACC) groups incoming traffic in aggregates according to a common characteristic: protocol

type, source IP subnet, etc. According to the ACC pushback mechanism, routers on the

way to the victim can request upstream routers to limit the bandwidth allowed for packets

from a given aggregate. If a router can identify the signature (the identifying common

characteristics) of the traffic flooding the victim, it can pass messages to the upstream

CHAPTER 2. BACKGROUND 21

routers to limit the bandwidth of that traffic. However, the attacker can use multiple

protocols and random IP addresses in order to make the discovery of a clear attack signature

almost impossible.

2.6.3 Traceback

Savage et al. [19) proposes a mechanism for IP traceback where every packet carries partial

information for the path it has traversed. If a flooded victim receives a sufficient quantity of

spoofed packets, it should be able to discover the true source based on the path information

in these packets. The IP traceback mechanism has been further developed by Song and

Perrig in order to deal with multiple attackers [16).

Bellovin et al. [4) have proposed the ICMP traceback technique. Here, routers on the

path traveled by a packet can probabilistically send ICMP messages to the destination host.

The destination host logs these ICMP messages and if it receives enough spoofed traffic, it

should be able to identify the real source of the spoofed packets.

2.6.4 Overlay Networks

Overlay proxy networks [22, 13, 1) have also been proposed as a way to protect a server

from distributed denial of service attacks by hiding the exact location of the server inside a

network. Most servers on the Internet are vulnerable to distributed denial of service attacks

because they are publicly available. However, if an application is hidden inside a proxy

network, with which clients have to communicate without knowing the real destination IP

address, this would provide sufficient time to reconfigure the application and move it to

another location, thus avoiding the attack.

CHAPTER2. BACKGROUND 22

2. 7 Host-Based Detection Methods

Numerous host-based detection techniques have been proposed, which utilize various id­

iosyncrasies of the TCP /IP protocol stack. Host-based detection methods are divided into

passive and active methods according to the amount of resources required to scan an in­

coming packet.

Passive detection methods simply observe incoming packets and make decisions solely

based on information from these packets. Due to low time and memory resource usage

required to scan a single packet, passive detection methods can scan all or a large portion of

all incoming packets. However, they are not as accurate. Active detection methods require

the detection system to send an active probe to a remote host and wait for a reply, thus

dedicating more resources in terms of waiting time and a memory buffer for the waiting

process. In return, because they perform a more active role in marking a packet as spoofed

or legitimate, they are more accurate.

The accuracy of both passive and active methods is measured in terms of the number

of false positives (legitimate packets marked as spoofed) or false negatives (spoofed pack­

ets marked as legitimate) generated during the detection process. A large number of false

positives implies that the detection system is blocking legitimate packets and, thus, deny­

ing service to legitimate clients. False negatives indicate that the detection system is not

filtering out all spoofed incoming packets. An effective detection system would be able to

minimize both variables.

CHAPTER2. BACKGROUND 23

2.7.1 Passive Detection Methods

Hop-count filtering [5] is a passive detection method, which uses the Time-To-Live (TTL)

value of the IP header to mark possibly spoofed detect packets. The detection system

stores actual hop counts to remote IP subnets and then compares them to the hop counts

of incoming packets. If the two values are different, the packet is marked as possibly spoofed

as indicated in Figure 2.8. Hop-count filtering requires the ability to securely update the

IP /hop count table when a change in routing paths is detected.

INCOMING
IPPACKP.T

100101
101010
010100

IP-TO-HOPCOUNT
TABLE

OBSERVED

STORED?

5,

PACKl!T
LEGmMATP.

~~
No ~ PACKET

POSSIBLY
SPOOFED

Figure 2.8: Step-by-step execution of the passive hop-count filtering algorithm.

This filtering technique is made possible by different observations about TCP /IP stack

implementations and Internet routing paths. The hop count of a packet is measured as

the difference between the final and the inferred initial TTL values of the IP header. This

measurement is expected to be accurate due to the relatively few, located far apart from

each other, initial TTL values used by various TCP /IP implementations [9]. This and the

observation that most ho~ts on the Internet are less than 30 router hops apart from each

other [6, 7] make it possible to predict initial TTL values. For example, it can be assumed

that the initial TTL values used by most modern operating systems are 30, 32, 60, 64, 128

CHAPTER 2. BACKGROUND 24

and 255. If the system receives a packet with a TTL value of 115, then it can safely infer

an initial TTL value of 128 and a hop count of 128 - 115 = 13.

2.7.2 Active Detection Methods

Direct TTL probes are packets sent from the detection system to the remote host, which

require a reply [21]. Such packets can be TCP SYN segments (the first packet sent during

the initial three-way handshake) or ICMP echo requests, for example. The probe replies

received by the detection system can be used to infer the number of router hops it takes to

reach a remote host. This value can then be checked against the hop count value inferred

by the passive hop-counting filtering algorithm, as well as against the value stored from an

earlier probe or incoming packet.

Direct TTL probes use the same reasoning as the passive hop-count filtering detection

method, so they are expected to fail with the same fallacies as their passive counterpart.

Nevertheless, direct TTL probes provide a more current hop count value, which can be

stored for future references. The goal is to check if and when direct TTL probes can

provide better detection accuracy compared to the passive hop-count filtering algorithm.

If the direct probe and the original packet are of the same protocol, then we do not need

to infer the hop count. Instead, we can just compare the final TTL values because packets

of the same protocol usually have the same initial TTL value.

Another way to check packets, marked as spoofed or legitimate by the passive detection

algorithms, is to use the IP header identification field, originally used to identify fragments

of the same IP packet [20]. When used in combination with the source and destination IP

addresses and a given protocol, it uniquely identifies a packet (or any fragment of it) on the

CHAPTER2. BACKGROUND 25

Internet at a single point of time.

The importance of the IP Id value requires the operating system to have an algorithm for

managing the pool of 216 possible Id values, so no two packets on the Internet with the same

source and protocol can have the same Id value. Most systems accomplish this by using

fixed incremental values for each outgoing packet. While older Microsoft-based systems

(Windows 9x and NT 4.0) use an incremental value of more than 256, recent versions of

Windows (ME and later), as well as most other operating systems, increment the Id field

by 1 [2].

With this observation, it can be assumed that two packets leaving the same host in

close time proximity have similar identification values. If the detection system sends an IP

Id probe immediately after the original packet has been received, the IP Id value of the

probe reply should be larger, but close to the Id value of the packet being checked. On the

contrary, if the probe Id value is smaller or significantly larger than the one being checked,

this could indicate a spoofed packet.

This method, however, would fail for packets coming from systems using a high incre­

mental value, as well as systems applying alternative ways for handling Id value assignment,

such as the use of pseudo-random number generators. In this case, each successive Id value

depends only on the seed of the random-number generator, so the previous assumptions

related to packet Id values in close proximity would not be valid.

Other host-based detection methods proposed by researchers include the use of OS

fingerprinting, which involves deducing the operating system running on a remote host

by the peculiarity of its protocol stack implementation, the TCP protocol, the traceroute

program and various OS idiosyncrasies. OS fingerprinting can be used together with direct

CHAPTER 2. BACKGROUND 26

TTL probes to identify the operating system used on a remote host. The TCP protocol

flow control and packet retransmission algorithms can be used to ensure that certain traffic

is indeed coming from the supposed source IP address. Traceroute can provide the actual

number of router hops for paths, along which ICMP Echo requests and replies are not

blocked by firewalls [21].

Chapter 3

Experiments

Even though multiple detection methods have been proposed in the literature, little data is

available related to their performance under different circumstances. Jin et al. [5] evaluates

the performance of hop-count filtering, concluding that it can be used to detect 90% of the

spoofed traffic from a source. Templeton and Levitt [21] confirm the high-predictability of

TTL initial values for ICMP, IGMP, TCP and UDP messages, thus making possible the

inference of hop counts needed to reach a remote host, an important part of the successful

hop-count filtering process. No research data, however, is available on the individual perfor­

mance of the other proposed detection methods. Since these methods use different inherent

reasoning to make decisions about the validity of packets, we expect them to complement

each other's strengths and have better combined detection accuracy in a greater variety of

situations. However, no data is available on the combined performance of host-based detec­

tion methods, either. The goal of this research is to examine the strengths and weaknesses

of three detection methods - passive hop-count filtering, active TTL and IP Id probes.

The performance of the three spoofed IP packet detection algorithms was evaluated by

27

CHAPTER 3. EXPERIMENTS 28

implementing the algorithms in a detection system using the NetSim virtual simulation

package [15]. We designed appropriate virtual network topologies and tested the ability of

the detection methods to minimize false positives and false negatives. The NetSim virtual

network simulation package is described in detail in the Appendix.

3.1 The Detection System

The main detection algorithm in the system is the passive hop-count filtering [5], which

filters all incoming packets at the IP protocol level of the NetSim host module. The algo­

rithm infers the number of hops taken, based on the TTL value of the incoming packet ,

and compares that value to the hop count stored for the same remote IP subnet from a

previous point of time. If the two hop counts match, the packet is marked as legitimate; if

they differ, it is marked as spoofed.

In order to remember hop count values for legitimate packets, the hop-count filtering

algorithm uses an IP-to-hopcount table, which stores observed hop counts for remote IP

subnets. For example, if the detection system receives a legitimate packet from a given

subnet, it will record the network portion of the IP address of that subnet , the hop count

observed and the time when the table entry is created.

Passive hop-count filtering has been expanded further by Jin et al. [5] who propose

IP address aggregation to solve the problem of co-located IP subnets. Co-location occurs

when the addresses from a single block of the IP address range are assigned to hosts from

different physical networks, which possibly lie at different hop counts from the detection

system. Even though the hop-count algorithm is a good first line of defense for the detection

CHAPTER 3. EXPERIMENTS 29

system, we found that in certain conditions it underperforms in terms of both false negative

and false positive results.

3.2 False Negative Experiments

False negatives are a result of the detection system using the final TTL value in order to

infer the initial TTL. The algorithm assumes that the most common initial TTL values are

30, 32, 60, 64 and 128. Using the final TTL field, the algorithm infers the real initial TTL

value to be the next largest common initial TTL value above the final value. For example,

if the detection system observes a final TTL value of 110, it infers the real initial TTL to

have been 128 - the next largest common one above 110. This reasoning is made plausible

by the observation that most hosts on the Internet are 30 or less hops away. Thus, a packet

with a final TTL value of 110 would not have an initial TTL of 255, which would imply

a hop count of 145. As long as the observed final TTL value is located between common

initial TTL values, which are far apart from each other, the detection system will in most

cases infer the initial TTL field correctly.

This inference, however, will not work when the final TTL value is located just below

two tightly-packed common initial values - 30 and 32, or 60 and 64. Let's suppose that

the detection system receives an incoming packet with TTL field of 20. Both 30 and 32

would be possible initial TTL values. In such a case with more than one possible initial

TTL value, the detection system considers both values.

CHAPTER 3. EXPERIMENTS 30

3.2.1 Passive Hop-Count Filtering and False Negatives

Figure 3.1 illustrates a network topology with a chain of 10 routers. On one end of that

chain is subnet 1 where the detection system host is located. Subnets 2 and 3, at the other

end of the chain, are respectively 6 and 10 hops away from subnet 1. Subnet 3 contains

multiple hosts using 64 as the initial TTL value. This is always possible because 64 is a

common initial TTL value and we can pick subnet 3 to be any subnet 10 hops away from

the detection system.

01;·rucnON SYSTEM

Figure 3.1: A sample network topology.

During normal IP traffic, packets sent from subnet 2 and subnet 3 with initial values of

64 will arrive at subnet 1 with final TTL values of 58 and 54, respectively. In both cases,

the possible inferred initial TTL values would be 60 and 64, resulting in possible hop counts

of 2 (60- 58) and 6 (64 - 58) for the packet from subnet 2, and 6 (60- 54) and 10 (64- 54)

for the packet from subnet 3. Hence, the detection system will store in its IP-to-hopcount

table hop count values of (2, 6) for subnet 2 and (6, 10) for subnet 3.

Based on this topology, an attacker can design the following situation. Multiple hosts

can be compromised on subnet 2 with attacking agents being used that attempt to flood the

..,,

CHAPTER 3. EXPERIMENTS 31

detection system host with spoofed packets of initial TTL value of 64 and spoofed source

IP addresses from subnet 3. All packets have an initial TTL value of 64, decremented down

to 58 at the point of the detection host. Even though the attacker physically is on subnet

2, the detection system would think that the packets came from subnet 3. The physical

number of hops required to go from subnet 2 to subnet 1 is 6, the same as one of the hop

count values the system has stored for subnet 3 in its IP-to-hopcount table. Thus, the

spoofed packet would be marked as legitimate, resulting in a false negative.

In our first experiment, when only the passive hop-count filtering was used, the detection

system scanned a total of 518 packets, as shown in Table 3.1 , from which 131 were spoofed.

Out of those, 21 or 16% were false negatives because the detection system observed hop

count values it expected, so it considered the packets legitimate.

I Scanned I Spoofed I False Pos. I Legitimate I False Neg. I
Passive only 518 131 0 387 21
with IP Id 540 127 0 413 0
with direct TTL 508 126 0 382 20

Table 3.1: Minimizing the amount of false negatives.

3.2.2 Using Active Probes to Detect False Negatives

During the next experiment, we used the TTL and IP Id active probes to minimize the

number of false negatives. These tests returned variable results. The IP Id probes performed

superbly in this testing environment. Out of 540 total packets scanned, it detected all 127
' .

spoofed packets as spoofed and all 413 legitimate packets as legitimate, resulting in values

of zero for both the false positives and the false negatives.

l

CHAPTER 3. EXPERIMENTS 32

Using direct TTL probes, on the contrary, the number of false negatives resulting from

the detection process was almost unchanged, as illustrated in the first two rows of Table

3.1. From 508 scanned packets (126 of them spoofed), the algorithm resulted in 20 false

negatives. These results are almost identical to the ones from the test where passive hop­

count filtering is used alone.

3.2.3 False Negatives with Multiple Attackers

While the experiments represented situations, in which there is a single attacking host, real-

world spoofed IP traffic attacks often involve multiple attackers. In order to investigate the

effect of the number of attackers on the effectiveness of the detection system, we performed

another set of experiments on the network topology illustrated previously in Figure 3.1.

The results from the use of a single attacking host during the spoofed attack are il­

lustrated in Table 3.2. Out of 120 actual spoofed packets, we observed 51 or 42% false

negatives. Using active Id probes in combination with the passive hop-count filtering algo-

rithm, the system was able to detect all false negatives.

Scanned I Spoofed I Marked Spoofed I Marked Legit. I False Neg. I
Passive only 520 120 69 451 51
with IP Id 516 131 131 385 0

Table 3.2: A single attacking host.

During the second experiment we modified the network topology from Figure 3.1 by

adding another attacking host to subnet 2 as illustrated in Figure 3.2. The differences in

the results are negligible. As Table 3.3 shows, 183 spoofed packets resulted in 79 false

negatives (or 43%), which was decreased again to 0% after the introduction of active IP Id

CHAPTER 3. EXPERIMENTS 33

probes.

o,m,c.,im~ svsn:M

Figure 3.2: Modified network topology with two attacking hosts on the same subnet.

I Scanned I Spoofed I Marked Spoofed I Marked Legit. I False Neg. I
I Passive only I 510 I 183 I 104 I 406 79
I with IP Id I 517 I 201 I 201 J 316 0

Table 3.3: Multiple attacking hosts on the same subnet.

During our last false negative experiment, we located the attackers on different subnets.

For this purpose, we extended the network topology as shown in Figure 3.3 to include subnet

4, located at 4 additional hops beyond subnet 3 from the detection system. The attackers

are now located on subnet 2 and subnet 3.

The results from these experiments are shown in Table 3.4. When using the passive

hop-count filtering algorithm alone, 167 spoofed packets result in 73 false negatives for a

false negative rate of 44%. When combining this with active IP probes, all false negatives

were detected successfully.

CHAPTER 3. EXPERIMENTS 34

ATTACK.ER !

- Ar ~ UBNET2

~

ATIACX.F.R2

DETECTION SYSTEM

Figure 3.3: Extended network topology with two attackers on the different subnets.

Scanned Spoofed Marked Spoofed Marked Legit. I False Neg. I
Passive only 511 167 94 417 73
with IP ID 544 190 190 354 0

Table 3.4: Multiple attacking hosts on different subnets.

3.3 False Positive Experiments

The passive hop-count filtering detection algorithm is susceptible to failure due to temporary

route changes or Internet router failures because it records an inferred hop count at a single

point of time and later uses the same value as the basis for comparison. When a route

change occurs, any packets traveling along that route will result in false positives until the

corresponding hop count value in the table is updated. If the duration of a route change

lasts for a long period of time before the system converges to a state of stability, a large

number of false positives will be flagged by the detection system.

I
I

CHAPTER 3. EXPERIMENTS 35

3.3.1 Hop-Count Filtering and False Positives

Figure 3.4 shows a modified version of the network topology from Figure 3.1. First, the

attacker was removed, so all packets received by the detection system are legitimate. To

simulate a temporary route change, two alternative routes, each of them increasing the

routing path length by one hop, were added in the sections between subnet 1 and subnet 2,

as well as between subnet 2 and subnet 3. When packets enter a route section, which has

an alternative route, they get forwarded along the main route 80% percent of the time and

along the alternative route the remaining 20% of the time.

DNJ"eCTION SYSTfM

Figure 3.4: Modified network topology.

The results from these tests are summarized in Table 3.5. When using the passive hop­

count filtering test only, 108 out of 529 packets scanned were considered spoofed because a

change of hop counts was detected along the route. Note that the passive algorithms cannot

be used to update hop count values stored by the detection system because it has no way

to verify whether a hop count value is different due to a route change or due to the packet

being spoofed.

CHAPTER 3. EXPERIMENTS 36

I Scanned I Spoofed I False Pos. I Legit. I False Neg. I
Passive only 529 108 108 421 0
with IP Id 511 0 0 511 0
with direct TTL 505 76 76 429 0
TTL (all packets) 515 147 147 368 0

Table 3.5: Minimizing the amount of false positives.

3.3.2 Using Active Probes to Detect False Positives

Both active detection methods were used to attempt to minimize the number of false posi-

tives. Active IP Id probes performed superbly detecting all route changes and reducing the

number of false positives to zero.

Using direct TTL probes also partially decreased the number of false negatives, decreas-

ing it from 108 for 529 packets total scanned to 76 for 505 total packets. These results

appear to be due to the fact that direct TTL probes rely on counting the hops taken by the

probes, but probe replies can take alternative routes with the same probability as normal

packets. We performed an additional test with direct TTL probes, running them not only

when a packet has been marked as spoofed by the passive algorithm, but also when it has

been marked as legitimate. In this case, we found the number of false positives to actually

increase - up to 147 out of 515 packets scanned total, as shown in the fourth row of Table

3.5. TTI: probes have an advantage, however, that they can be used to update hop count

values in the IP-to-hopcount table in the detection system.

Chapter 4

Canel us ions

Based on our experimental results, we consider the passive hop-count filtering detection algo­

rithm to be insufficient when used alone to provide the performance required by performance­

sensitive systems in certain situations. The simulations used in the experiments represent

common and real-world examples. If an attacker knows the configuration of the detection

system, he can design a scenario where the weaknesses of hop-count filtering can be ex­

ploited and thus the detection system will be forced into poor performance. In addition,

even though researchers have shown that routing path lengths stay relatively stable (5),

changes in route lengths decrease the effectiveness of the detection system, causing it to

block legitimate traffic.

IP Id probes performed quite well in both tests, but in our simulation it is assumed that

routers work efficiently and provide no or little delay to packets passing through them. In

real circumstances, however, real router delays along the path of a probe request can cause

the probed IP identification value to be obsolete, especially for hosts with higher outgoing

activity, where the identification field would be incremented by the operating system very

37

CHAPTER 4. CONCLUSIONS 38

quickly. Therefore, IP Id probes would not be as dependable, in this simulation, when

applied on the real Internet.

Direct TTL probes share to a large extent the same weaknesses as the passive hop-count

filtering algorithm because they base their decisions on the same hop-counting criteria. How­

ever, such probes have a small advantage over passive hop-count filtering because the value

they provide is current. Therefore, if we use a topology with less frequent route changes,

we expect direct TTL probes to perform better in terms of number of false positives ..

Increasing the number of attackers did not have any apparent effect on the effectiveness

of the detection algorithms. Thus, we can assume that these algorithms can also be used

in cases when more than one attacking host is present on the network.

Our current and future work involves implementing the TCP and the ICMP protocols

into the NetSim package. This will provide the detection system with more detection

methods, upon which to make decisions - the three-way TCP handshake, the TCP sliding

window and packet retransmission mechanisms, as well as ICMP Time Exceeded messages.

All of these features have been proposed by Templeton and Levitt (21] to be used as detection

methods, but there is no research available about their implementation and performance as

such. The methods using features of the TCP protocol might prove to be very accurate in

a variety of circumstances, but also more expensive in terms of the resources to establish

a TCP connection to probe a remote host. ICMP Time Exceeded messages also have the

potential for high effectiveness, but this potential might be diminished by the similar high

cost in terms of resources, as well as by the fact that ICMP messages are blocked by some

firewalls on the Internet.

Appendix A

The NetSim Virtual Network

Simulation Package

All detection methods evaluated were implemented inside a modified version of the NetSim

virtual network simulation package [15]. The package implements a number of virtual

network devices - host , switch and relay - and allows them to communicate over a virtual

local area network through the IP, ARP and Ethernet protocols. The spoofed IP packet

detection system was implemented as an extension of the virtual host module.

A.1 Overview of NetSim

The Network Simulation API (NetSim) is a software package, which provides an object­

oriented virtual simulation of a simple local area network (LAN). It provides the means

to create and interconnect simple virtual host computers and network switches. It also

allows for the implementation of the various Internet Protocols such as Ethernet, ARP

39

APPENDIX A. THE NETSIM VIRTUAL NETWORK SIMULATION PACKAGE 40

and IP. All components of the package are represented as C++ classes, as illustrated below,

which allows for easily adding new protocols and virtual hardware or modifying the existing

components.

Figure A. l shows the structure of the virtual simulation package. All components and

protocols are divided according to the TCP /IP stack layer they belong to - data link, net-

work, transport, etc. The physical layer, which provides communication between protocol

stacks, is implemented through socket connections between the real hosts, on which the

simulation is used. Thus, virtual Data Link layer Ethernet adaptors communicate through

the socket interface of the real network hosts. The advantage of this simulation method is

that it allows us to start multiple virtual network components on the same real network

host, as long as each virtual component uses a different real port number. Thus, the size of

the virtual network topology is not restricted by the size of the real local network used to

run simulations on.

,•inuaJ CC!lll)Ollent

Application
Transpon
· 1c-twork
Da1aL1uk

= virtual Physical layer =

..-inual eomponcnl

Application
Tra.nsport
Network
Daaa 1.inl

rd! soc.kc!

JJ
Figure A.1: Virtual simulation package on top of the real network hosts

APPENDIX A. THE NETSIM VIRTUAL NETWORK SIMULATION PACKAGE 41

A.2 NetSim Implementation Details

A.2.1 Module Implementation Overview

The host module implements a virtual host including the protocol stack. Currently,

the implementation includes the Data Link, Network and Transport levels of the Internet

Protocol suite. The handling of each incoming and outgoing message is handled by spawning

off a child process from the main host application. The child process passes the message to

the first protocol stack layer.

At the Data Link layer, the host uses virtual Ethernet adaptors implementing the Eth­

ernet frame format and a subset of the protocol communication mechanism. The virtual

Ethernet adaptors establish client connections through the socket interfaces of the real hosts

used to run the simulation on.

The switch module waits for incoming connections from virtual hosts on a specified

listening port. The module operates on the Data Link layer; it forwards incoming Ethernet

frames based on their destination MAC addresses and its own frame forwarding table.

A.2.2 Protocol Implementation Overview

The lowest-level protocol implemented in NetSim is Ethernet. The Ethernet module in­

cludes the Ethernet frame format, as well as mechanisms for sending and receiving frames.

The latter two are implemented through virtual Ethernet adaptors. Each virtual adaptor

data structure contains a physical socket connection, through which the adaptor sends and

receives messages.

The ARP protocol acts on the Network level and serves to convert IP addresses used

APPENDIX A. THE NETSIM VIRTUAL NETWORK SIMULATION PACKAGE 42

by the high-layer protocols to MAC addresses used by adaptors at the Data Link layer.

Each device's ARP service maintains a table, where it stores IP-MAC address associations.

Routers are configured to drop ARP packets. If a host is unable to discover on the local

network the MAC address for a destination host, it sends the message to the default gateway

- the default router, which handles traffic leaving the local network.

The second protocol implemented on the Network layer is the IP protocol. Inside the

host module, the IP protocol possibly fragments outgoing data, invokes ARP to discover

the MAC address of the destination host and sends the resulting IP packet(s) down the

protocol stack. For incoming data, IP assembles back all fragments and passes the message

up the protocol stack.

All protocols add their own header to each outgoing message and strip that header

off each incoming message before passing them up or down the protocol stack. Also, all

protocols perform checksum computation and verification wherever a checksum is included

in the protocol specification.

A.2.3 Modification to NetSim

The original version of the NetSim package was designed as a virtual simulation for local

area networks. However, since all attacks involving IP spoofing go beyond the borders of

a LAN into the global Internet, NetSim had to be extended to support global network

communications. For this purpose, we implemented a router module and modified the

existing host module in order to support different IP address classes and unique addressing

throughout the whole simulation environment.

The router module behaves as a client, with one virtual Ethernet adaptor for each

APPENDIX A. THE NETSIM VIRTUAL NETWORK SIMULATION PACKAGE 43

of its interfaces. The virtual router operates on the data link and network layers, making

router decisions and forwarding IP packets through its interfaces. Each incoming packet is

handled by a separate process forked from the main router application.

A.2.4 Advantages of NetSim

As mentioned above, one of the advantages of using this virtual network simulation package

is the ability to run a greater number of network hosts and devices than the number of real

computers used to run the simulation on. Another advantage is the modularity achieved

by applying the principles of object-oriented programming and encapsulation.

On one hand, every virtual network device is implemented in its own object-oriented

module, which can be compiled and run by itself. This allows for the quick reassembling

of virtual device modules when an experiment requires a different network topology to be

used. The object-oriented nature of the simulation also makes the interaction between each

device module very clear and understandable.

Moreover, encapsulation allows for the easy reworking of each individual module without

affecting its interaction with the other modules, as long as it continues providing the same

interface to them. Encapsulation also makes the simulation more realistic because real­

world network devices can use any implementation technique and this would not change

their interaction with other devices, as long the requirements for protocol interfaces are

satisfied.

Bibliography

[1] D. ANDERSEN, H. BALAKRISHNAN, F. KAASHOEK, AND R. MORRIS. Resilient overlay
networks. ACM SIGOPS Operating Systems Review, 35(5):131- 145, 2001.

[2] ARKIN. online: http://cert.uni-stuttgart.de/ archive/bugtraq/2001/05 /msg0004 7.html.

[3] S. BELLOVIN. Rfc 1948 - defending against sequence number attacks, 1996.

[4] s. BELLOVIN, M. LEECH, AND T. TAYLOR. Icmp traceback messages. Technical
report, Internet Engineeting Task Force, 2003.

[5] RAINING WANG CHENG JIN AND KANG G. SHIN. Hop-count filtering: an effective
defense against spoofed ddos traffic. In Proceeding of the 10th A CM Conference on
Computer and Communication Security, October 2003.

[6] B. CHESWICK, H. BURCH, AND s. BRANIGAN. Mapping and visualizing the internet.
In Proceedings of USENIX Annual Technical Conference, 2000.

[7] K. CLAFFY, T. MONK, AND D. McROBB. Internet tomography. Nature, 1999.

[8] T. DUNIGAN. Backtracking spoofed packets. Technical report, Oak Ridge National
Laboratory, 2001.

[9] THE SWISS EDUCATIONAL AND RESEARCH NETWORK. Default ttl values in tcp/ip.
online: http://secfr.nerim.net/docs/fingerprint/en/ttLdefault.html.

[10] P. FERGUSON AND D. SENIE. Rfc 2827 - network ingress filtering: Defeating denial of
service attacks which employ ip source address spoofing. Technical report, The Internet
Society, 2000.

[11] J. IOANNIDIS AND S. BELLOVIN. Implementing pushback: Router-based defense
against ddos attacks. In Proceedings of Networks and Distributed System Security
Symposium, February 2002.

[12] FRANK JENNINGS. Lipux raw socket programming - what lies beneath a socket? online:
http:/ /linux.sys-con.com/ .

[13] A. KEROMYTIS, V. MISRA, AND D. RUBENSTEIN. Sos: Secure overlay services. In
Proceedings of the 2002 Conference on Applications, Technologies, Architectures and
Protocols for Computer Communication, pages 61- 72, 2002.

44

BIBLIOGRAPHY 45

[14] R. MAHAJAN, S. BELLOVIN, S. FLOYD, J. IONNIDIS, V. PAXSON , ANDS. SHENKER.
Controlling high bandwidth aggregates in the network. ACM SIGCOMM Computer
Communication Review, 32(3) :62- 73, 2002.

[15] R. NECAISE. Netsim virtual network simulation package. online:
http://www.cs.wlu.edu/ necaise/software/netsim.

[16] A. PERRIG, D . SONG, AND A. YAAR. Pi: A new defense mechanism against ip
spoofing and ddos attacks. Technical report, School of Computer Science, Carnegie
Mellon University, 2002.

[17] L PETERSON AND B. DAVIE. Computer Networks: A Systems Approcach, 2e. Morgan
Kauffman Publishers, 2000.

[18] J. POSTEL. Rfc 792 - internet control message protocol, 1981.

[19] s. SAVAGE, D. WETHERALL, A. KARLIN, AND T . ANDERSON. Practical network sup­
port for ip traceback. In Proceedings of the Conference on Applications, Technologies,
Architectures and Protocols for Computer Communication, pages 295- 306, 2000.

[20] THE INTERNET SOCIETY. Rfc 791 - internet protocol, 1981.

[21] s. TEMPLETON AND K. LEVITT: Detecting spoofed ip packets. In Proceedings of the
Third DARPA Information Survivability Conference and Exposition, 2003.

[22] Ju WANG AND A. CHIEN. An analysis of using overlay networks to resist distributed
denial-of-service attacks. unpublished.

[23] WIKIPEDIA. Internet protocol suite. online: http://en.wikipedia.org.

	RG38_Djalaliev_thesis_2005_0001
	RG38_Djalaliev_thesis_2005_0002
	RG38_Djalaliev_thesis_2005_0003
	RG38_Djalaliev_thesis_2005_0004
	RG38_Djalaliev_thesis_2005_0005
	RG38_Djalaliev_thesis_2005_0006
	RG38_Djalaliev_thesis_2005_0007
	RG38_Djalaliev_thesis_2005_0008
	RG38_Djalaliev_thesis_2005_0009
	RG38_Djalaliev_thesis_2005_0010
	RG38_Djalaliev_thesis_2005_0011
	RG38_Djalaliev_thesis_2005_0012
	RG38_Djalaliev_thesis_2005_0013
	RG38_Djalaliev_thesis_2005_0014
	RG38_Djalaliev_thesis_2005_0015
	RG38_Djalaliev_thesis_2005_0016
	RG38_Djalaliev_thesis_2005_0017
	RG38_Djalaliev_thesis_2005_0018
	RG38_Djalaliev_thesis_2005_0019
	RG38_Djalaliev_thesis_2005_0020
	RG38_Djalaliev_thesis_2005_0021
	RG38_Djalaliev_thesis_2005_0022
	RG38_Djalaliev_thesis_2005_0023
	RG38_Djalaliev_thesis_2005_0024
	RG38_Djalaliev_thesis_2005_0025
	RG38_Djalaliev_thesis_2005_0026
	RG38_Djalaliev_thesis_2005_0027
	RG38_Djalaliev_thesis_2005_0028
	RG38_Djalaliev_thesis_2005_0029
	RG38_Djalaliev_thesis_2005_0030
	RG38_Djalaliev_thesis_2005_0031
	RG38_Djalaliev_thesis_2005_0032
	RG38_Djalaliev_thesis_2005_0033
	RG38_Djalaliev_thesis_2005_0034
	RG38_Djalaliev_thesis_2005_0035
	RG38_Djalaliev_thesis_2005_0036
	RG38_Djalaliev_thesis_2005_0037
	RG38_Djalaliev_thesis_2005_0038
	RG38_Djalaliev_thesis_2005_0039
	RG38_Djalaliev_thesis_2005_0040
	RG38_Djalaliev_thesis_2005_0041
	RG38_Djalaliev_thesis_2005_0042
	RG38_Djalaliev_thesis_2005_0043
	RG38_Djalaliev_thesis_2005_0044
	RG38_Djalaliev_thesis_2005_0045
	RG38_Djalaliev_thesis_2005_0046
	RG38_Djalaliev_thesis_2005_0047
	RG38_Djalaliev_thesis_2005_0048
	RG38_Djalaliev_thesis_2005_0049
	RG38_Djalaliev_thesis_2005_0050
	RG38_Djalaliev_thesis_2005_0051
	RG38_Djalaliev_thesis_2005_0052

