Show simple item record

dc.rights.licenseIn Copyrighten_US
dc.creatorDriest, Kathryn Elizabeth
dc.date.accessioned2014-05-28T17:27:39Z
dc.date.available2014-05-28T17:27:39Z
dc.date.created2014
dc.identifierWLURG38_Driest_CHEM_2014
dc.identifier.urihttp://hdl.handle.net/11021/27899
dc.descriptionThesis; [FULL-TEXT FREELY AVAILABLE ONLINE]en_US
dc.descriptionKathryn Elizabeth Driest is a member of the Class of 2014 of Washington and Lee University.en_US
dc.description.abstractNonfunctional ribosomal RNA decay (NRD) is a eukaryotic degradation pathway that targets and eliminates structurally intact but functionally defective ribosomal RNAs (rRNAs). Two separate NRD pathways for 18S and 25S rRNA have been identified. 18S NRD requires translation elongation and involves the termination factor-like proteins Hbs1p and Dom34p, and the mRNA decay factors Ski7p and Xrn1p. 25S NRD, however, is not dependent on translation elongation and requires the ubiquitin E3 ligase component Rtt101p and its associated protein Mms1p, as well as the ubiquitin-binding Cdc48 complex. Although identification of these factors has provided considerable insight into the degradation pathways, much remains to be uncovered. We have employed DNA microarrays to determine changes in gene expression that occur when defective rRNA substrates that activate NRD are present. These were analyzed with the goal of discovering additional factors involved in NRD. Saccharomyces cerevisiae cells were transformed with galactose-inducible plasmids containing NRD substrates. Activation of NRD was confirmed by RT-qPCR and phenotypic analysis. The mRNA population was then reverse transcribed to cDNA, labeled with fluorescent dyes, and hybridized to the microarray. Comparison of dye intensities allowed for determination of global gene expression changes induced by NRD. Initial data analysis revealed induction of ribosomal protein gene expression as well as rDNA silencing genes. Increased expression of ubiquitin was observed upon activation of 25S NRD, consistent with observations of ubiquitylated 25S NRD substrates. Repression of the deubiquitylation enzyme Otu1p and other RNA processing factors was also observed. Continued analysis of the microarray data and additional verification of potential genes of interest is an ongoing part of this investigation.en_US
dc.description.statementofresponsibilityKathryn Elizabeth Driest
dc.format.extent81 pagesen_US
dc.language.isoen_USen_US
dc.rightsThis material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with the source.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subject.otherWashington and Lee University -- Honors in Biochemistryen_US
dc.titleMicroarray Analysis of Nonfunctional Ribosomal RNA Decay in Saccharomyces cerevisiae (thesis)en_US
dc.typeTexten_US
dcterms.isPartOfRG38 - Student Papers
dc.rights.holderDriest, Kathryn Elizabeth
dc.subject.fastSaccharomyces cerevisiaeen_US
dc.subject.fastDNA microarraysen_US
dc.subject.fastGene expression -- Researchen_US
dc.subject.fastRNAen_US
local.departmentBiochemistryen_US
local.scholarshiptypeHonors Thesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record