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Introduction 

In this paper, we develop two model spaces for hyperbolic geometry using differential calculus. 

Our approach is to first develop the Euclidean model space R 2 and then mirror the development 

for hyperbolic geometry. The differential approach is advantageous because it provides a metric for 

each geometry. This enables us to develop the geometric isometries. A geometric isometry of two 

dimensional space X is a one-to-one function from X into X that preserves distance and preserves 

angles. Felix Klein in 1872 pioneered the viewpoint that a geometry is reflected by its isometries. 

Thus, by developing the concept of a hyperbolic metric we can find the hyperbolic isometries and 

hence better understand hyperbolic geometry. 

We begin by presenting a historical approach to hyperbolic geometry. 

Section 1: A Historical Approach to Hyperbolic Geometry 

The first formal study of geometry was developed in 300 B.C. by the Greek mathematician 

Euclid. Developing the works of his predecessors, he set forth a thirteen volume work entitled The 

Elements , in which he developed an axiomatic approach to the study of geometry. An axiomatic 

approach bases all of its theorems on a complete list of axioms, or postulates, which are defined to 

be assumed truths. Euclid's geometry was based on five axioms. They were presented as such [1]: 

1. For every point P and for every point Q not equal to P there exists a unique line l 

that passes through P and Q. 

2. For every segment AB and for every segment CD there exists a unique point E such 

that B is between A and E and segment CD is congruent to segment BE. 

3. For every point O and every point A not equal to O there exists a circle with center 

0 and radius O A. 

4. All right angles are congruent to each other. 

5. For every line l and for every point P that does not lie on l there exists a unique line 
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m through P that is parallel to l. 

The first four postulates can be easily visualized with the use of straightedges, com­

passes, and protractors. However, in the fifth postulate one must speculate on what 

happens to lines as they extend towards infinty. Because of this, mathematicians thought 

that it should be possible to deduce the fifth postulate from the first four postulates. 

This idea triggered a flurry of activity on the part of mathematicians. For 2,000 years 

mathematicians from Ptolemy to Legendre attempted to prove the fifth postulate, using 

various methods. It appeared that there must be some way to derive the postulate, yet 

no one could give a rigorous proof. 

The independence of the fifth postulate did not surface until the beginning of the nine­

teenth century. At that time, three mathematicians from different parts of the world each 

separately contributed to the solving of the problem. Carl Freidrich Gauss of Germany 

(1777-1855), Nikolai Ivanovich Lobachevsky of Russia (1792-1856), and Janos Bolyai of 

Hungary (1802-1860) each proposed the idea that there might be no proof of the fifth 

postulate. They approached the subject by considering a contrapositive to the fifth pos­

tulate along with Euclid's first four postulates. In other words, since it appeared that the 

fifth postulate was indeed independent of the first four postulates, an entirely different 

geometry would arise if one assumed a different fifth postulate along with the first four 

of Euclid's postulates. One contrapositive to the fifth postulate is stated as such [1]: 

Hyperbolic Postulate. Given a line l and a point P not on l there exist at least two 

lines through P parallel to l. 

Assuming this postulate together with Euclid's first four postulates results in an en­

tirely new, yet logically consistent geometry. This geometry is called hyperbolic geometry. 

By changing one axiom, mathematicians discovered a completely different geometry. 

An extremely important point to comprehend is that hyperbolic geometry's consis­

tencey does not negate euclidean geometry's consistency. Rather, assuming one of the 

geometries is consistent proves the other geometry is equally consistent. Italian mathe-
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matician Eugenio Beltrami proved that hyperbolic geometry is consistent if and only if 

Euclidean geometry is consistent. Furthermore, if Euclidean geometry is consistent then 

no proof or disproof of the parallel postulate from the rest of the postulates will ever be 

found. Hence attempts to prove Euclid's fifth postulate were in vain. 

The concept of mutually dependent geometries allows one to understand hyperbolic 

geometry. It is possible to learn about hyperbolic geometry by mimicking various ap­

proaches to Euclidean geometry. Thus, a logical way to approach hyperbolic geometry is 

to take the terms and concepts of Euclidean geometry and translate them into hyperbolic 

terms. Mathematicians used this approach to axiomatically develop the subject. 

Our approach will be to develop hyperbolic geometry using calculus. Although Eu­

clid's approach is useful in the sense that the axiomatic approach is entirely" geometric" 

in its presentation, it lacks the flexibility that is needed to be useful in higher mathe­

matics. In other words, developing from a differential perspective will enable us to use 

calculus, algebra, and group theory to analytically describe hyperbolic geometry. 



Section 2: Euclidean Geometry 

In order to motivate our study of hyperbolic geometry, it is useful to first understand some 

different approaches to Euclidean geometry. In so doing, we will be able to use our knowledge of 

Euclidean geometry to motivate our questioning into hyperbolic geometry. 

The two approaches we will examine are the isometric approach and the differential approach. 

For this reason, we will introduce the isometries of the Euclidean plane. The differential approach, 

on the other hand, involves using calculus to describe Euclidean geometry. We will use this 

approach to find angle-preserving mappings and also examine lengths of curves and areas of regions 

in the Euclidean plane. 

Isometric Approach 

We first want to define a model space for Euclidean geometry. A model space is a realization of an 

axiomatic system. The model space for Euclidean geometry is the Euclidean plane. The Euclidean 

plane is defined as the set R2 = {(x, y)jx, y E R}. The .Euclidean metric, i.e. the infinitesimal 

distance function, is defined as ds2 = dx2 + dy2 • Euclidean distance d(Pi, P 2 ) between points 

Pi = (xi, yi) and P2 = (x2, Y2) is defined to be 

Since R 2 is a model space, it realizes the ideas of Euclidean straight lines, angles, and circles, and 

is consistent with Euclid's five postulates. We assume the basic notions of Euclidean points, lines, 

angles and circles in analytic geometry. 

One type of geometric isometry is a Euclidean isometry. A Euclidean isometry is a function 

/: R 2 ➔ R 2 such that d(f (Pi), f (P2)) = d(Pi, P2) for all Pi, P2 E R 2 . In other words, it preserves 

Euclidean distance. A unique feature of R2 is that distance-preserving functions are also angle­

preserving functions. This is because if distance is preserved, then dot product, and hence angle 

measure, is also preserved. 
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It turns out that the isometries of the Euclidean plane form a group. This allows us to 

describe Euclidean geometry in terms of its isometries. The fundamental examples of Euclidean 

plane isometries are translations, reflections, and rotations. They are described as follows: (In each 

of the examples let f be defined by giving the coordinates x', y' of f ( P) in terms of the coordinates 

x,y of P.) 

Example 1. Translation t(a,/3) of O to (a, /3) 

x' = a +x, 

y' = /3 + y. 

Example 2. Rotation re about the origin O through angle 0. 

x' = x cos 0 - ysin0, 

y' = x sin 0 + y cos 0 

Example 3. Reflection f (in the x-axis) 

x' = x, 

y' = -y. 

-4 

Example of a Euclidean translation (top) and rotation (bottom) 
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Example of a Euclidean reflection 

Remark. Note that the origin is not unique as a point of rotation. This is because an arbitrary 

point (a, b) can be carried to the origin by an isometry t(a\). It is possible to rotate R 2 about 

( a, b) by means of conjugation. In other words, we can translate, ( a, b) to the origin, perform the 

indicated rotation, and then translate the origin back to (a, b). Thus, rotation of R2 about any 

point (a, b) through angle 0 exists and is the isometry t(a,b)rot(a~b)" Hence, from the point of view 

of isometries, the Euclidean plane looks the same at each of its points. Also, note that reflection 

is possible in any line L by conjugating f with an isometry f which carries the x-axis to L. If L 

passes through the origin, let f be the rotation which takes the x-axis to L. If not, let f be the 

product of a translation and a rotation (J = rot). If L crosses the x-axis then let t = t(x,o), and if 

L crosses the y-axis, let t = t(o,y). 

It is easy to check that these fundamental isometries do indeed preserve distance. Translations 

and reflections in the axes are obviously invariant with respect to the square of the distance 

(x2 - x1)2 + (y2 - y1)2. Rotations about the origin also leave the square of the distance invariant 

as shown below: 

(x; - x~)2 + (y~ - YD 2 = (x2 cos 0 - Y2 sin 0 - x1 cos 0 + Y1 sin 0) 2 

+ (x2 sin 0 - Y2 cos 0 - x1 sin 0 + Y1 cos 0) 2 
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Thus, arbitrary reflections leave distance invariant. 

We now consider all possible isometries expressible as products of t(a,/3), f, and ro. We 

characterize this list of isometries as the isometries generated by t(a,/3), f, and ro. 

Theorem. The isometries generated by t(a,{3), f, and ro form a group under substitution. 

Proof. It is true that each of the three examples have inverses which are also isometries. For 

example, t(
0

1
,/3) = t(-a,-/3), f-1 = f, and r01 = r-o (since rorcp = ro+</J and ro = Id). The product 

of isometries is associative and the identity function is an isometry so it follows that the isometries 

generated by t(a,/3), f, and ro form a group under substitution. I 

Below we will show that all isometries of R2 are generated by t(a,/3), f, and ro and thus the 

isometries of R2 form a group. We do this by showing that both translations and rotations are 

products of reflections. 

Theorem. Any translation or rotation is the product of two reflections. Conversely, the product 

of two reflections is a rotation or translation. 

Proof. We first show that the translation t(o,8) is the product of the reflection f in the line y = 0 

and the refection t(o,J/2)ft(O~J/2) in the line y = 8/2. This is shown by the following: 

(x, y) ....+ (x, -y) by f 

....+ (x, -y - 8/2) by t(O~J/2) 

....+ ( x, y + 8 /2) by f 

....+ (x, y + 8) by tco,&/2) • 
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We next show r8 = r812 f r;
1
1r(x, y). In other words, a rotation is the product of a reflection 

in the x-axis and a reflection in the line obtained by rotating the x-axis through the angle 0 /2. 

This is shown by the following: 

(x, y) ~ (x, -y) by f 

~ (xcos(B/2) -ysin(B/2), -xsin(B/2) -ycos(B/2)) by 

~ (xcos(B/2) -ysin(B/2), -xsin(B/2) + ycos(B/2)) by f 

~ (x cos2 ( 0 /2) - y sin( 0 /2) cos( 0 /2) - x sin2 
( 0 /2) - y sin( 0 /2) cos( 0 /2), 

xsin(B/2) cos(B/2) -ysin2 (0/2) + xsin(B/2) cos(B/2) + ycos(B/2)) 

= (xcos0-ysin0,xsin0+ycos0) by r012 • 

Conversely, suppose we have reflections f L, f M in lines L, M. We choose L to be the x-axis, 

so f L = f, and if L meets M, we choose their intersection to be the origin. In this case, fMf L = r0 

by the previous calculation. (Let 0 /2 be the angle between L and M.) If L does not intersect M, 

then f Mf L = t(o,&) by the first calculation above. I 

Having shown that the fundamental isometries are products of reflections, we can conjecture 

the following theorem. We do not prove it here because the essential ideas are characterized by 

the result. It is however rigorously proved in Stillwell (p.10). 

Theorem. Any isometry f of R 2 is the product of one, two, or three reflections. 

Corollary. The isometries of R 2 form a group. 

Proof. It is true that associativity holds for the products of isometries since isometries are maps. 

It is also clear that the identity map is the identity isometry. By the previous theorem, we know 

that all isometries are products of reflections. Since reflection in any line is self-inverse, the inverse 

of the isometry T£1 • • • f LN is just f LN · · · T£1 • Thus, the isometries of R 2 form a group. I 

Orientation 

Orientation refers to the sense of transversal of a clockwise oriented circle in R 2 • It is intuitively 
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clear that the product of an even number of reflections preserves the sense of a clockwise oriented 

circle in R 2 • Such a transformation is called orientation preserving. It is also intuitively clear 

that the product of an odd number of reflections reverses the orientation of a circle in R 2 • Such a 

transformation is called orientation reversing. 

The orientation preserving isometries of R 2 are rotations and translations. The orientation 

reversing isometries of R 2 are called glide reflections. A glide reflection is defined as the product 

of a reflection with a translation in the direction of the line of reflection. In other words, we call / 

a glide reflection if f = t(o:,/3)r. An ordinary reflection is the special case of a glide reflection with 

trivial translation. 

Theorem (Classification of Euclidean Isometries). Each isometry ofR2 is either a rotation, 

translation, or glide reflection. 

Hence, we have classified the group of isometries in Euclidean plane. We will want to mir­

ror this group theory development when we approach understanding the isometries of hyperbolic 

geometry. Next we discuss the differential approach to Euclidean geometry. 

Differential Approach 

The calculus approach presents a method of finding angle-preserving maps of the Euclidean 

plane. Although we have already shown that in R 2 distance-preserving maps are also angle­

preserving, we will see that this is not necessarily the case in hyperbolic geometry. Hence, being 

able to find the angle-preserving maps is necessary. The way to do this is with a tangent push­

forward. This concept also gives the straight lines as curves of shortest length and shows that area 

is a geometric invariant. 

Tangent Push-Forward 

Consider the neighborhood of a point PE R 2 and consider any curve in R 2 through P, where 
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a curve is defined to be a continuous function ,(t) = (,1(t),,2(t)) from an interval [a,b) into R 2 . 

If, goes through P then ,(c) = P for c E [a, b). If, is differentiable, then ,'(c) is a tangent 

vector at P. In fact, all vectors in Tp(R2 ), the tangent plane to R 2 at a point P can be realized 

as tangents to some curve. So, consider a function J: R2 ➔ R 2 . Given a curve ,(t) E R2 the push 

forward of the tangent vector 1
1 

( t), J * ( 1 1 
( t)) E R 2 is defined by 

J*(,(t)) = DJ(,(t))(,'(t)) = [8Jif8x1 8fi/8x2] ['} ] 
8h/8x1 8f2/8x2 12 

[
8Jif 8x1 8Jif 8x2] . . . 

where DJ= 8f2/8x1 a12/ax2 IS known as the Jacobian matnx. 

An angle-preserving mapping is called a conformal mapping. 

Theorem. J is conformal if and only if DJ= [ !.£1l1~ ~~~~~;] or 

DJ= [8Ji/8x 8Jif8y ] 
8Jif8y -8Ji/8x · 

Proof. For ease of notation we set 8fi/8x = a and 8fi/8y = b. Let J = (Ji, h), DJ= [ ~b ! ], 
and v = (v1, v2), w = (w1, w2). 

Then J*(v) = DJ(v) = [ abvvi ++bv2 
] and J*(w) = DJ(w) = [ abwwi + bw2 ] . 

- 1 av2 - 1 + aw2 

Conversely, assume J = (/1 , h) is conformal. Then J*(e1)•J*(e2) = 0 and if J*(v)•J*(w) = 

>.(v•w) V v, w, then J*(e1)• J*(e1) = J *(e2)• J*(e2) and ac + bd = 0. Thus, a2 + c2 = b2 + d2. 

Summary: J will be conformal if J*(e1)•J*(e1) = J*(e2)•J*(e2) and J*(e1)•J*(e2) = 0. 

J.(e1 ) =DJ[~]=[~~:~~:]=[~] J,(e2) = DJ m = [~~:~:] = rn 
This gives the equations: ab + cd = 0 and a2 + c2 = b2 + d2 , 

which imply a = d and c = -b or a = -d and b = c. 

Requiring these matrices to be conformal gives either: 
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8fi/8x = oh/oy } 

oh/ox= -8Jif 8y 
(Cauchy - Riemann equations) 

or 
8fi/8x = 8h/8y } 

-8h/8x = 8Jif8y. 

These will be useful in our study of hyperbolic geometry. 

Thus, angle preserving maps can be represented by two different types of Jacobian matrices. The 

two types are as follows: 

Dfi = [ 8Ji/8x 8Ji/8y] 
-8Ji/8y 8Ji/8x 

or Dh = [8Ji/8x 8Ji/8y ] 
8Ji/8y -8Jif8x 

Note: ldetDfil > 0 and ldetDhl < 0 

Also important to our study are the length of curves and the area of regions in the Euclidean 

plane. 

Length 

Given points a, b E R, consider a curve parameterize9- by, in R such that, = ,1 (t) + ,2(t) 

which starts at ,(a) and end at ,(b). Such a curve has a length if it is differentiable. The length 

of , is defined by 

L(-y) = [ J11(t)•11(t) dt 

= [ J,; (t)2 + 1Ht)2 dt 

Definition. A geodesic between points P1 and P2 is a curve with endpoints P1 and P2 that has 

shortest length. 

Theorem. Euclidean geodesics are straight lines. 

The proof presented here may appear more complicated than necessary. However, this proof 

can be translated very easily for the case of hyperbolic geodesics. 
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Proof. Without loss of generality, we can consider a curve ,(t) E R 2 such that ,(a) = p and 

,(b) = q where p, q lie on the y-axis. Then since 

L(-y) = [ ✓-y((t)2 +-y~(t)2dt 

;::: [ ✓-y;(t)2 dt = [ 1-Y((t)idt 

;::: [-y((t) dt 

= ,1 ( b) - ,1 (a) = q1 - Pl. 

Further, if L(,) = q1 -p1 , then ,~(t) = 0 and also ,f (t) ~ 0. Hence, the curve of shortest Euclidean 

distance between two points is a line. 

Area 

Definition. Let D be a region in the Euclidean plane. Then the area of D is defined as 

A(D) = J l dA = J l dxdy. 

The intuitve description of calculating area depends on the notion of partitions. Given a 

region D we find A(D) by partitioning D into infinitesimal regions whose areas are simple to find. 

Then the area of D is approximated by a sum of the areas of the regions. In other words, if 

D1, D2, · · · , Dn form a partition of D then the area of D is the sum of the areas of D1, D2, · · · , Dn. 

Theorem. Length and area are invariant under Euclidean isometries. 

Proof. It is easy to show length is invariant under isometries. This is because f * ( ,') • f * ( ,') = ,' •,'. 

To show area is invariant, we show 

A(J(D)) = Jr [ dxdy = Jr [ I det(DJ)ldxdy = A(D). 
Jf(D) ln 

We have seen that the fundamental isometries for R2 are translations, rotations, and reflections. 

Each of the fundamental Euclidean isometries can be associated to a matrix. They are as follows: 

Translation= [ ~ ! ] lwtation = [ ~ -~n Reflection= [-;/ ~] . 
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It is easily seen that each of these matrices has I det I= 1. Hence A(f (D)) = A(D). I 

We now have a solid foundation for Euclidean geometry - the Euclidean plane, Euclidean 

distance, lengths of curves, and areas of regions. Our next step is to introduce hyperbolic geometry 

using Euclidean geometry as a guide. 



Section 3: Hyperbolic Geometry 

Using our knowledge of Euclidean geometry, we wish to examine hyperbolic geometry. We 

will develop two model spaces for hyperbolic geometry in this section; the upper-half plane model 

space and the unit disc model space. The fact that hyperbolic geometry has more than one model 

space is a very useful feature and one that distinguishes it from Euclidean geometry (which only 

has R 2 as its model space.) Each of the hyperbolic model spaces realizes the hyperbolic axioms 

yet is unique for its own reasons. We will juxtapose both models to geometrically understand 

hyperbolic isometries. 

Recall the Euclidean model space is the Euclidean plane R 2 • A reasonable hyperbolic model 

space, then, should be an analogue to the Euclidean plane that realizes the ideas of hyperbolic 

lines, angles, and circles, and is consistent with the hyperbolic postulates. We first introduce the 

upper-half plane model for hyperbolic geometry. 

We define one hyperbolic model space to be the upper half plane of the complex plane with a 

hyperbolic distance function. We consider the real plane R 2 as the complex plane C by identifying 

the point (x, y) E R 2 with z = x + iy E C. The upper half plane model, H 2 , is the set of points 

H2 = {z = x + iyly > O}. The upper half plane is also called the hyperbolic plane. The hyperbolic 

metric is defined by ds = J(dx 2 + dy2 )/y. We will see that this change in the defintion of ds causes 

our notions of "lines" and "circles" from Euclidean geometry to change but does not affect our 

notion of "angles." We will show that H 2-lines are of two types: Euclidean semicircles lying in H2 

with centers on the x-axis, and vertical Euclidean lines lying in H2 . Hyperbolic circles are defined 

as the set of points equidistant (hyperbolically) from a point. This is the same as the Euclidean 

circle definition. However, with the change in distance, the center of a hyperbolic circle is not the 

same as the center of a Euclidean circle. The locus of points, though, is a Euclidean circle. Since 

distance in H 2 is more complicated than distance in R 2 , we develop the model space for hyperbolic 

geometry using differential calculus. We then use Klein's approach to understand the geometry by 

examining its isometries. First, we develop our understanding of complex functions which will be 
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used as tools in the differential approach. 

Two Types of H 2-Lines 

Complex functions 

Complex functions turn out to be useful in the study of hyperbolic geometry. Recall the 

identification of (x, y) E R2 with z = x + iy E C. This identification is useful because two 

real variables are associated with one complex variable simplifiying computations. The complex 

numbers C support a multiplication with the usual rules except that i2 = -1. 

Definition. 

1. x=ztz=Rez z-z I y=~= mz 

11. z = x - iy is the conjugate of z. 

m. lzl = Jx2 + y2 is the modulus of z. 

Let z = (x+iy) and w = (u+iv) be complex numbers. Then z and w obey the following properties: 

z zw 
w = lwl2· 

11. zw = (x + iy)(u +iv)= xu + iuy + ixv + i2vy = (xu - vy) +(xv+ uy)i 

m. zw = (z)( w) 

1v. lzwl = lzllwl 

v. zz = (x + iy)(x - iy) = x2 + y2 = lzl2. 

We have claimed that hyperbolic angles are the same as Euclidean angles. We are therefore 
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interested in understanding conformal mappings of the hyperbolic plane. Recall the proof of 

conformal mappings in the Euclidean section. There, we introduced the Cauchy-Riemann equations 

for J = Ji + i h: 
8Ji/8x = 8h/8y 

8h/8x = -8Jif 8y 

These are very special in hyperbolic geometry. 

Definition. A complex-valued function f = Ji + ih is said to be holomorphic if 8J /8x = 

1 
"78! /8y. f is antiholomorphic if f is holomorphic. We note that holomorphic functions are 
1, 

orientation-preserving mappings of H2 and antiholomorphic functions are orientation-reversing 

mappings of H2 . 

Theorem. f: C ➔ C is holomorphic if and only if lim f ( z + h) - f ( z) , h E C exists. 
h➔O h 

Proof. Assume that f is holomorphic. Then 

J(z + h) = J(z) + J'(z)(h) + E 

J(z + h) - J(z) J'(z) + E 
=----

h h 

Since the Taylor series for f can be written as: 

8J 8J 
f (z + h) = f (z) + ax (z)h1 + ay (z)h2 + E 

where lim IEhl = 0. Hence, Jim f(z + hI- f(z) = J'(z) = 8
8
1 

h➔O h➔O X 

. J(z+h)-f(z) 
Conversely, assume that hm h = l 

h➔O 

There are two cases: 

1 D hER l=l· J(x+h,y)-J(x,y)=8J 
• L' or ' 1m h a 

h➔O X 

2. For h = it,l = lim f (x, y + t) - J(x, y) = l/iaJ 
h➔O it 8y 

So, l = 
8
8
1 = ~ 8

8
1 . Hence, f is holomorphic. I 

X 1, y 

Holomorphic functions have a well-defined derivative defined by the difference quotient in z. 

The notation we use when f is holomorphic is df /dz= fi/x + if2/y = f'(z) which is analogous to 

the familiar notation used in ordinary calculus. 
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Theorem. Let f: C ➔ C be a given function. Then f'(z) exists if and only if f = Ji+ ih is 

differentiable in the sense of real variables and at ( x, y), the functions Ji, h satisfy 81: = 81: and 

8 Ii ah ( h C h R. . ) Tit,. .f a Ii a Ii ah ah . . ~=--a t e auc y- iemann equat10ns. JJUS, l -a, -a,-, - exist, are contmuous 
uy X X y ax ay 

on C and satisfy the Cauchy-Riemann equations, then f is holomorphic on C. 

Proof. [2] Suppose f'(zo) exists in the limit f'(z0 ) = lim f(z) - J(zo), let us take the special 
z➔zo z - zo 

case that z = x + iyo. Then 

J(z) - f (zo) = u(x, Yo)+ iv(x, Yo) - u(xo, Yo)+ iv(xo, Yo) 
z - zo X -Xo 

u(x, Yo) - u(xo, Yo) . v(x, Yo) - v(xo, Yo) =-------+i-------
x - Xo X - Xo. 

As x ➔ xo, the left side of the equation converges to the limit f'(z0 ). Thus, both real and 

. . f h . h .d 1· · Th. 1· · · au ( ) · av ( ) 1magmary parts O t e ng t Sl e must converge to a 1m1t. lS 1m1t lS ax xo, Yo + i ax Xo, Yo . 

I au .av 
Thus, f (zo) = ax + i ax. 

Now let z = xo + iy. By a similar argument, we get 

!'(zo) = au+ iau = av - iau. 
ax ax ay ay 

By comparing real and imaginary parts of these equations, we derive the Cauchy-Riemann equa­

tions as well as the two formulas for J'(z0 ).1 . 

Theorem. Suppose that f and g are holomorphic on C. Then 

1. af + bg is holomorphic on C and (af + bg)'(z) = af'(z) + bg'(z) for any complex numbers a 

and b. 

11. f g is holomorphic on C and (f g)'(z) = J'(z)g(z) + J(z)g'(z). 

. . f'(z)g(z) - g'(z)J(z) 
m. If g(z) # 0 for all z EC, then f /g 1s holomorphic on C and [f /g]'(z) = [g(z)]2 . 

1v. go f is holomorphic and (g(f (z)))' = (g'(f (z))f'(z). 

Proof. These proofs are easily derived from calculus. Hence, we will only prove the holomorphic 

portion of iv. 

Let J(z) = J(x + iy) = J(x, y)and g(w) = g(u +iv)= g(u, v). 



Then g(J(z)) = g((J1)(z) + ih(z)) = g(J1(z), h(z)). 

~(g(J(z)) = ag a1i + iag a12 
ax &u ax av ax 

= (ag a1i + iag (ah) 
az ax az ax 

= ag ( a Ji + i ah ) 
az ax ax 

S a ( !) _ ag aJ _ ,1, o, - go - -- -g ax az ax 

d . .1 1 a ( !) ag aJ , .1, 
an s1m1 ar Y, ay g O = az 8y = g 'l . 

So ! (g o I) = 1/i ~ (g o J) 

Hence, (g o J) is holomorphic. I 
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Recall the idea of the tangent push-forward. It now makes sense to discuss the push forward 

in terms of complex numbers so that we can describe the angle-preserving maps of the complex 

plane. 

Consider a function f: C ➔ C. Given a vector h = h1 + ih2 , J*(h) in R 2 is defined by 

J*(h) = [aJifax aJifay] [h1 ] 
a12/ax a12/ay h2 

Letting h = h1 + ih2 for h EC with h = h1 - ih2 gives 

f (h) = ( a Ji h + a Ji h ah h + ah h ) 
* ax l ay 2

' ax l ay 2 

= (a1i h1 + a1i h2) + i(ah h1 + ah h2) 
ax ay ax ay 

= (a1i + iah )h1 + (a1i + iah )h2 
ax ax ay ay 

= aJ h1 + aJ h2 
ax ay 
aJh+h aJh-h =---+---ax 2 ay 2i 

= ( 1 aJ + 1 aJ )h + ( 1 aJ _ l aJ )h 
2 ax 2i ay 2 ax 2i ay 

= a J h + a f h where a J = ~ ( a J + ~ a J) and a J = ~ ( a J _ ~ a J) 
az az az 2 ax i ay az 2 ax i ay 

Note that if f is holomorphic, then %f = 0 and so f *(h) = %f h. Thus, orientation-preserving 

conformal mappings in the hyperbolic model are holomorphic mappings. Similarly, orientaion­

reversing conformal mappings are antiholomorphic mappings. 
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A special type of holomorphic function is a Mobius transformation. 

Definition A Mobius transformation is a holomorphic function f(z) of the form f (z) = az +db 
cz+ 

and ad - be # 0. 

ad- be -dw + b 
We note that: f'(z) = ( d) 2 and 1-1{z) = ---. 

cz + we- a 

A fundamental theorem from complex analysis [2] is: 

Theorem. If f: H 2 ➔ H 2 is holomorphic, 1-1, and onto, then f is a Mobius transformation. 

Every Mobius transformation is uniquely determined by a 2-by-2 invertible (ad - be # 0) 

complex matrix. The Mobius transformation f(z) = az +db corresponds to the complex matrix 
cz+ 

[: ! ] . We show that the composition of two MObius transformations can be expressed as the 

corresponding matrix product of complex matrices. 

!() (az+b) d ( ) (Aw+B) b M .. b. c . Th 
Let z = (cz + d) an g w = (Cz + D) e o ms trans1ormat10ns. en 

Af(z) + B 
g O f= g(f(z)) = Cf(z) + D 

A((az + b)/(cz + d)) + B 
= C((az + b)/(cz + d)) + D 

A(az + b) + B(cz + d) 
= C(az + b) + D(cz + d) 
_ (Aa + Bc)z +(Ab+ Bd) 
- (Ca+ Dc)z + (Cb+ Dd). 

N . h (Aa + Bc)z + (Ab+ Bd) 
otice t at --------- corresponds with matrix multiplication 

(Ca+ Dc)z +(Cb+ Dd) 

[ 
A B] [ a b] = [ ( Aa + Be) 
C D c d (Ca+Dc) 

(Ab+ Bd)] 
(Cb+ Db) . 

There are three types of Mobius transformations. They are translations, multiplications, and 

divisions. They and their associated matrices are described as such: 

Translation: 

f(z)=z+b bER 
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Multiplication: 

J(z) = az a> 0 ER 

Division: 

J(z) = -l/z = z/lzl2 = -x + iy/lzl2 

Note that each of the matrices associated to each example has det>0 and all entries are real. 

Theorem. Every Mobius transformation can be represented as a composition of the three types 

of transformations. 

Proof. Case 1: If c = 0, then f (z) = az + b. Thus, J(z) is a translation of a multiplication. 

a b + (a/ c )d a ad - be -1 . . 
Case 2: If c =/ 0, then J(z) = - + d = - + 2 d/ . Thus, J(z) 1s translation 

C CZ+ C C Z - C 

-1 (ad - be) 
of z by -d/ c, followed by division by - , followed by multiplication by 2 , followed by 

Z C 

translation by ~. I 
C 

An important class of Mobius transformations are those which preserve the upper half plane. 

Such a transformation must map the real axis onto itself. That is, ( ax + b) / ( ex + d) has to be real 

for all real x. This implies that we may assume a,b,c,d are all real. Now compute the imaginary 

f f ( ) . I f ( ) _ ad Imz - be Imz _ ( ad - be) lmz S h d b . d 
part o z . m z - lcz + dl2 - lcz + dl 2 . o we must ave a - c > 0 m or er 

that f: H2 ➔ H2 . 

Summary: The Mobius transformations which preserve the upper half plane (Imz > 0) can be 

taken to be of the form J(z) = (az + b)/(cz + d) with a,b,c,d E R, and ad.:._ be > 0. Moreover, 

Imf (z) = (ad - bc)lmz. 
lcz + dl2 

Theorem. Mobius transformations that map H 2 to itself under the composition function oper­

ation are isomorphic as a group to the group of matrices GL:i(R)+ = { [: ! ] la, b, c, d E R, 

det > 0} under matrix multiplication. 

An interesting property of H 2 is that any point in it can be mapped to any other point in H 2 

by one of these special Mobius transformations. It follows that any hyperbolic line can be mapped 
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to any other hyperbolic line by means of a special Mobius transformation. The next example shows 

this by mapping a semicircle onto the positive imaginary axis. 

Example. Given two points z1, z2 E H 2 we can find the Mobius transformation which maps 

z1 t--t i and z2 t--t ai for all a > 0. First, construct the circle through z1 and z2 which is 

orthogonal to the real axis. (This must map to a vertical straight line to preserve orthogonality to 

the real axis.) Then J(z) = z - wi and detf(z) = (w1 - w2) > 0. Thus f is the correct type of 
ZW2 

Mobius transformation and it maps the semicircle onto the positive imaginary axis. 

Now, let {3f (z1) = i. So, g(z) = {3f (z) produces g(z1) = i. If g(z2) lies above i then we are 

finished. If not, divide by -1/g(z). This will preserve i, and so we are done. 

Theorem. Every Mobius transformation maps circles to circles. 

( Convention: A circle which contains infinity is a straight line.) 

Proof. The translation case is trivial. To prove the multiplication case, let a circle in complex 

notation be denoted by z = z0 +rei8 . Applying a multiplication to z gives az = az0 +arei8 which is a 

circle with center azo and radius lair. Finally, to show the trarislation case, let lzl2 -(zolz+z-oz) = 

r 2 
- lzol 2 represent a circle in complex notation. Applying w = f(z) = -1/z to z gives 

r2 - lzol2 = 1- 1/wl2 + (zo/w + zo/w) 

Case 1: r2 
- lzol2 = 0 gives 1 + (z0w + zw) = 0, a straight line. 

Case 2: r2 - lzol2 =IO gives lwl 2 -wow+wow) = -1/r2 - lzol2 where wo = zo/r2 - lzol2, a circle.I 

Interestingly, Mobius transformations preserve length in the hyperbolic plane. In fact, Mobius 

transformations turn out to be the orientation-preserving isometries of the hyperbolic plane. In 

order to show this we must first understand what is meant by the term length in the hyperbolic 

plane. 



Page 22 

Differential Approach 

Length 

Recall that the Euclidean length of a parameterized curve 1 is defined by 

where ,: [a, b] ~ R 2 and ,(t) = ,1(t) + ,2(t). Also recall that J'(z) = ad - bc/(cz + d)2 are 

the Mobius transformations which preserve the upper half plane. Furthermore, f'(z)h = f* is 

the linear mapping from Tz(C) ➔ Tf(z)(C). We have shown this mapping is conformal but it 

does not preserve Euclidean lengths. Thus, we need to develop the idea of a metric in order to 

redefine lengths of tangent vectors so that f * does indeed preserve Euclidean lengths. A metric is 

a differentiable function giving the infinitesimal distance ds between any two points. 

Recall that the Euclidean length IJ.(h)I = lf'(z)llhl = lad - ~
2 

lhl. We develop hyperbolic 
cz+d 

length by modifying I h I so that the modified I/. ( h) I = modified I hi. Recall Im i°z + b I = ;°d - ~; lmz = 
. CZ+ d CZ+ d 

IJ'(z)llmz Hence we divide IJ,(h)I by lmf(z). This gives J~}tl\ = I~~- So we define the hyper-

bolic length of a tangent vector hat z to be 11h11 = lhl , i.e., IIJ*(h)II = llhll-Imz 
Thus, the infinitesimal hyperbolic distance ds = ldzl/Y = ydx

2
+dy

2
• 

y 

From this, we can compute the hyperbolic length L of 1 : [a, b] ~ H2 where 1 = 11 (t) + , 2 (t): 

-lb ✓d,i + d,~ 
L - ( ) dt. 

a 'Y2 t 

Remark. (1.) Note that the infinitesimal distance in H2 , ds = ydx:+dy
2

, is simply the Euclidean 

distance divided by y. Hence, the ratio between the two is a constant, independent of direction. 

Thus, angle, which is determined by the side lengths of infinitesimal triangles, is the same when 

determined by either distance function. 

(2.) This also highlights the fact that hyperbolic arc length is the same as Euclidean arc length 

divided by y. So, in a sense hyperbolic arc length is "longer" than Euclidean arc length. 
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Having a metric enables us to calculate the lengths of curves. The following examples illustrate 

this point. 

Example. Calculate the hyperbolic arc length between the point i and 1 + 2i. We can express 

this line as y = x + l, 0 < x < l and also as z = x + iy = x + i(x + 1). Hence, dz= dx + idx and 

ldzl = 1(1 + i)dxl = ./2,dx. So, lldzll = ldzl/Y = ./2,dx/(x + 1). Integrating gives 

L = [ hdx/(x + 1) = hln(x + l)li = v'2ln2. 

Theorem. The inflnitesimal distance ds2 is preserved under a Mobius transformation. 

Proof. Let T = az +db. We let T* ( ds2 ) represent T applied to the infinitesimal distance. 
cz+ 

Then, 
2 _ IT'(z)l 2 (IT'(z)ldz) 2 

T*(ds ) - lm(T(z))2 = (IT'(z)llmz)2 = 
dz2 

(lmz)2 • 

Theorem. The hyperbolic arc length of curves is invariant under Mobius transformations. Thus, 

the Mobius transformations are isometries of the hyperbolic plane. 

As in Euclidean geometry geodesics are defined to be. the curves of shortest length. In order 

to see what these curves look like in the hyperbolic plane we must observe which curves are of 

shortest hyperbolic arc length. There are two types of geodesics in H2 ; vertical straight lines that 

intersect the imaginary axis and semicircles that are centered on the x-axis. 

Theorem. Hyperbolic geodesics are vertical line segments or reparameterizations of vertical line 

segments. 

Proof. Recall the proof for geodesics in Euclidean geometry. We adjust the proof using hyperbolic 

arc length. Note that we have already shown that arcs of circles centered on the x-axis can be 

transformed into a vertical line segment by a Mobius transformation. Thus, to show that arcs 

of circles centered on the x-axis are geodesics, it suffices to prove that vertical line segments, are 

hyperbolic geodesics. 

Examine the vertical straight line, say the line between the two points ai and bi, for O < a < b. 

It is an easy exercise to show that the length of the line segment is ln(b/a). 
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Now consider any curve in the upper half plane starting at ai and ending at bi. Assume it is 

parameterized by a::;; t::;; b with x = x(t) y = y(t). Then 

L = t ldzlfy 

= t Ix' (t)dt + iy' (t)l/y(t)dt 

= t J x'(t)2 + y'(t)2 /y(t)dt 

;::: t Jy'(t)2 /y(t)dt 

= [ 1y'(t)ldt/y(t)dt 

;::: t y'(t)dt/y(t) 

= ln y(t)l: 

= lnb/a. 

Thus, the vertical line segments give the shortest length, lnb/a. If L = lnb/a, then x'(t) = 0 and 

y'(t) ~ 0. Hence, the only shortest curve from ai to bi is a reparameterization of a vertical line 

segment. 

Thus we know all of the geodesics. 

Introduce the notation d(z1, z2) = hyperbolic distance between z1 and z2 Thus, we know 

d(ai, bi) = lln b/al. This function is a differentiable function giving the distance between two 

points. It satisfies the following properties: 

Hence d(z1, z2 ) is a metric for H 2 

This idea of a metric allows us to define a method of calculating hyperbolic lengths in terms 

of Euclidean distance. The method we will use will be to rewrite ln(b/a) to obtain ed(z1, z2) = b/a 



ed(z1, z2) = lz1 - 221 + lz1 - z2I. 
lz1 - z2I - lz1 - z2I 

Example. Let z1 = i z2 = 1 + 2i Then 

lz1 - z2I = Ii -1 + 2il = Jio 

lz1 - z2 I = Ii - 1 + 2il = V2 

Hence, 
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Thus we have developed the idea of finding hyperbolic lengths in terms of Euclidean distance. 

In general, the formula is valid if z1 = ai and z2 = bi, b > a. If not, note that both sides of the 

formula remain unchanged if we apply Mobius transformations. So, if it is not true that z1 = ai 

and z2 = bi, b > a then apply a Mobius transformation to make z1 = ai and z2 = bi, b > a. 

Having a method to calculate lengths enables us to d(;!velop some formulas in hyperbolic 

trigonometry. We define the following: 

By substitution we obtain 

tanhx = (e2x - 1)/(e2x + 1) 

sinh(d/2) = lz1 - z2l/2Jimz1Imz2 

cosh(d/2) = lz1 - z2l/2Jimz1Imz2 
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Claim. A hyperbolic disc of center z0 and radius r can be represented by a Euclidean disc with 

center= a+ bcosh r and radius= bsinh r. 

Proof. Let z0 =a+ ib z = x + iy. Then d(zo, z) = r. 

S h2 ( / 2) h2 (d(zo,z)) ( lz - zol )
2 

o cos r = cos --- = 
2 2Jlmzlmzo 

(x-a) 2 +(y-b)2 

= 4yb 

h2 ( / 2) cosh(r) - 1 Then, smce cos r = 
2 

. 2 2 (cosh(r) - 1) 
weobtam(x-a) +(y-b) = 

2 
2yb 

= (x - a) 2 + (y2 
- b(2cosh(r))y + b2 = 0 

= (x - a) 2 + (y- b(2cosh(r)))2 
- b2 cosh2 (r). 

Hence, a hyperbolic circle is a Euclidean disc with center=(a, bcosh(r)) and radius=bsinh(r).I 

Hyperbolic Area 

We can find the area of a hyperbolic region using a similar method to finding area in Euclidean 

geometry. Recall the double integral formula for Euclidean area: 

A(D) = J L dA = J L dxdy, 

where dx represents the Euclidean width of the region and dy represents the Euclidean height of 

the region. The area of a region in the H2 model is found using the hyperbolic width dx/y and 

the hyperbolic height dy/y. Hence, the double integral formula for finding the H 2-area of a region 

Dis: 

A(D) = J L dA = J L dxdy/y
2

. 

Example. Assume we have a triangle with all three vertices at infinity. 

Jr f dxdy/y2 = f 1 j 00 

dy/y2 dx 
J -1 ~ 



= f 1 -1/y lex> dx 
-1 ~ 

= f 1 1/ J1 - x2 dx 
-1 

= lo sin0/ sin0d() 

= 1r. 

Theorem. Mobius transformations that preserve length will preserve area as well. 
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Proof. We mimic the proof of ldzl/Imz as an invariant to show dA = Im (dzdz)/2i(Imz) 2 is 

invariant. Recall that Euclidean area is invariant under Mobius transformations. This is because 

A(w(D)) = j''f dxdy = J,. [ ldet(Dw)ldxdy. 
lw(D) Jn 

Note dxdy = 1/2i(dx + idy)(dx - idy) = -1/2idz dz. 

!''{ . dzdz 
Thus, A(D) = j D 1/2i (Imz )2 . 

-dz 
We want to find A(w(D)), so we let w = az + b/cz + d. This makes dw = --- and dw = 

lcz + dl2 
dz . I 12 - I - 12 - - dz dz lcz + dl2. Smee c, d E R, cz + d - cz + d . Hence, dw dw - lcz + dl4 . But 

dw dw (az + b)(cz + d) 
= 

IImwl lcz + dl2 

(aclzl2 + bd) + (bcz + adz) = ----------
lcz + dl2. 

Now note bcz + adz = (be+ ad)z + i(ad - bc)z and observe that the imaginary part of this is 

lmz dwdw 
simply a Mobius transformation that has <let = 1. Hence, Imw = lcz + dl2 . Hence, IImwl = 

( 
dz dz I Imz ) dz dz 

lcz + dl4 lcz + dl2 = (Imz)2. Thus, A(D) = A(w(D)).1 

Isometric Approach 

Recall the three types of Mobius transformations: translations, multiplications, and divisions. 

Having a metric allows us to see that each of these is a hyperbolic isometry. Recalling our Euclidean 



Page 28 

isometries, it seems that we have forgotten hyperbolic rotations. These are hard to understand in 

the H2 model. For this reason, we introduce a second model space for hyperbolic geometry, the 

unit disc model space, denoted D 2 . 

Definition. A biholomorphism is a 1-1, onto, holomorphic map with holomorphic inverse. 

Theorem. The function f(z) = iz + ~ a biholomorphism that maps H 2 to the unit disc. 
z+i 

Proof. The Mobius transformation w = J(z) = (iz + l)/(z + i) maps the upper half plane to 

the unit disc with all points on the real axis mapping to the boundary of the unit disc. It is 

obviously 1-1 and onto. w is holomorphic because J'(z) = :~ and J-1 is also easily shown to be 

holomorphic. I 

Remark. An important characteristic of the unit disc model is that its natural boundary, the unit 

circle, represents the circle at infinity. The points that are on this circle are not really points of D 2 

but rather limits of points in D 2 . The translation of this line in H2 corresponds to the imaginary 

axis. 

Applying J(z) = (iz + 1)/(z + i) to a hexagon in H 2 

The unit disc model is useful in exhibiting the fact that there are two types of parallel lines 

in hyperbolic geometry due to the hyperbolic parallel postulate. 

Definition: Two geodesics which do not intersect are asymptotically parallel if they share a point 

at infinity. 

Definition: Two geodesics which do not intersect are disjoint parallel if they share no points at 

all. 
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We define D 2 -distance between points w1 , w2 E D 2 to be the H2 distance between 
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J-1 (wi) , J-1 (w2 ) E H2 . D 2 -lines are circular arcs orthogonal to the unit circle bounding D 2 . 

This description includes the diameters of D 2 ( which are Euclidean line segments.) 

Two Types of D 2 Lines 

The isometries of D 2 , then, are the conjugates JhJ- 1 of H 2-isometries h. To show rotations 

are isometries, where rotations about the origin in D 2 are defined by re ( w) = eiO w for 0 E R, we 

calculate the D 2 distance. 

Since w = J(z) = (iz + 1)/(z + i) we have z = (-w + 1)/(w - i). Hence, 

ldzl = ld(-iw + 1)1 / Im (-iw + 1) 
lmz ( w - i) ( w - i) 

= 1- 2d~I / Im (1 - i~)(w -!) 
(w-i) 2 (w-i)(w-i) 

= l2dwl / Im (1 - iw)(w + i) 
lw-ij2 lw-ij2 

l2dwl 
=----

(1 - lwl2). 
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It is easy to show that D 2 -distance remains invariant under Euclidean rotations because lwl 

remains unchanged. 

j2dwl 
More generally, ---- remains invariant under Euclidean reflections in a line through the 

(1 - lwl2) 
origin. Because of these invariants, we define the D 2 reflections (in the x-axis) to be f(w) = w. 

As in Euclidean geometry, reflections in hyperbolic geometry are extremely important. Since 

reflection in D 2 about the real axis is f( w) = w, reflection in H 2 is its conjugate by J-1 . Doing this 

calculation gives an H2 reflection about the unit circle to be z = 1/z. It is possible to reflect about 

any circle centered at (a, p). We can do this using H 2-isometries, t 0 dpid;1t~1 . These reflections, 

together with the Euclidean reflections t 0 foyt~ 1 make up all of the H 2 reflections. We will 

discuss further the importance of reflections after a brief look at the geometric description of some 

hyperbolic isometries. 

Geometric Description of Isometries 

It is very useful to understand the geometric meaning of each hyperbolic isometry. Stillwell [7, 

pg. 80] states, "Every H2 isometry, when conjugated to a suitable position, becomes a Euclidean 

mapping. This is very helpful in visualizing hyperbolic geometry." We note that by describing the 

isometries geometrically we are able to observe that each of the two models has its advantages for 

visualizing different isometries. Some are better understood in the H2 model and some are better 

understood in the unit disc model. 

Rotation about the origin in the unit disc model space is re ( w) = ei8 w. Its effect is easily seen 

in the unit disc model. Rotation permutes the diameters of lines through the origin and leaves 

invariant the circles centered at the origin. The effect in the H2 model is the image of the unit 

disc rotation and is more complicated. It suffices to say that a H2- rotation is not a Euclidean 

rotation in the sense of rigid (Euclidean) rotation about one point. Rather, circles get mapped to 

circles and lines get mapped to lines but in a more complicated manner. 

The Mobius transformation t 0 ( z) = a + z denotes a limit rotation about infinity in H2 . A 

limit rotation is easy to understand in the H2 model. Note that analytically t is exactly the 
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transformation which represents a Euclidean translation. Its effect in H2 is to permute the lines 

x=constant and leave invariant the y =constant lines (known as horocycles.) Horocycles have 

no analogues in Euclidean geometry. Limit rotations leave no fixed points in either of the model 

spaces but there is a fixed point at infinity which is the common end of the permuted lines. 

The Mobius transformation f ( z) = az , a > 0 represents translation in H2 along the imaginary 

axis. Note that this isometry is analytically the transformation which represents a Euclidean 

multiplication. A hyperbolic translation permutes the semicircles centered at the origin and leaves 

invariant the y-axis and the lines y = (constant)· ( x). There is no fixed point in either model space 

but there are two on the circle at infinity at the ends of the invariant (H2- or D 2 -) line. 

The Mobius transformation that represents division is the simplest example of a glide reflection 

in H2 , a trivial reflection. The simplest case of a glide reflection is a translation with a reflection in 

the y-axis. A glide reflection, more generally, is the product of a reflection with translation whose 
2 

axis is the line of reflection. It is described as J(z) =a+ 
1
:

12 
z, where a= r0ei0o. The description 

of a translation in H2 holds as a description of a glide reflection in H2 as well. Similarly, a glide 

reflection has two fixed points at infinity. 

This dependence between hyperbolic model spaces is obviously useful in understanding hyper­

bolic geometry. As another example, we can now define H 2-rotations and H 2-reflections by conju­

gating the D 2 -rotations and reflections by J. H 2-rotations are about the point i and H 2-reflections 

are in the unit circle. Reflections are important to us for many reasons. Most importantly, they 

give the H 2-lines as the fixed point sets of H 2-reflections. These are Euclidean semicircles in H2 

with centers on the x-axis and Euclidean half lines in H2 . 

Lemma. The set of points H 2 -equidistant from two points, P, P' E H 2 is an H 2 -line L, and 

H2 -reflection in L exchanges P and P'. 

Proof. We choose P, P' to be mirror images in the y-axis. (If not , use rotation to force the 

positioning.) Hence, reflection f in the y-axis exchanges P and P'. Since f is an H 2-isometry 

which fixes each point Q on the y-axis, it follows that any such Q is H 2-equidistant from P, P' . 
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Hence, we have H 2-length (P' R') = H 2-length (PR) by refelction. Then 

H2 
- length (PR) = H2 - length ( P' R) by hypothesis 

= H2 
- length (P'Q) + H2 

- length (QR) 

= H2 
- length (P'Q) + H2 

- length (QR') by reflection. 

This contradicts the triangle inequality imposed by the hyperbolic metric. Hence, the contradiction 

shows that the y-axis is the complete H 2-equidistant set of P, P'. I 

It is possible to show that each of the fundamental H 2 -isometries are products of H 2-

reflections. For example, an H2 translation, dp = (I/zR1 )(I/zRJ, whenever RJ;J RI = p, where 

R1, R2 are the radii of two semicircles in H2 . An H 2-limit rotation is analytically the same as 

a Euclidean translation. We have already shown that a Euclidean translation is the product of 

Euclidean reflections. Hence, an H 2-limit rotation is the product of H 2-reflections. From this it 

follows that a hyperbolic glide reflection is the product of reflections. This is because we defined 

a hyperbolic glide reflection to be the product of a reflection with a translation. Rotation remains 

to be shown. It is easiest to see that a rotation is the produ'ct of reflections using the unit disc 

model. Recall that the diameter of the unit circle is a D 2-line. It is also a Euclidean line. Hence, 

a Euclidean reflection around the diameter of the unit circle is the same as a hyperbolic reflection. 

Hence, rotation is the product of hyperbolic reflections. From this we conjecture the following ([7], 

p.88) 

Theorem. Each H 2 isometry is the product of one, two, or three H 2 reflections.· 

Corollary. The H 2 isometries form a group. 

Proof. This is similar to the Euclidean case because each reflection is a self inverse. 

This description of isometries in terms of reflections recalls the notion of orientation ( where 

orientation-preserving and orientation-reversing isometries form complementary sets.) In Euclidean 

geometry, an isometry is orientation-preserving if it is the product of two reflections and orientation­

reversing if it is the product of one or three reflections. This is similar in hyperbolic geometry. 



Theorem (Poincare). ({7}, pg. 90) The H 2 -isometries are of the form 

f(z) = az + b, 
cz+d 

where a, b, c, d E R and ad - be = 1 ( orientation-preserving) and 

- -az + b 
J(z) = -+d' -CZ 

where a, b, c, d ER and ad - be= 1 (orientation-reversing). 

Corollary. The D 2 -isometries are the functions 

J(z) = ~z + ~ 
bz+a 

where a, b E C and lal2 - lbl2 = 1 ( orientation-preserving) and 

- az+b 
f(z) = bz + a 

where a, b E C and lal2 - lbl2 = 1 ( orientation-reversing). 

-
Transformation of a hexagon in the H 2-model 

Transformation of a hexagon in the D 2 -model 
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The only orientation-reversing isometry is a glide reflection because it is the product of either 

one or three reflections. It is more complicated in hyperbolic geometry to prove this because of the 

fact that there is more than one type of parallel. Stillwell ([7], p. 96) shows that one must prove 

orientation-preserving and orientation-reversing for three cases in hyperbolic geometry. The cases 

are two intersecting lines, two asymptotic lines, and two disjoint parallel lines. 

Theorem ( Classification of Hyperbolic Isometries). Each isometry of the hyperbolic plane 

is either a rotaion, limit rotation, translation, or a glide reflection. 

This is the final result for which we were aiming. By mirroring the development of Euclidean 

geometry, we used differential calculus to develop a hyperbolic metric. This allowed us to consider 

the hyperbolic isometries and hence describe hyperbolic geometry. In so doing we developed two 

isomorphic model spaces for hyperbolic geometry, H2 and D 2 , which aided in visualizing the world 

of hyperbolic geometry . 



APPENDIX 

Model Space 

ds2 

Arc Length 

Area of Triangle 

Area of Disk 

Fundamental Isometries 

Translations 

Rotations 

Glide Reflections 

Limit Rotations ( about oo J 

Trigonometry Laws 

Law of Cosines 

Law of Sines 

Pythagorean Theorem 

Identities 

EUCLIDEAN 

ds2 = dx2 + dy2 

A= 1r(radius)2 

t0 (z)=a+z 

None 

c2 = a2 + b2 - 2abcos(a) 

sin( a) sin(,B) sin( 1 ) 
-a-= -b- = -c-

c2 = a2 + b2 

cos2 (x) + sin2 (x) = 1 

1 + tan2 (x) = sec2 (x) 

sin(x ± y) = sin(x) cos(y)± 
cos( x) sin(y) 

cos(x ± y) = cos(x) cos(y)± 
cos( x) sin(y) 

• 2 ( / ) 1 - cos( x) sm x 2 = 
2 

2 ( / ) 1 + cos( x) 
COS X 2 = 

2 

HYPERBOLIC 

H2 

dx2 + dy2 
ds2 =--­

y2 

! Jdx2 + dy2 
L= 

y 

A= 41r sinh(radius/2)2 

cos( 0 /2)z - sin( 0 /2) 
r(z) = sin(0 /2)z + cos(0 /2) 

r ei0o2 
-( ) i0o + O -r z = roe I .0 12 z 

roe' o 

cosh(c) = cosh(a) cosh(b)­
sinh a sinh b cos( a) 

cos('Y) = - cos(a) cos(,B)+ 
sin( a) sin(,B) cosh c 

sin( a) sin(,B) sin( 1 ) 

sinh( a) = sinh(b) = sinh( c) 

cosh c = cosh a cosh b 

cosh2 (x) - sinh2 (x) = 1 

1- tanh2 (x) = sech2 (x) 

sinh(x ± y) = sinh(x) cosh(y)± 
sinh( x) sinh(y) 

cosh(x±y) = cosh(x)cosh(y)± 
sinh( x) sinh(y) 

. h2 ( / 2) cosh(x) -1 Sill X = _ ____,.;......;.__ 
2 

h2 ( / 2) cosh(x) + 1 
COS X = 

2 



References 

[1] Greenburg, Marvin J., Euclidean and Non-Euclidean Geometries: Development and History, 

W.H. Freeman, San Francisco, 1980. 

[3] Jones, Frank, unpublished notes from Regional Geometry Institute, Salt Lake City, Utah, 

1992. 

[2] Levy, Silvio and Goodman, Oliver, Hyperbolic vl.0 Mathematica Package, The Geometry 

Center, University of Minnesota, 1300 South Second Street, Minneapolis, MN 55454. 

[3] Marsden,Jerrold E., Basic Complex Analysis, W.H. Freeman and Co., United States of Amer­

ica, 1973. 

[4] Osserman, Robert, Two-Dimensional Calculus, Harcourt, Brace, and World, Inc., New York, 

1968. 

[5] Rosenfeld, B.A., A History of Non-Euclidean Geometry, Springer-Verlag, New York, 1987. 

[6] Ryan, Patrick J., Euclidean and Non-Euclidean Geometry; an Analytical Approach, Cam-

bridge University Press, New York, 1986. 

[7] Saccheri, Girolamo, Euclides Vindicatus, Chelsea Publishing, co., New York, 1986. 

[8] Stahl, Saul, The Poincare Half-Plane, Jones and Bartlett Publishers, Boston, 1993. 

[9] Stillwell, John, The Geometry of Surfaces, Springer-Verlag New York, lnc.,1992. 

[10] Sved, Marta, Journey into Geometries, Mathematical Association of America, United States 

of America, 1991. 

Acknowledgements 

Professor Timothy A. Murdoch served as my thesis advisor during this project. His suggestions 

and guidance aided considerably in my work. For this he is most appreciated. 




