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1. I NTRODUCTION 

What is a Steinhaus graph? First of all , when we speak of a graph, we are not referring to a mapping 
of points in the x y plane. Rather , we are referring to a set of vertices connected by edg es. One of the 
common ways to represent a graph is pictorially, as in Figure 1. The numbered circles are vertices and 
the lines between them are edges . While a picture is nice to visualize a graph , what we call the adjacency 
m.atri1: is more useful in definitions and theorems. The adj acency mat rix of the graph in Figure 1 is shown 
in Figure 2. 

Each vertex has its own row and column in the adj acency matrix . An edge exists between vertex i 
and vertex j if there is a one in the i th row of the /h column. Since t he graphs tha t we are working 
with are undirect ed ( that is, if vertex i is connected to vertex j , then vertex j is connected to vertex i) , 
the adj acency matrix is symmetric about the di agonal. Because of this symmetry, we often symplify the 
notation for the adj acency matrix by keeping only the upper right triangle. 

It is time to define a Steinhaus graph precisely. Let T = ao ,o ao ,1 .. . ao ,n- l be an n-long string of Os and l s 
beginning with 0. The Steinhaus graph generated by T has as its adj acency matrix the Steinhaus m atrix 
A = [ai: ,i], where 

{ 
0, if O :S: i = j :S: n - l ; 

a i ,j = (ai - 1,j - l + a i - 1,1)mod2, if 0 < i < j :S: n - l ; 
a1,i, if 0 :S: j < i :S: n - 1. 

More simply, a Ste·inhaus graph is a graph where the upper right t riangle has the property that every 
entry is the boolean "Exclusive OR" result of the entry above it and the entry above and to the left of it. 
(Exception: the entries along the diagonal are always zero.) For instance, the adj acency matrix in Figure 
2 adheres to this rule, so the corresponding graph is a Steinhaus graph. 

A pendent vertex is a vertex with degree one, or a vertex that is incident to only one edge. For example, 
vertex 4 in F igure -1 is a pendent vertex , but none of the other vertices are pendent . 

Steinhaus graphs have many interesting properties, yet there are many things about them that are not 
yet known. In [1 ], a fo rmul a was discovered for the total number of Steinhaus graphs on n vertices with at 
least one pendent vertex . Our research goal was to t ry to further charac terize this resul t. Can we describe 
the the number of Steinhaus graphs on n vertices with exactly k pendent vertices? Let P(n , k ) be the 
number of Steiuhaus graphs on n vertices with k pendent vertices . Our task was to find an expli cit formul a 
for it. 

2. THE DATA 

First , we needed to generate the data to analyze . This consisted of constructing a Java program to build 
the P (n , k) t able iteratively, starting at P(O , 0) and expanding outward along both axes . The final version 
of the program was able to compute 325 rows of the table. (We could in fact compute more rows, bu t it 
would take longer and longer.) We had an independent ly computed data set that verified the first 80 rows 
of the t able, so we have confidence that the algorithm for generating the t able is correct. Figure 3 displays 
a portion of the P ( n , k) table. 

T he next phase of research was to analyze the patterns found in this t able. The first thing we noti ced 
is that th e ent ries in the table separate into clearly visible bands. For instance, the line of 2's going down 
t he di agonal is one such band , and another is the 2, 4, 2 pattern going down diagonally underneath the 
2's. Fur thermore, for a given column, the entries in one band are symmetric about the highest value (or 
the two highest in the case of a tie) . For instance, 2, 4, 2 is symmetric about 4. Our efforts in the first 
phase of research were dedicated towards describing these bands formally. 
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FIGURE l. A Graph 

Adjacency Matrix Adjacency Triangle 

1 2 3 4 5 1 2 3 4 5 

1 0 0 1 0 1 0 0 1 0 1 

2 0 0 1 1 1 0 1 1 1 

3 1 1 0 0 0 0 0 0 

4 0 1 0 0 0 0 0 

5 1 1 0 0 0 0 

F IGURE 2. Adjacency Matrix and Adjacency Triangle 

We decided to index the bands so that band 1 is the topmost , band 2 is the next highest, and so on. 
We wanted to discover the explicit pattern that the bands fo llow. F igure 4 shows a table with the values 
for the first 5 bands. 

First of all , each band is unimodal; that is, the values increase steadily to a point, and then only decrease. 
We decided to do some differencing between successive terms to shed light on t he pattern. Figure 5 shows 
a table of double differencing on the Fourth band. (The other bands yielded similar tables.) 

Here it is easy to see that the fi rst order differences are unimodal. From this table we concluded that 
each band divided naturally into 5 segments, or stages, based on t he 5 different segments in t he colum n 
of second order differences . Note that the zeros in the second order differences mean t hat the function is 
linear in n for those stages. Similarly, the other constants in the second order differences mean that the 
other stages are quadratic in n. We took points from these stages and were able to fit a quadrat ic to the 
entire stage. The five sections are based on t he value J which is equal to 2j - 2 . Here are the sections in 
terms of J: 

(1) 1 s:; n < J 
(2) J s; n < 2J 
(3) 2J s:; n < 3J 
( 4) 3J s; n < 4J 
(5) 4J s; n < 5J - 1 

Using this information regarding the sections of the band , we then defined a piecewise function B(n , j) 
to return the n th value from the start of the /h band. T hat fo rmula is desribed explicit ly by the fo llowing: 
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k: 2 3 4 5 6 7 8 9 10 11 12 l3 14 15 16 17 

n: 

3 3 

4 2 2 2 
5 6 3 2 

6 8 6 2 

7 16 4 2 2 

8 20 5 4 2 

9 28 7 2 2 2 

10 32 12 4 2 

11 40 16 2 2 2 

12 so 17 2 4 2 

l3 68 12 6 2 2 2 
14 80 11 10 4 2 

15 92 11 14 2 2 2 

16 100 16 14 2 4 2 

17 114 21 10 6 2 2 2 

18 122 30 6 10 4 2 

19 134 38 2 14 2 2 

20 146 47 14 2 4 

21 164 54 10 6 2 2 

22 182 59 2 6 10 4 

23 206 59 6 2 14 2 2 

24 232 56 12 14 2 4 

25 268 46 20 10 6 2 2 

26 296 41 28 6 10 4 

27 324 37 36 2 14 2 2 

28 348 36 44 14 2 4 

29 374 35 52 10 6 2 2 

30 394 40 56 2 6 10 4 

31 414 48 56 6 2 14 2 2 

32 430 61 52 12 14 2 4 

33 454 73 44 20 10 6 2 2 

34 470 90 36 28 6 10 4 

35 490 106 28 36 2 14 2 2. 

FIGURE 3. A Section of the P(n, k) Table ("."s indicate zeroes) 

B(n, 1) = { 
2 if n = l 
0 if n 2 2 

B(n,2) ~ { 

2 if n = l 
4 if n = 2 
2 if n = 3 
0 if n 2 4 

If j 2 3, then 
n 2 +n if 1 ::; n < 1 
- 1 2 + (2n + 1)1 if 1 ::; n < 21 

B(n , j) = - 912 + 5(2n + 1)1 - 2(n2 + n) if 21 ::; n < 31 
912 - (2n + 1)1 if 31 ::; n < 41 
2512 - 5(2n + 1)1 + n 2 + n if 41 ::; n < 51 - 1 
0 if n 2 51 - 1 

Now that we have an empirical formula for the contents of the bands , we would like to know where each 
new band begins . The bands follow diagonal patterns down the P(n , k) table, but the question is , given a 
particular column number k and a band number j , can we calcul ate where that band begins? We decided 
to assign a function to this concept, F(k , j). We studied the data for several different instances of k and 
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1 2 3 4 5 
1 2 2 2 2 2 
2 4 6 6 6 
3 2 10 12 12 
4 14 20 20 
5 14 28 30 
6 10 36 42 
7 6 44 56 
8 2 52 72 
9 56 88 

10 56 104 
11 52 120 
12 44 136 
13 36 152 
14 28 168 
15 20 184 
16 12 200 
17 6 .212 
18 2 220 
19 224 
20 224 
21 220 
22 212 
23 200 
24 184 
25 168 
26 152 
27 136 
28 120 
29 104 
30 88 
31 72 
32 56 

FIGURE 4. Bands of the P(n , k) Table 

j 
1st order 2nd order 

n 4 difference difference 

1 2 
2 6 4 
3 12 6 2 
4 20 8 2 
5 28 8 a 
6 36 8 0 
7 44 8 a 
8 52 8 a 
9 56 4 -4 

10 56 0 -4 
11 52 -4 -4 
12 44 -8 -4 
13 36 -8 0 
14 28 -8 a 
15 20 -8 0 
16 12 -8 0 
17 6 -6 2 
18 2 -4 2 

FIGURE 5 . Double-Differencing on the Fourth Band of the P(n, k) Table 
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FIGURE 6. Graph of P(n, 2) vs. n 

were able to come up with k-specific formulas. From there we were able to generalize to the following 
function , valid for for k 2 3: 

(1) F(k , 1) = k 
(2) F(k,j) = 2(J - 2l(2k - 1) + 1 (for j 2 2). 

Note that the function is designed so that F(k , j) + 1 yields then value at which the ylh band begins in 
the P(n , k) table. (We included an offset of 1 so that the final formula would work out more nicely.) 

Ultimately, we want to have a function P(n, k) that takes an n value and a k value and produces the 
appropriate result. Fork > 2, we know what the proper result is if we know which band we are in and how 
far into the band we are. F(k, j) is designed so that n - F(k, j) will tell how far into the band our number 
is. There is just one problem: we do not yet have a formula for computing the band number based on n 
and k. This was our next project, and we eventually came up with the following formula: 

(1) G(n, k) = 0 if n < k + l 
(2) G(n, k) = 1 if n = k + 1 
(3) G(n, k) = llog2 ( 21;=_21 )j + 2 if n > k + l 

Now we have all the pieces we need for P(n, k) when k > 2. Putting it all together , we get the following 
formula in terms of B , F, and C: 

P(n, k) = B(n - F(k, G(n , k) , G(n, k)) 

In terms of B, n , and k only, the formula becomes 

3. COLUMNS 1 AND 2 

Now the question is , what happens when k ::::; 27 The problem with these two columns is that no zeros 
ever appear. Thus, it is hard to tell where the different bands begin and end. One of the most exciting 
breakthroughs for us was when we conjectured that the first two columns were superpositions of multiple 
bands. Testing this out empirically came up with very intriguing results. 

The dark blue line in Figure 6 is a graph of P(n , 2) vs. n , or, equivalently, the second column of the 
P( n , k) table, which we will denote k2. The first thing we noticed in the graph is that there are local 
maxima shaped roughly like bell curves . Furthermore , the value of these maxima increases with n, just 
like the bands. We wondered how similar these local maxima looked to the different bands , so we decided 
to superimpose the bands onto the graph of k2. To do so, we took each peak in and matched it up with the 
largest value in the kth band. The first two bands in the P(n , k) table have only one value for the absolute 
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n=2 k2 Band 1 Band 2 Band 3 Band4 Bands Band 6 Band 7 Sum: Diff: 

3 3 2 2 

4 2 0 2 

5 3 2 2 

6 6 4 2 

7 4 2 
8 5 2, 2 3 

9 7 6 6 

10 12 10 10 

11 16 14 14 2 

12 17 14 14 

13 12 10 10 

14 11 8 

15 11 6' 8 

16 16 ' l2 12 4 

17 21 20 20 1 

18 30 28 28 2 

19 38 36 36 2 

20 47 44 44 

21 54 52 52 2 

22 59 56 56 

23 59 56 56 

24 56 52 52 4 

25 46 44 44 2 

26 41 36 2, 38 3 

27 37 28 ' 6 34 

28 36 20 12 32 4 

29 35 12 " 20 32 3 

30 40 6 30 36 4 

31 48 42 44 4 

32 61 56 56 5 

33 73 72 72 1 

34 90 88 88 2 

35 106 104 104 2 
·--------------- ----------------------------------------------------------- -- ----------------------- -----------------· 

FIGURE 7, The Splice Table 

maximum, whereas all following bands have two values that tie for the maximum, Therefore, we decided 
to find the local maxima of P(n , 2) vs , n, and then keep track of the two highest values in each local 
maxima, In Figure 7, the local maxima ( or the two highest values near a local maxima) are highlighted in 
yellow. 

Figure 8 displays the graph of P(n, 2) vs. n, each band , then the sum of all of the bands together, which 
we have called a spli ce. 

As you can see, the splice almost perfectly matches P(n , 2) vs. n and the two sequences only appear to 
diverge when the next band is unavailable. However , we could not really see the differences at this scale, 
so we made a separate chart just showing the differences . 

First, the resulting error is small compared to the actual values of P (n, k) which is very encouraging. 
Second , the sequence of error values is highly patterned. In fact , it turns out the sequence of error values 
can be described very concisely. We decided to call this sequence D (n) , and we noticed that D (n) is equal 
to the number of l 's appearing in the binary expansion of n. For instance, all the powers of two yield a 
one, as you can see in Figure 9. Because powers of 2 are so important in Steinhaus graphs , it seems very 
certain that this pattern continues. We now have a way to describe P(2 , n) using the bands and this new 
sequence: 

G (n,2) 

P(n, 2) = L B(n + 1 - F(2, j) , j)) + D (n - 1) 
j = l 

However , we needed to do more work to explicitly describe the starting point of each band in the splice. 
When we put the splice together originally, we looked for local maxima because those points were easily 
identifiable from the graph of P(n , 2) vs. n. In terms of defining a function , though, it is more helpful to 
know the start of each band . The function F(k , j) which we defined earlier allows us to know the st art of 
each band as long as k 2'. 3 , but we wanted to generalize the result further . 
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FIGURE 8 . P(n, 2) vs . n with super imposed bands 

,o 

; . 
~ 

Js 
16 

' . 

0 •· 

Splice Subtracted from k2 

Prr~ t y ,LH ~ ~v I J 

FIGURE 9. P(n, 2) vs. n - superimposed bands 
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Based on the positions of the bands in our k2 splice table (see Figure 7) , we discovered that the usual 
formu la for F(k,_j) continues even when k = 2; t he start of the bands t hat we used in t he splice coincides 
exact ly with the values calculated using the formula for F(k, _j). Does t he formula st ill work if k = 1? We 
spliced t he bands together as the formula dictated (see Figure 11 ), and the results were as shown in Figure 
12. 

Again , the actual sequence for P(n, 1) vs . n and the spliced values begin to diverge only when we run 
out of available bands. Figure 13 shows the sequence of differences ( P (n , 1) vs. n - splice). 

It turns out that this sequence is equal to - 2D(n), which is comforting because the same phenomenon 
seems to be at work as in P(n, 2) vs. n. With this information , we can now characterize P(n , 1), and 
combining this with the previous results, we can characterize P(n, k) for all n 2". 1, for all k 2 1. 
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L(j) Number of elements in BU) 

j (band 11) 

1 1 
2 3 
3 8 

4 18 

s 38 

6 78 

7 158 

F(k, j): n at which the first non-zero element appears in the Jth "band" of nonzero entries 

j = 1 2 3 4 5 6 

k = l 2 3 4 6 10 18 

2 3 5 8 14 26 50 
3 4 7 12 22 42 82 
4 5 9 16 30 58 114 

s 6 11 20 38 74 146 

6 7 13 24 46 90 178 
Oiffs: 1 2 4 8 16 32 

F IGURE 10. Tab le of first non-zero entries in each band 

n = l kl Band 1 Band 2 Band 3 Band4 Band 5 Band 6 Band 7 Sum: Diff: 

2 0 2 2 -2 

0 :,;;?,A 2 -2 

4 2 ·21 6 -4 

5 6 6 s -2 

6 s 10 ii 12 -4 

7 16 14'. 6 20 -4 

s 20 14 12 26 -6 

9 28 10 20 30 -2 

10 32 36 -4 

11 40 44 -4 

12 50 56 -6 

13 68 72 -4 

14 80 86 -6 

15 92 98 -6 

16 100 52 56 108 -8 

17 114 44 72 116 -2 

18 122 36 88i. 2 126 -4 

19 134 28 104 

'1 
138 -4 

20 146 2.0 120 '\ 152 -6 

21 164 12 136 20 168 -4 

22 182 152: 30, 188 -6 

23 206 
1681 

421 212 -6 

24 232 184 , . '56 240 -8 

25 268 200 72 272 -4 

26 296 212 90 302 -6 

27 324 220 • 110 330 -6 

FIGURE 11. Us ing the for mula for F(k , j) when k = 1 to determine how the bands are superimposed 
in k1 

{ 
CI:J~-~-,k) B(n - F(k,j),j)) - 2D(n - 1) if k = l 

P(n , k) = CI:f~~,k) B(n - F(k,j) ,j)) + D(n - 1) if k = 2 
B(n - F(k, G(n , k)), G(n , k)) if k 2: 3 

4. NEXT STEPS 

Although empirically the formulas we have seem to work , we do not have concrete mathematical proofs 
of any of t hese formulas. One approach that might work would be to prove that t he P(n , k) formula holds 
when k = 3, and then use induction to prove it for higher k as well . The cases where k = l or k = 2 
probably require an additional layer of complexity to deal with the superposition of bands. 
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